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Radiation and Scattering from
Isorefractive Bodies of Revolution

Piergiorgio L. E. Uslenghi,Fellow, IEEE, and Riccardo Enrico Zich

Abstract—The radiation from an electric or magnetic dipole lo-
cated on the symmetry axis of an isorefractive body of revolution
(BOR) and axially oriented is considered. The boundary-value
problem is solved exactly for three BOR’s: the isorefractive
prolate and oblate spheroids and the isorefractive paraboloid.
Furthermore, for the isorefractive circular cone, the radiation
from an arbitrarily located and radially oriented dipole, and the
scattering from an obliquely incident plane wave are determined
exactly.

Index Terms—Electromagnetic radiation, electromagnetic scat-
tering.

I. INTRODUCTION

A N isorefractive body is made of a linear, homoge-
neous, and isotropic material whose refractive index is

equal to the refractive index of the medium surrounding the
body, although the intrinsic impedances of the two media
have different values. If the surface that separates the body
from the surrounding medium is a coordinate surface in a
system of orthogonal curvilinear coordinates for which the
wave equation is separable, then the boundary conditions
at the interface between the two media can be satisfied
by mode matching and an exact canonical solution to the
boundary-value problem is obtained. This is possible because
the eigenfunction expansions of the electromagnetic field on
either side of the interface contain the wavenumber as a
parameter (and this has the same value in both media), but
not the intrinsic impedance. If the body’s material has electric
permittivity and magnetic permeability , and the body is
immersed in a medium of permittivity and permeability ,
then the isorefractive condition is

(1)

Condition (1) has been used to obtain exact solutions for
scattering from elliptic and parabolic cylinders in [1] and from
a paraboloid of revolution in [2]. The scattering from a wedge
has been solved in [3] via a transform technique. The fact that
lateral waves on either side of a planar isorefractive boundary
propagate with the same phase velocity has been utilized in
obtaining an exact solution to plane wave scattering from a
class of wedge structures [4].

In this paper, we solve exactly the boundary-value problems
for primary sources that are either electric or magnetic dipoles
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located on the axis of symmetry of an isorefractive body
of revolution (BOR) and axially oriented for three different
types of BOR’s: a prolate spheroid (Section II), an oblate
spheroid (Section III), and a paraboloid (Section IV). For the
isorefractive circular cone, we solve exactly the problems
of radiation from an arbitrarily located and radially oriented
electric or magnetic dipole and of scattering by an obliquely
incident plane wave (Section V). The analysis is conducted in
the frequency domain with as the time-dependent
factor.

II. THE ISOREFRACTIVEPROLATE SPHEROID

The prolate spheroidal coordinates are related to
the rectangular coordinates by

(2)

where , , and
is the axis of symmetry. The surfaces constant,
constant, and constant are, respectively, confocal prolate
spheroids of interfocal distance, major axis , and minor
axis , confocal semi-hyperboloids of revolution with
interfocal distance, and semi-planes originating in theaxis.

The prolate spheroid with surface is made of
a material with permittivity and permeability and is
immersed in a medium with constitutive parametersand

; the two media are isorefractive, i.e., condition (1) applies.
For an electric dipole located at , on the

positive axis and corresponding to a primary electric Hertz
vector

(3)

where is the distance between the dipole and the observa-
tions point and

(4)

is the wavenumber, the primary magnetic field is ,
with

(5)

where , the notation for the prolate spheroidal wave
functions is as in [5] and [6] and is the smaller
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(larger) between and . The scattered magnetic field in the
region and the total magnetic field inside the spheroid

are also polarized, and are given, respectively,
by

(6)

(7)

where and are modal coefficients determined by the
boundary conditions, i.e., by imposing the continuity of
and across the interface . The quantities

and are the intrinsic
admittances of the surrounding medium and of the spheroid.

The component is given by

(8)

where and . Hence

(9)

(10)

where

(11)

and the prime means the derivative with respect to. Note
that and if , as expected.

