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Modal Analysis of Partially Coherent
Submillimeter-Wave Quasi-Optical Systems

Stafford Withington,Member, IEEE and J. Anthony MurphyMember, IEEE

Abstract—We consider the modal analysis of partially co- to conjugate Fourier planes and is applicable in cases where
herent submillimeter-wave quasi-optical systems. According to significant aberrations are present. The partially coherent field
our scheme the cross-spectral density at a plane is expanded;s-constrycted from a set of coherent diffracting free-space

m of rtiall herent pr ing free- m . .
?-f]ea Cilf]erezcgant]:trﬁlx C?h: 2|Jmpegfsa%?tW%ichezfepfjceetem?iﬂzz modes. A central feature of the scheme is that the second-order

by evaluating bimodal overlap integrals, completely describes Statistical properties of théeld are represented completely
the state of the field at a plane. The coherence matrix can be and, therefore, problems of great complexity can be solved.
traced through an optical system to another plane by means of a For example, it is possible to model the behavior of multimode
scattering matrix. Whereas diagonalizing the scattering matrix bolometer imaging arrays. Here the state of telefield is

gives the natural modes of the optical system, diagonalizing . . . .
the coherence matrix gives the natural modes of the field. We described by @ingle coherence matrix. Even in the case of

demonstrate the technique by studying the behavior of Gaussian @ Single-mode detector, the unused orthogonal optical modes
beam telescopes when the field at the source plane is completelyare excited by noise and this noise appears in the analysis in
incoherent. a natural and elegant manner. Looking to the future, it should
Index Terms—Submillimeter-wave propagation. be possible to model the correlations that exist between the
outputs of a focal plane array when the atmosphere above a
radio telescope is varying. At a deeper level, modal analysis
. INTRODUCTION provides an understanding of the thermodynamic entropy of a
E consider how modal techniques that have bedmam in such a way that it should be possible to use maximum
developed for the analysis of coherent submillimeteentropy techniques to examine the state of a collimated field
wave optical systems [1]-[3] can be extended to cover tfi®m intensity measurements alone [7], [8].
case when the field passing through the system is partially
coherent. Partial coherence arises in some form in all problems II. GAUSSIAN-MODE EXPANSION
of practical importance. For example, consider the situation OF THE CROSSSPECTRAL DENSITY

where a submillimeter-wave telescope is used to observeWe assume that the submillimeter-wave system to be an-

an extended radio astronomical source. Usually, in the case . .
\e:frzed comprises a sequence of components that interact
|

of a heterodyne detector, one would calculate the couplin ih and scatter a propagating free-space beam [9], [10]. For

between the detector and the source by propagating the fy é’rtially coherent fields, the quantity we wish to decompose

coherent field of the horn “backward” through the optic : "
. Into modes is the cross-spectral density; where, formally, we
system onto the sky [4], [5]. There is no reason why, however : . .
. i understand the cross-spectral density to be the time Fourier
the fully incoherent field of the source should not be pro

B Y . Ffransform of the mutual coherence function. To this end we
agated “forward” through the optical system onto the focal . . oo
. : assume that the optical system under consideration is one
plane. Clearly, in the case of a single-mode detector, the fifs o -
. o member of an ensemble. If the bandwidth is sufficiently narrow
approach is adequate, but there are many situations where it .
So that the coherence length is very much greater than the

is not possible to perform detailed calculations unless one hgs

- sical size of the system, the phase at one point in one
access to the more general description afforded by the secgnd ystet pne . P
) member of the ensemble is well defined with respect to the
approach—reflect for a while on how one would calculate th L
phase at another point in the same member of the ensemble.
performance of a focal-plane array planar bolometers.

. . hAs in the coherent case, the field can then be written as a
In this paper, we describe a procedure that allows the
mdpdal sum [11]

second-order statistical properties of a field to be trace
through a complex system of submillimeter-wave optical com- E'(r,w) = Z Al (W)t (1, w) (1)
ponents. Unlike Fourier optics [6], the analysis is not limited m
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where The problem of how to expand the cross-spectral density
o of a 3-D random field in terms of its natural modes has

