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Decomposition of Electromagnetic Boundary
Conditions at Planar Interfaces with
Applications to TE and TM Field Solutions

Steven J. WeissyViember, IEEE and Walter K. KahnlLife Fellow, IEEE

Abstract—Electromagnetic fields in homogeneous source-free H,(k,1 z) E,(k, 2)
regions can be decomposed into fields that are TE and TM with
respect to a particular reference direction (e.g., the: direction).
If transverse sources exist, both TE and TM fields may be excited
simultaneously. This paper considers the case of two infinite N A R
regions having a common planar interface and prescribed sources ,
(surface currents) on the interface. The source currents are /o
decomposed in a manner consistent with the decomposition of the ,
fields. Accordingly, a procedure is established for describing the /
boundary conditions at the interface in terms of the longitudinal A /'_ ,’
field components E., H., and the surface currents.J,. The Js /
development is unique in that the continuity of the transverse ,
field components at the boundary are not explicitly considered but 4
interpreted in terms of z-directed fields. This boundary condition d y
approach is shown to give results consistent with those obtained
by matching the tangential fields at the interface using vector :
transforms. A simple example illustrating the procedure using a
ring of current in free-space is presented. (€. 11s)

Index Terms— Boundary value problems, electromagnetic
fields. H,(k.22) E,(k,zz)

Fig. 1. Thez components of an electromagnetic field excited by a prescribed
I. INTRODUCTION current source.

HE problem of determining solutions for electromagnetic

fields in two different source-free homogeneous regiommundary. This decomposition is then reinterpreted in terms
having sources on a common planar interface is of gresit »-directed field components. Accordingly, the boundary
interest to researchers. It has important applications to sugindition decomposition conforms to thg., H_, field de-
problems as the analysis of microstrip antennas. One metho@oiposition in the source-free homogeneous regions.
analysis decomposes the electromagnetic fields in each regiomMwo-dimensional integral transforms can be used to obtain
into fields that are TE and TM with respect to an axis normalact integral solutions for fields satisfying the boundary
to the boundary (the axis) [1] while meeting the boundary conditions at the interface. Assuming a general 2-D transform,
conditions at the interface. Such a geometry and decompositigpectral representations of the boundary conditions are pre-
is illustrated in Fig. 1. sented in Section Ill. These representations, which require a

The longitudinal components of the fields, and H. may directed coordinate axis, are demonstrated to be consistent with

both be excited by transverse sources [2]; the correspondihg vector transform method of meeting boundary conditions
transverse components of the fields can be derived from fh@posed by Chewt al. [3]-[4]. As an illustration, the cylin-
z components. In Section Il of this paper, a brief reviewrical coordinate system is specified and the representation
of the relationship between the transverse and longitudirgfl the boundary conditions using the approach of this paper
field components is presented. The boundary conditions igitdemonstrated to be identical to that found using a Vector
the planar interface are decomposed into equivalent conditiaignkel transform. In Section 1V, the fields generated by a
which specify the two-dimensional (2-D) divergence and curing of current in free-space are determined illustrating the
of the transverse field components in planes tangent to tsnvenience of the paper’s results.
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componentsE, andH.. A brief overview of the procedure is The boundary conditions that must be enforced for the
presented here. Maxwell's source-free curl equations tangential components of an electromagnetic field across a

_ L planar interface are given in (11) and (12)
VX E=—jwpH 1)

V x H = +jweFE 2 o X [F{t(d+) - F{t(d_)] =Je _ (1)
Zo % [Ey(d¥) — E,(d7)] = —M, = 0. (12)
may be expanded into the following form: o ) )
Our development explicitly employs the simple electric

