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Decomposition of Electromagnetic Boundary
Conditions at Planar Interfaces with

Applications to TE and TM Field Solutions
Steven J. Weiss,Member, IEEE, and Walter K. Kahn,Life Fellow, IEEE

Abstract—Electromagnetic fields in homogeneous source-free
regions can be decomposed into fields that are TE and TM with
respect to a particular reference direction (e.g., thez direction).
If transverse sources exist, both TE and TM fields may be excited
simultaneously. This paper considers the case of two infinite
regions having a common planar interface and prescribed sources
(surface currents) on the interface. The source currents are
decomposed in a manner consistent with the decomposition of the
fields. Accordingly, a procedure is established for describing the
boundary conditions at the interface in terms of the longitudinal
field components Ez , Hz , and the surface currents �Js. The
development is unique in that the continuity of the transverse
field components at the boundary are not explicitly considered but
interpreted in terms of z-directed fields. This boundary condition
approach is shown to give results consistent with those obtained
by matching the tangential fields at the interface using vector
transforms. A simple example illustrating the procedure using a
ring of current in free-space is presented.

Index Terms— Boundary value problems, electromagnetic
fields.

I. INTRODUCTION

T HE problem of determining solutions for electromagnetic
fields in two different source-free homogeneous regions

having sources on a common planar interface is of great
interest to researchers. It has important applications to such
problems as the analysis of microstrip antennas. One method of
analysis decomposes the electromagnetic fields in each region
into fields that are TE and TM with respect to an axis normal
to the boundary (the axis) [1] while meeting the boundary
conditions at the interface. Such a geometry and decomposition
is illustrated in Fig. 1.

The longitudinal components of the fields and may
both be excited by transverse sources [2]; the corresponding
transverse components of the fields can be derived from the

components. In Section II of this paper, a brief review
of the relationship between the transverse and longitudinal
field components is presented. The boundary conditions at
the planar interface are decomposed into equivalent conditions
which specify the two-dimensional (2-D) divergence and curl
of the transverse field components in planes tangent to the
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Fig. 1. Thez components of an electromagnetic field excited by a prescribed
current source.

boundary. This decomposition is then reinterpreted in terms
of -directed field components. Accordingly, the boundary
condition decomposition conforms to the , , field de-
composition in the source-free homogeneous regions.

Two-dimensional integral transforms can be used to obtain
exact integral solutions for fields satisfying the boundary
conditions at the interface. Assuming a general 2-D transform,
spectral representations of the boundary conditions are pre-
sented in Section III. These representations, which require a-
directed coordinate axis, are demonstrated to be consistent with
the vector transform method of meeting boundary conditions
proposed by Chewet al. [3]–[4]. As an illustration, the cylin-
drical coordinate system is specified and the representation
of the boundary conditions using the approach of this paper
is demonstrated to be identical to that found using a Vector
Hankel transform. In Section IV, the fields generated by a
ring of current in free-space are determined illustrating the
convenience of the paper’s results.

II. DECOMPOSITION OFELECTROMAGNETIC

FIELDS AND THEIR BOUNDARY CONDITIONS

In a homogeneous source-free region the transverse electro-
magnetic fields may be determined from the-directed field
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components and . A brief overview of the procedure is
presented here. Maxwell’s source-free curl equations

(1)

(2)

may be expanded into the following form:

(3)

(4)

where denotes transverse derivatives and and are
the transverse components of the electric and magnetic fields.

Equations (3) and (4) may be solved for and in
terms of and

(5)

(6)

and are required to satisfy the scalar Helmholtz
equation.

Our development pertains to Fig. 1, which is unbounded in
the transverse directions, although this does not necessarily
need to be the case. For example, modal field solutions (fixed

) for a bounded structure such as a waveguide can be
developed using this methodology. This paper uses the term
“modal” in the broadest sense where the guiding structure may
be thought of as having walls that recede to infinity allowing
the “modes” to coalesce into a continuous spectrum. Assuming
a modalfield solution for which the method of separation of
variables applies, the wavenumber will satisfy the separation
equation

(7)

In (7), the component contains wavenumbers associated
with the transverse geometry of the problem (e.g.,

in Cartesian coordinates and in cylindrical
coordinates).