Conmr = <A3;'Ain>- (3) peen considered by Wolf [12], [13]. Wolf's approach was

to consider Mercer’s theorem, which states that if the kernel

We hav_e dropped the e?<pli(_:it reference_to frequency, but afa homogeneous Fredholm equation of the second kind is
:ntegrauon must be carried if the bandwidth of the system Kermitian and nonnegative definite, then the eigenvalue spec-
arge. . . - . trum is discrete, real, and the eigenvectors form a complete
For convenience we can write the coefficients of the b'mOdgﬁhonormal set in terms of which the kernel can be expanded
expansion in matrix form When looking for a bimodal expansion, it is therefore natural
C = (ATAPT) (4) to set up an integral equation of the form

where A’ is the column vector of mode coefficients corre- Aipi(r1) = /W(Pivrl)ff)i(rﬂ)drﬂ (6)
sponding to theth member of the ensemble ar@” denotes _

the conjugate transpose. Once we know the expansion &8-that the kemel can be expressed as a weighted sum of
efficients C we have characterized the form of the partiallfigenfunctions

coh_erent field. The propagation of the coherence ma’_[rix in the W(r,.r) = Z Xt ()i (x1). )
partially coherent case corresponds to the propagation of the p

mode coefficients in the fully coherent case. . . '
Although physically appealing the above argument is n these eigenfunctiong; are the natural modes of the field and
; are the associated eigenvalues.

mathematically rigorous. The problem lies in the fact that i K what is th lationship b Wolf
order to generate the modal expansions, we tacitly assumed /e can now ask what is the relationship between Wolf's

that we could Fourier transform the time-dependent field &atlgallfmode set :”?} the arbiltrary dset of modes V¥e have
each member of the ensemble and yet it is well known thap - d ]\c/_ve ;xpan t € naturg mo ef] as a sum ot our as
it is not possible, because of lack of convergence, to Fourft Undefined propagating modes, we have

transform the members of a stationary random process. Wolf $i(r1) = Y Eitpu(re) 8

has considered the modal expansion of three-dimensional (3- —

gr) j:ﬁgﬁ?sagréagg%rgngfsler tshom%u(:e;cﬁg [jti]éo[:lz].isﬂ:%erﬁd if we substitute this equation together with the bimodal
mgdal expansions of the aboge )ll<’ind are valid, as physic:%)fpar]s'iC)n (2) into the eigenvalue expression (6), we find that
intuition would suggest. In other words, the expansions them- [C— NIE =0 9

selves are mathematically rigorous, but one has to be extremel ; .
careful about the way in which the formalism is proven. Th¥ ere nowk* are the mode coefficients of the natural mode

essential point to bear in mind is that one is propagatingza)‘i is _the asso_ciated eigenvalue, and orthonormality of the
statistical property of the field rather than the field itself ang*Panston funCt'on:/’" rk]]as_belen ass_umedf. . I

this quantity, the cross-spectral density, propagates accordind® understand the physical meaning of the natural modes,
to Helmholtz equation. For a greater understanding of theS&PPOSe that we have an ensemble of optical systems, where

and related issues, the reader is referred to Mandel and wolpg field associated _With each member of the ensemble_ IS
excellent book [14]. constructed from spatially coherent modes, the phases of which

We now need to know how to calculate the bimodal coef'® fully incoherent and uniformly distributed with respect to
ficients when the functional form of the cross-spectral densigch Other. In this case, we have
is kqown. By a simple extension of the usual oyerlap ir)tegralcmm, - <|A;‘n, Al ) exp [‘7'(921 — 9;71)]> = XS -
we find that the elements of the coherence matrix are given by (10)

Crm = | W(ry,ra)tn (r1)9) (r1)dS1dS1y  (5) The coherence matrix is diagonal as one would expect. Ex-
51 panding a random process as a sum of orthogonal uncorrelated
where we have assumed that expansion functiopsform functions is known as a Karhunen-&we expansion and such

an orthonormal set. At the outset we do not know the croXpansions are important in the related field of adaptive optics

spectral density at every plane, but there is usually some pla{ﬁé]- o
over which the cross-spectral density is known. In summary, we can expand the cross-spectral density in
terms of any convenient mode set by using the bimodal form

of the overlap integral. Because the modes are not chosen in
any particular way, correlations will exist between the mode

We have expanded the cross-spectral density in termsookefficients. If we diagonalize the coherence matrix, we can
some arbitrary mode set. We can, of course, transform to soexpress the cross-spectral density as a sum of modes which
other basis set and describe the field equally well. Of particulare completely uncorrelated with respect to each other and,
interest is the unitary transformation that diagonalizes thieerefore, have no definite phase relationship between them.
coherence matrix. In a sense, the modes found in this wakiese are the natural modes of the optical field as defined by
are the natural modes of the field. Wolf.