_ g - SN 7 surface current/, of (11). The surface currenf; may be
<20$ + Vt) X (s + ) = —jon(zol. + Hi) () generalized to include axial magnetic currents as shown by
9 B _ o _ Michalski [5, eq. (10b)]. The alternate solution for transverse
<ZO 97 Vt) x (oH. + Hy) = +jwe(zoEz + Er)  (4)  magnetic currents and axial electric currents is easily obtained
using duality [1].
o _ _ Equations (11) and (12) do not explicitly indicate the
where V; denotes transverse derivatives akidand H; are  manner in which the: components of the fields are related

the transverse components of the electric and magnetic fielgs yrescribed transverse excitation(s) at the boundary. Since
Equations (3) and (4) may be solved féh and H; in \ye wish to work in terms of: components and derive the
terms of . and H. transverse components from thecomponent solution, it is
92 o] - P! o desirable to develop an equivalent set of boundary condition
{@ +k }Et = {Vthz +jwnzo x (VtHz)} (3) equations whichare interpreted directly in terms of the
52 ) 5 components. N -
{ 5 +k2} H, = [Vt—HZ — JweZg X (VtEZ)} (6) Consider, for example, the boundary condition specified
9z 9z by (11). This equation defines the limiting behavior of vec-
E. and H. are required to satisfy the scalar Helmholtor fields (vector point functions) in the transverse plane.
equation. According to Helmholtz’s theorem (in 2-D form), these trans-
Our development pertains to Fig. 1, which is unbounded ¥§'S€ vectors are completely determined to within an additive
the transverse directions, although this does not necessaffypstant if their transverse divergence and curl are specified
need to be the case. For example, modal field solutions (fix@¥erywhere in the plane. The additive constant, corresponding
k.) for a bounded structure such as a waveguide can @ static field unrelated to the prescribed excitation, may
developed using this methodology. This paper uses the P set to zero without altering the results of the problem.
“modal” in the broadest sense where the guiding structure magerefore, the 2-D divergence and curl equivalent to (11) are
e houhf e g vl ecede o iy dlowts | Vo x ) A4 =¥, T
a modalfield solution for which the method of separation of Vi [z x [Hy(d") - B(d)| = Vex J,. (14)
variables applies, the wavenumber will satisfy the separationusing (A.3) and (A.4) from Appendix A, (13) and (14)
equation may be written as

B =4k B =epukd k}=w%copo.  (7) —Z0 - [V x [H(dT) — H(d )] = V¢ - T, (15)
Z0[Vys - [Hi(d¥) — Hy(d7)]| = Vi x J,.  (16)

In (7), the component? contains wavenumbers associated

with the transverse geometry of the problem (e/g, = Equations (15) and (16) can be interpreted in terms okthe
k2 + k7 in Cartesian coordinates ari¢ = & in cylindrical components of the electric and magnetic fields. On inspecting
coordinates). (2) or (4) it is evident that

For the same separable solution, second-order derivatives

with respect to £” may be obtained by the replacement Vi X Hy = juek, 17
92 the transverse curl of the tangential magnetic field is inter-
92 . (8) preted in terms of thex component of the electric field.
* Substituting (17) into (15) gives
The equations for the transverse modal fields become . n B _
) —jwler E.(d7) — g2 Ex(d™)] = Vi - Js. (18)
kPE, = |:Vt 5, L= T iwno X (VtHz):| 9) In homogeneous source-free media
_ a V-H=0. 19
kat = [Vta H, — jwezy % (VtEZ)] (20) (19)
% When thez and transverse components are separated
Therefore, the transverse field components are completely _ P!
determined from the components. The fields given by (9) and Vi Hy = — 8zHZ' (20)

(10) exclude contributions of waves TEM with respect:to Consequently, the transverse divergence of the magnetic field

1Formally, such waves may be included by settfig = k7 F. at the interface is interpreted in terms of the derivative of the
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z component of the magnetic field. Substituting (20) into (16) Transforms for the cylindrical coordinate system (Fourier-

gives Bessel Transforms) may now be used. Such a pair is given
by
8 n 3] _
R Li(p.d,7) = wn
=—Zo- (Ve x Js) =V, (Zo X Js). 21 o :
0 (Ve ) (%o ) (21) / ppz/)p,¢,)1"¢pdpd¢
In (21), (A.3) has been used to express the transverse curl
of the surface current in terms of a transverse divergence. This (26)
form is useful for analytical purposes. Equations (18) and (1)~ 4 (k,, 2) = 1(p, b, 2)
are, therefore, equivalent to the boundary condition of (11), n=+00
our basic result. => 61"45/ (k) (kp, 2)k, dk:,p.
An alternate set of equations relatimgcomponents equiv- n=-—co
alent to (12) must be developed. This is easily accomplished (27)