For the same separable solution, second-order derivatives
with respect to “ ” may be obtained by the replacement

(8)

The equations for the transverse modal fields become

(9)

(10)

Therefore, the transverse field components are completely
determined from the components. The fields given by (9) and
(10) exclude contributions of waves TEM with respect to1.

1Formally, such waves may be included by settingEz = k
2

t
F .

The boundary conditions that must be enforced for the
tangential components of an electromagnetic field across a
planar interface are given in (11) and (12)

(11)

(12)

Our development explicitly employs the simple electric
surface current of (11). The surface current may be
generalized to include axial magnetic currents as shown by
Michalski [5, eq. (10b)]. The alternate solution for transverse
magnetic currents and axial electric currents is easily obtained
using duality [1].

Equations (11) and (12) do not explicitly indicate the
manner in which the components of the fields are related
to prescribed transverse excitation(s) at the boundary. Since
we wish to work in terms of components and derive the
transverse components from the-component solution, it is
desirable to develop an equivalent set of boundary condition
equations whichare interpreted directly in terms of the
components.

Consider, for example, the boundary condition specified
by (11). This equation defines the limiting behavior of vec-
tor fields (vector point functions) in the transverse plane.
According to Helmholtz’s theorem (in 2-D form), these trans-
verse vectors are completely determined to within an additive
constant if their transverse divergence and curl are specified
everywhere in the plane. The additive constant, corresponding
to a static field unrelated to the prescribed excitation, may
be set to zero without altering the results of the problem.
Therefore, the 2-D divergence and curl equivalent to (11) are

(13)

(14)

Using (A.3) and (A.4) from Appendix A, (13) and (14)
may be written as

(15)

(16)

Equations (15) and (16) can be interpreted in terms of the
components of the electric and magnetic fields. On inspecting
(2) or (4) it is evident that

(17)

the transverse curl of the tangential magnetic field is inter-
preted in terms of the component of the electric field.
Substituting (17) into (15) gives

(18)

In homogeneous source-free media

(19)

When the and transverse components are separated

(20)

Consequently, the transverse divergence of the magnetic field
at the interface is interpreted in terms of the derivative of the
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component of the magnetic field. Substituting (20) into (16)
gives

(21)

In (21), (A.3) has been used to express the transverse curl
of the surface current in terms of a transverse divergence. This
form is useful for analytical purposes. Equations (18) and (21)
are, therefore, equivalent to the boundary condition of (11),
our basic result.

An alternate set of equations relatingcomponents equiv-
alent to (12) must be developed. This is easily accomplished
by applying the duality concept to (18) and (21) and then by
setting the magnetic surface current equal to zero. The
boundary conditions corresponding to the tangential electric
fields become

(22)

(23)

Equations (18) and (21)–(23) constitute four independent
equations which, presumably, contain four unknown coeffi-
cients. Given the fields on one side of the boundary (e.g., at

), they may be solved for the unknown fields at .
An example will be given in Section IV.

III. REPRESENTATIONUSING 2-D TRANSFORMS

Two-dimensional transforms (operating on the transverse
plane) have been found of value in obtaining spectral solutions
for and at the boundary of two regions. Here, a
general approach for such a solution is presented which can
later be specialized to any separable-directed coordinate
system of interest. Let represent a 2-D transform from the
spatial to the spectral domain (i.e., integrations are with respect
to spatial transverse coordinates). Multiplication by and
differentiation with respect to “” may be interchanged with

. The transformed vectors are denoted with a “.” Let
designate the inverse transform. Differential operations with
respect to transverse spatial coordinates may be exchanged
with . Using these transforms, (18) and (21) may be
written in matrix form as

(24)

This equation, representing the boundary condition approach
advanced by this paper, can be written more explicitly upon
once a coordinate system and the transformsand are
specified. Using cylindrical coordinates, let the surface current
be prescribed as

(A/m) (25)

where and with “ ”
being the angle describing the relationship between theand

components of the current. The current moment has
dimensions of one (Am).

Transforms for the cylindrical coordinate system (Fourier-
Bessel Transforms) may now be used. Such a pair is given
by

(26)

(27)

Substituting (26) and (27) into (24) and using the fact that

(28)

we find

(29)
In (29), we have followed the work of Chew and Habashy

[4] where the kernel of their Vector Hankel transform is
defined with

(30)

Note that denotes the derivative with respect to the
argument of the Bessel function.