For a magnetic dipole located at on
the positive axis and axially oriented, corresponding to a
primary magnetic Hertz vector given by (3), the electric field
is everywhere oriented in the direction. The primary electric
field , the scattered electric field in the region
outside the spheroid, and the total electric field inside the
spheroid are given by

(12)

(13)

(14)

where the modal constants and are determined by
imposing the boundary conditions at , yielding

(15)

(16)

where is given by (11). As expected, and
if . Note that is obtained from by duality,
i.e., by replacing with , .

Results for an arbitrarily located and oriented dipole are
unavailable, even for the simpler case of a metallic spheroid.

III. T HE ISOREFRACTIVEOBLATE SPHEROID

The oblate spheroidal coordinates are related to the
rectangular coordinates by

(17)

where , , , and
is the symmetry axis. The surfaces constant,

constant, and constant are, respectively, confocal oblate
spheroids of interfocal distance, minor axis and major
axis ; confocal semi-hyperboloids of revolution with
interfocal distance; and semi-planes originating in theaxis.

The oblate spheroid with surface is made of
a material with permittivity and permeability and is
immersed in a medium with constitutive parametersand

. The isorefractive condition (1) applies.
For an electric dipole located at ,

on the positive axis and axially oriented, corresponding to
the primary electric Hertz vector (3), the magnetic field is
everywhere oriented in the direction. The primary magnetic
field , the scattered magnetic field in the region
outside the spheroid, and the total magnetic field inside
the spheroid are given by

(18)

(19)

(20)

where , the notation for the oblate spheroidal wave
functions is that adopted in [5] and [6] and is the
smaller (larger) between and . The modal coefficients
and are found by imposing the boundary conditions at

(21)
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(22)

where

(23)

and the prime means the derivative with respect to. Note
that and if .

For a magnetic dipole located at , on the
positive axis and axially oriented, corresponding to a primary
Hertz vector given by (3), the electric field is everywhere
oriented in the direction. The primary electric field ,
the scattered electric field in the region outside the
spheroid, and the total electric field inside the spheroid

are given by

(24)

(25)

(26)

The modal coefficients and are found by imposing
the boundary conditions at

(27)

(28)

where is given by (23). As expected, and
when . Observe that is obtained from by
duality, i.e., by replacing with , .

IV. THE ISOREFRACTIVEPARABOLOID

The parabolic coordinates are related to the rect-
angular coordinates by the transformation

(29)

where , , and . The
axis is the axis of symmetry. The surfaces constant and

constant are paraboloids of revolution with foci at the
origin and the surfaces constant are
semi-planes originating in the axis.

The paraboloid separates two regions of space; the
volume is filled with a linear, homogeneous, and
isotropic medium of permittivity and permeability ; the

volume is filled with a linear, homogeneous, and
isotropic medium of permittivity and permeability . The
isorefractive condition (1) applies. The source is an electric or
magnetic dipole located at , on the negative

axis and axially oriented.
For an electric dipole with a primary Hertz vector given by

(3), the magnetic field is everywhere directed along. The
incident magnetic field is

(30)

where and is the smaller (larger) between
and . The functions and are Whittaker functions;

their relations to other eigenfunctions introduced by Pinney,
Buchholz, and Fock may be found in [6, ch. 16]. The scattered
magnetic field in on the convex side of the
paraboloidal interface and the total magnetic field
in on the concave side of the interface are given by

(31)

(32)

where and are functions of to be determined by
imposing the boundary conditions at the interface . The
above expressions are a generalization of the results obtained
by Buchholz in 1948 for the perfectly conducting paraboloid,
as reported in [6].

The total tangential electric field at the interface is

(33)

(34)

Continuity of and across the interface yields

(35)

(36)

where the prime means derivative with respect to. Observe
that and for , as expected.

For a magnetic dipole with a primary Hertz vector given
by (3), the electric field is everywhere directed along. The
incident and scattered electric fields and in

and the total electric field in are obtained
from , and of (30)–(32), respectively, by replacing
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with , with , and with . The boundary
conditions at yield

(37)

(38)

For , we have that and . Also, is
obtained from by replacing with .

The exact scattering of an axially incident plane wave by an
isorefractive paraboloid has been obtained previously [2]; the
remarkable fact about this exact solution is that it coincides
with geometrical optics.