by applying the duality concept to (18) and (21) and then

setting the magnetic surface currehf, equal to zero. The té(ubstltutmg (26) and (27) into (24) and using the fact that

boundary conditions corresponding to the tangential electric Foo Feo
filds become [ @@= [ s@swa @
3] ] n=too N .
E.(d*) - —E.(d")| =0, (23) jns S[H.(d*)~H.(d)]
o o Y o [ ke o) e
Equations (18) and (21)—(23) constitute four independent oo
equations which, presumably, contain four unknown coeffi- _ i gin(o— 45)/ K20, () T (b )[J }dk
cients. Given the fields on one side of the boundary (e.g., at 27 < Ko NG
z = d~), they may be solved for the unknown fields-at d+. (29)
An example will be given in Section IV. In (29), we have followed the work of Chew and Habashy
[4] where the kernel of their Vector Hankel transform is
[ll. REPRESENTATIONUSING 2-D TRANSFORMS defined with
Two-dimensional transforms (operating on the transverse - (o) = T (kop) iy In(kep) (30)
plane) have been found of value in obtaining spectral solutions n\FpP) = ,j"p Julkpp)  +I0(kep) |

for E. and H. at the boundary of two regions. Here,

general approach for such a solution is presented which &iﬂte that.J;, (k,p) denotes the derivative with respect to the

later be specialized to any separabialirected coordinate argument of the Bessel function.

system of interest. Lef represent a 2-D transform from the oM (29) it is evident that we must have

spatial to the spectral domain (i.e., integrations are with resp cta [H (d+) — H. (d—)] 1 ing’ N4

to spatial transverse coordinates). Multiplicatibp by and EW[E E.(d%) — e, E. (dﬂ]} - 2—/@,, T (kop )[jp }
1 2 s

differentiation with respect toz" may be interchanged with (31)

L. The transformed vectors are denoted with~a™Let L~!

designate the inverse transform. Differential operations with Not surprisingly, exactly the same result (31) may be found

respect to transverse spatial coordinates may be exchangsittg the tangential components of the magnetic field at the

with L~1. Using these transforms, (18) and (21) may beoundary. The process is briefly outlined here. Equation (10)

written in matrix form as may be written as

LH(dF) = L H.(d") } _ L—l{m (0 % '79]

L™ LEIH, = VtL_lLaa H, — jwezy x (V,L™'LE.)
z
(24) (32)

This equation, representing the boundary condition approa@h(after exchanging orders of operation)
advanced by this paper, can be written more explicitly upon -
once a coordinate system and the transfofimand L~ are L7 'kiH, = L~
specified. Using cylindrical coordinates, let the surface current
be prescribed as !

jwlerE.(dt) — e2E.(d7)] —LV, - J,

— L7 Yjwezy x (VLE.).  (33)

n (32) and (33), it is understood thete transverse deriva-
B ) - tives operate on the spatial coordinatethe L~ transform.
Jo =T po+T? 0)8(p—p)6(p— ¢')/p] (A/m). (25) Equation (33) may be solved for the transverse components

/ / f th tic field
where 7# = J7°Cos(a) and 7% = J°Sin(a) with *a” o oonore 1

being the angle describing the relationship betweerp@mnd H =L 'H, =1} V 3 PR % (V. E.
¢o components of the current. The current momghtt has ¢ ¢ k2 ta ‘lwgkf 70 X (Vi) |

dimensions of one (Am). (34)
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The individual transverse components of the magnetic fiedohd the problem is reduced to determining two unknowns.
at the boundary may now be written Accordingly, the left-hand side of (24) becomes

H(d+) — H,(d) DIA (%)~ H(d)] | [~j2k.Culky)
[—<H¢<d+> - H¢<d—>>} Lf[elézwﬂ - EQE}(d)J = [ﬂwmAn(km } 43)