From (29) it is evident that we must have

(31)

Not surprisingly, exactly the same result (31) may be found
using the tangential components of the magnetic field at the
boundary. The process is briefly outlined here. Equation (10)
may be written as

(32)

or (after exchanging orders of operation)

(33)

In (32) and (33), it is understood thatthe transverse deriva-
tives operate on the spatial coordinatesof the transform.
Equation (33) may be solved for the transverse components
of the magnetic field

(34)
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The individual transverse components of the magnetic field
at the boundary may now be written

(35)

where (35) expresses the boundary conditions met by the
tangential magnetic fields at the interface.

Substituting (25)–(27) into (35), the following may be
obtained:

(36)

Equation (36) may now be used to obtain a solution for
using the boundary conditions of the tangential magnetic fields.
Inspection of (36) reveals that it leads to the same requirement
of (29) (i.e., (31)) as was expected. Consequently, the two
techniques are equivalent.

IV. SAMPLE PROBLEM

The methodology developed so far may now be applied to a
specific problem. The simple problem of the ring source with a
radius of “ ” will be examined. The regions above and below
the ring are free-space and the ring is located at on
the - plane. The problem will be solved by determining the
unknown spectral functions due to point source excitations.
Once these are known, spectral representations of the Green’s
functions are readily determined. The Green’s functions are
then multiplied by the surface current distribution of a ring
source and integrated over the primed (source) coordinates
determining and .

To account for the (transformed) boundary conditions of
(29), we assume general modal (transformed) solutions having
undetermined (spectral) coefficients. Anticipating outgoing
waves, such solutions for the electric and magnetic fields will
be of the form

(37)

(38)

(39)

(40)

The boundary conditions specified in (22) and (23) will hold
in the spectral domain. Consequently

(41)

(42)

and the problem is reduced to determining two unknowns.
Accordingly, the left-hand side of (24) becomes

(43)

Using (31) which was developed using electric current point
source excitation, the spectral functions and
in (43) are explicitly determined

(44)

Since the spectral coefficients are found from point sources,
the solutions for the -directed electric and magnetic fields
give the Green’s functions directly

A/m
V/m

(45)

Substituting (44) into (45) gives the explicit spectral repre-
sentation of the Green’s functions

A/m
V/m

(46)

For the problem of the ring source in (25).
Assuming no variation over , the surface currents are written
as

(47)

The -components of the fields are found after multiplying
by the surface current distributions and integrating

(48)

Substituting (47) into (48) and integrating over the
coordinate gives values of zero except for the case when

. After completing the spatial integrations and noting
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that , the solution in both regions of the
problem becomes

(49)

(50)

Equation (34) may now be used to solve for the remaining
transverse magnetic fields

(51)

(52)

The transverse electric field is

(53)
Using duality, these solutions match those found by Dudley

[6] for a ring of magnetic current.

V. CONCLUSION

The problem of specifying the boundary conditions for
the -components of electric and magnetic fields at a planar
boundary containing transverse sources has been addressed.
The solution advanced in this paper is unique in its approach
in that it decomposes the boundary conditions of the transverse
fields in a manner consistent with the decomposition of the
fields in the source-free homogeneous regions. Once accom-
plished, this decomposition makes it possible to determine
and at the boundary. Since the transverse components of
the fields are found differentiating thecomponents, an entire
solution is known.

This procedure for meeting the boundary conditions outlined
in this paper is found to be consistent with the vector transform
approach. Furthermore, such transforms may be derived from
the results of this paper. To illustrate, the cylindrical coordinate
system was specified and the Vector Hankel transform is
shown to originate from the limiting behavior of the-directed
fields. Finally, to demonstrate the simplicity of this approach,
the ring-of-current problem is solved and the solution is found
to match known analytical results.

APPENDIX A

Two useful 2-D vector identities are utilized in this paper.
The derivations are easily accomplished using two well-known
vector identities

(A.1)

(A.2)

If it is specified that and , (A.1) and
(A.2) reduce to

(A.3)

(A.4)
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