I1l. NATURAL MODES OF APARTIALLY COHERENT FIELD
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IV. COMPLETELY INCOHERENT SOURCES whereD is the coherence matrix at the output plafias the
Of particular interest is the case where the field at tHSU@l coherent mode-scattering matrix, &é the coherence

input plane is fully incoherent and has uniform intensitynatrix at the input plane. Numerically, the procedure is
This situation occurs, for example, when the beam of Sjraightforward and the scattering matrix only has to be
submillimeter-wave telescope is directed toward to a sourg@lculated once for a given optical system. The scattering

having uniform brightness. For an incoherent field, we cdpatrix contains all of the information necessary to propagate
write a coherent or incoherent field. Notice also that if the optical

system under consideration is varying with time, as would be
W(ry,r1) = I(r1)é(ry — ). (11) the case for a turbulent atmosphere above a radio telescope,

I . L , ) then the ensemble average would include the time-varying
Substituting this expression into the bimodal overlap 'megr‘%'cattering matrix also.

we find
Crm :/ I(ry)n (re)ek, (r1) dS;. (12) VI. GENERAL CONSIDERATIONS
51 It is vitally important to appreciate that the coherence matrix
Now if the source has uniform brightness characterizes the modal properties of the field, whereas the

o s 13 scattering matrix characterizes the modal properties of the
mym/ = foUm,m?- (13) optical system: the two are quite distinct. We can diagonalize

That is to say, all of the modes are excited equally and indie coherence matrix to get the mode coefficients of the natural
pendently. It can be shown that because of completeness, fARdes of the field. The eigenvalues then give the amount of
must be true regardless of what mode set is used. PhysicaR§Wer in e_ach mode. When performing numerical calculations
one is saying that the resultant field cannot contain any spaf®® @ Practical system, we do not know and are not, therefore,

information. In matrix form, we have for a uniform incoherenP!€ to use the natural modes of the field (in general, the natural
source modes have complex functional forms) but nevertheless we
should, from the point of view of numerical efficiency, use
C=11 (14) a convenient set of modes that diagonalizes the coherence
. . . . ) . matrix as nearly as possible.
wherel is the identity matrix. Clearly, if the brightness over In a previous paper [2], we discussed the diagonalization

the plane of the source is not uniform, correlations must ex'@lt the scattering matrix. In this case, the eigenvectors give

between modes even though the source itself is incoherefl, 1,,de coefficients of coherent field distributions that pass
Th's behaV|_or is to be expected classically _becaus_e the Vtﬂpough the optical system unchanged, and the eigenvalues
Cltte_rt—Zernlke theorem t_eIIs us that correlations exist in tﬁve the loss associated with the propagation of these fields.
far.ﬂeld of a source of finite size, even when the source its Eese modes are the normal modes of the optical system and,
is incoherent. in general, any incoming field distribution can be expanded in
terms of these modes and propagated simply by multiplying
V. PROPAGATING THE COHERENCE MATRIX by the eigenvalues. For convenience, we should, for coherent
It is well known that a coherent field can be traced throudfelds, choose a mode set that propagates easily and yet which
a submillimeter-wave optical system by multiplying the modéiagonalizes as nearly as possible the scattering matrix. For
coefficients of the incident beam by a scattering matriRartially coherent fields, the natural modes of the optical
Moreover, if the optica| System Comprises a number of Opticgystem are not the same as the natural modes of the field and
components then the scattering matrix associated with tW€ can ask whether it is more reasonable to choose a mode
overall system is simply the product of the scattering matric8§t that near diagonalizes the coherence matrix or a mode set
associated with the individual components [2]. We now ned@at near diagonalizes the scattering matrix.
to ask how a partially coherent field can be traced through aTo answer this question, it is particularly revealing to
submillimeter-wave optical system. ask what happens when an optical system, described by
We know that for each member of the ensemble we cén scattering matrixS, is illuminated by a uniform fully
propagate the field according to the usual Gaussian modigcoherent source. We know that for any set of modes the
scattering matrixS. Hence, if the field at the input plane hagoherence matrix of the source is diagonal and, therefore, the
mode coefficientsA’ then the field at the output plane hadield at the output plane is given by
mode coefficientdB® where D = I,SIS*. (18)
B! = SA‘. (15) _ , , ,
It is clear that although the field at the input plane is fully
The coherence matrix at the output plane therefore becoméscoherent, the field at the output plane has coherence induced
T P on it due to mode filtering. The introduction of coherence
(B'B™") = S{A'A™)S (16) is evidenced by the appearance of off-diagonal terms in the
or output-coherence matrix. We know, however, that there is
some mode set that diagonalizes the scattering matrix and,
D = SCS** (17) in this case, the coherence matrix at the output plane is also
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diagonal. Hence, if an optical system is illuminated by a f f f f
uniform incoherent field, the natural modes of the resultant S > >
field are the same as the natural modes of the optical system