1 Tas
= L_IF [—_i—go} [V — 29 X V4] Using (31) which was developed using electric current point
o~ 0 N N source excitation, the spectral functiof (%,) and A, (k,)
% { &[f{z(d )— Hzgd )] } in (43) are explicitly determined
jw[leZ(d"') —eF.(d7)] (k)
— 0 J nifvp
=L p [+5)0} Vi — 20 X V4LV, - [70:( } (35) |:An(k'/7):|
1, F LT Ep) i i Talkpp)
where (35) expresses the boundary conditions met by the = —/f eIné’ [_ e Jp(k " f f”’:] o p)
tangential magnetic fields at the interface. o weg Ko IrAPP weo
Substituting (25)—(27) into (35), the following may be [j } (44)
obtained: T

r=too [I:I (dt)—H. (d—)] Since the spectral coefficients are found from point sources,
em¢ . # dk . . . .
§ : e B (dH)—er B(d7)] |77 the solutions for the:-directed electric and magnetic fields
give the Green’s functions directly

n=too

Zem<¢¢>/kj (kpp) Tn(kpp )7qb dk,,. P n=oo o
r Jr GH(TvT) _ Z In(e—¢") ko d (K p) Cn(k/’)
Gu(r,7) o T An(k,)
(36) n=—0co
, - : xRk, 220 | (45)
Equation (36) may now be used to obtain a solution for p Az v/m

using the boundary conditions of the tangential magnetic fields.

Inspection of (36) reveals that it leads to the same requiremenfubstituting (44) into (45) gives the explicit spectral repre-
of (29) (i.e., (31)) as was expected. Consequently, the twentation of the Green’s functions

techniques are equivalent.

|:G£{(7_77_ :| n_z-f—:oo (=4 / kie‘jk:zjn(kpp)
IV. SAMPLE PROBLEM Cp(r7 dr S—
. 1l n
The methodology developed so far may now be applied to a . [ +,j—zJ,’L(k,,p’) Tk pp 7In(kpp')
specific problem. The simple problem of the ring source with a - e In(ker’) =5 (k)
radius of ‘a” will be examined. The regions above and below Nid A/m
the ring are free-space and the ring is located: at 0 on X [jp’} dk {V/m} (46)

the z-y plane. The problem will be solved by determining the

unknown spectral functions due to point source excitations.For the problem of the ring sourcea = =#/2 in (25).

Once these are known, spectral representations of the Gregkssuming no variation ovet’, the surface currents are written

functions are readily determined. The Green’s functions a@s

then muItipIigd by the surface currgnt distribution of a ring qu(p,) 705(7 ~a)

source and integrated over the primed (source) coordinates ol =" r (47)
e JE (o) 0

determiningE. and H...

To account for the (transformed) boundary conditions of The z-components of the fields are found after multiplying
(29), we assume general modal (transformed) solutions havisg the surface current distributions and integrating
undetermined (spectral) coefficients. Anticipating outgoing -
waves, such solutions for the electric and magnetic fields will [Hz(T)}

be of the form E.(7)
~ . 27w poo N=+oo Jore)
EZ = An(kﬂ)c_]kzz Z Z 0 (37) / ejn(¢_¢,) / kie—jk;z‘]n(kpp)
E. = Bu(k,)et** 2 <0 (38) el 1 0
H. =Cu(k)e %% 23>0 (39) . { +id) (ko) ——%J (k,p ,)}
~ . n ! /
H;: — Dn(kp)e'l']kzz z S 0. (40) _wc,O kOP ] (]C ) cho ]n(k )
I dp' d 48
The boundary conditions specified in (22) and (23) will hold JF () or ¢ (48)

in the spectral domain. Consequently
Substituting (47) into (48) and integrating over thk#é

Cn(kp) = Dn(ky) (41)  coordinate gives values of zero except for the case when
An(k,) = —By(k,) (42) n = 0. After completing the spatial integrations and noting
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that J§(k,a) = —J1(k,a), the solution in both regions of thelf it is specified thatd = z, and B = %,B. + B,, (A.1) and

problem becomes (A.2) reduce to
S Vi (20 % By) = —z0 - (Ve X By) (A.3)
Hz(i) = *70/0 kzﬂ—kzjo(kﬂp)]l(k/’a) dk/’ (49) Vt X (20 X Bt) - Eo(Vt . Bt) (A4)
E.(7,r")=0. (50)
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