V. THE ISOREFRACTIVECIRCULAR CONE

With reference to spherical polar coordinates , con-
sider the conical surface , which separates the portion
of space filled with a medium of constitutive
parameters from the region of space filled
with a medium of constitutive parameters . The semi-
aperture angle of the cone may take any value in the range

and the isorefractive condition (1) applies.
A radially oriented electric dipole located at

, , with moment
corresponding to an incident electric Hertz vector

(39)

leads to a total (incident plus scattered ) electric field
in

(40)

and to a total electric field in that is
given by (40) with replaced by . The corresponding
magnetic fields are

(41)

The functions are given by

(42)

where , for all positive

(43)

(44)

and is the smaller (larger) between) and . The
integration contour encloses the positive axis in the
clockwise direction and and are the spherical Bessel
function and the spherical Hankel function of the second kind,
respectively:

(45)

The above solution is akin to the solution obtained by Felsen
in 1957 for the perfectly conducting cone (see chapter 18 in
[6]). It is useful to remember that for , the solutions
of the associated Legendre equation behave as follows (see,
e.g., [7, p. 315]): is bounded at , but not at

is bounded at , but not at .
The modal coefficients and are found by imposing

the boundary conditions at

(46)

(47)

Observe that if , then and , as
expected.

The particular case , when the cone becomes a
planar interface separating two isorefractive materials of semi-
infinite extent, deserves special attention. From the formulas
(see, e.g., [8, p. 1009])

(48)

(49)

it follows that

(50)

which are the reflection and transmission coefficients for the
electric field at the interface, respectively.

A radially oriented magnetic dipole located at
, , with moment corresponding

to the incident magnetic Hertz vector (39), yields a total
(incident plus scattered) magnetic field in

(51)

which is given by the right-hand side of (40) with replaced
by and yields a total magnetic field in
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that is given by the right-hand side of (40) with replaced
by . The corresponding electric fields are, respectively

(52)

The functions are obtained from of (42) by replacing
with , where, in turn, is obtained from of

(43) and (44) by replacing with and with .
Imposition of the boundary conditions yields

(53)

(54)

For and , as expected. The
particular case of a planar interface yield

(55)

which are the reflection and transmission coefficients for the
magnetic field at the interface, respectively.

Let us now consider an incident plane wave

(56)

where , and

(57)

The total electric and magnetic fields in the region
are

(58)

(59)

whereas in the region , the total fields and
are obtained from and , respectively, by replacing
with , with , and with .

The Debye potentials and are given by

(60)

(61)

where is given by of (43) with replaced by a new
modal coefficient , is given by of (43) with
replaced by , is given by of (44) with replaced
by , and is given by of (44) with replaced by

. The solution (57)–(60) is similar to that given by Felsen
in 1957–1958 for a metallic cone, as reported in [6].

By imposing the boundary conditions, it is found that the
modal coefficients , , , and are given by

(62)

(63)

is equal to of (47) [consequently, equals of
(46)] and is equal to of (54).

It should be noted that the case of metallic cone
cannot be expected to follow as a particular case of the above
result for the isorefractive cone because of condition (1).
Nevertheless, in the limit , the above isorefractive
solution yields the correct result for the metallic cone.

The contour integrals in (42), (60), and (61) may be evalu-
ated as a series of pole contributions, using Cauchy’s residue
theorem. The results would be akin to those obtained by
Bailin and Silver [9] for the metallic cone. This procedure
was followed in [3] for the isorefractive wedge.

VI. CONCLUSION

In this paper, we have solved several new canonical prob-
lems involving radiation or scattering by penetrable bodies of
revolution that are isorefractive to the surrounding medium.
These new, exact solutions are important not only because
they enrich the catalog of exact solutions for penetrable bodies,
but also for two additional reasons. First, they provide limiting
cases to test the correctness of analytical solutions that may be
developed in the future for bodies with the same shapes treated
here, but made of more general materials. Second, they provide
test cases for the validation of numerical codes developed for
penetrable bodies whose boundary surfaces have varying radii
of curvature and/or singularities.

To our knowledge, and with the exception of the result
reported in [2], the results given herein are the only existing
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exact solutions for three-dimensional penetrable bodies whose
boundary surface is not a sphere.
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