itself. We will, therefore, make the physically reasonable _l_ J_

assumption that we should choose a mode set that diagonalizes

as nearly as possible the scattering matrix of the system,

regardless of the state of coherence of the incoming field.
It is also interesting to notice that spatial coherence builds

up as modes are filtered. We know that when a low through-

put submillimeter-wave optical system is illuminated by a

coherent source, the output of the system will tend to the T Ly Ly T

lowest-order eigenmode regardless of the precise nature of the g, as as

incoming field and this is why low throughput submillimeter-_ ,

wave optical systems always, somewhat conveniently, tendtg 1+ A Gaussian beam telescope.

produce Gaussian beams. In the case of incoherent illumination

the situation is similar: as more and more low throughput A diagram of a Gaussian beam telescope is shown in

components are added, the output becomes a fully cohergpy. 1. This arrangement is important because the field at the

Gaussian beam. input plane is imaged onto the field at the output plane in a
A further important and useful consideration is that thgequency-independent way. We have included two apertures

number of significant nonzero eigenvalues found when diagrorder to limit the throughput of the system, as would be the

onalizing the scattering matrix gives the number of degregsse for any real system with finite size components.

of freedom of the optical system. The number of nonzero To begin, we must calculate the scattering matrix. Let us

eigenvalues found when diagonalizing the coherence matfgpresent the fields in the regions between the components in

gives the number of degrees of freedom of the field. Clearlrms of propagating Gaussian—-Hermite modes. Each mode
the number of degrees of freedom of the output field cafys the form

only be as many as the optical system and the two will be 1/2
the same when the incident field is fully incoherent. In the () = V2 h V2 oxco| 476 = 17
case where the incoming field is fully coherent, the coherencgm o m PIFIYF R

F k=
w
matrix will have only one nonzero eigenvalue, a feature that (19)
can be traced to the fact that the elements of the coherence

matrix factorize. In general, this will mean that because thehere

coherence matrix ha&’2? elements it will not be possible to w2
Hm(u)exp[ — 7]

diagonalize. The solution to this apparent paradox—that is B (1) = (20)
to say we have a matrix wittv? elements which seems to (v/m2mm!)1/2

have only one nonzero eigenvalue—is that the modes of thgy

optical system will all, at some level, be excited by noise. In 2

fact, it can easily be seen that we can add a noise coherence 6 =(m+1/2)— (21)

Ze

matrix to a fully coherent coherence matrix to get a matrix
that can be diagonalized and if the signal-to-noise ratio #&so H,,,(«) is the Hermite polynomial of ordet: in u. The
high, one eigenvalue will be much greater than all of thinctionsh,,(«) are orthonormal in the sense that
others. The ability to study the signal and noise properties of a

+oo
field through diagonalization is a particularly useful technique. / P (W, (1) du = by (22)
For example, if the field “produced” by eomplete arrayof —o0

detectors [16] is described bysangle coherence matrix, the |n these equations, the symbols have their usual meanings
eigenvalues will give the relative sensitivities of the pixels. [1]: w characterizes the scale size of the beam at a pl&ne;
characterizes the large-scale radius of curvature of the phase
front; andd, the phase slippage between modes, characterizes
the form of the field as the beam propagates and diffragtis.
the Rayleigh distance. As has already been described in some
Although the technique described can be used to analydetail [2], a mode set is not completely defined until the size
the behavior of almost any system, in this section, we shall, and position of the waist are given. We do know that for
apply the theory to the Gaussian beam telescope [1]. Not omlyGaussian beam telescope, the large-scale phase front of the
does the Gaussian beam telescope exhibit features that feglel at the focal planes is flat and, therefore, we can place the
present in all systems, but it also produces results that canviEsts at these positions.
interpreted easily in terms of classical analysis [17], [18]. In Having decided on the mode set, we know that the scattering
order not to cloud the central features of the model, we shatlatrix of the whole system is just the product of the scattering
work in one dimension, but the extension to two dimensiomsatrices of the individual components. The components in this
is straightforward. case are the apertures and the free-space paths; as usual, the

VIl. SCATTERING MATRIX OF
THE GAUSSIAN BEAM TELESCOPE
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focusing effects of the ideal lenses are taken up by choosiAtso, for (m + 1) + (n + 1) odd
the mode sets appropriately; that is to say the waists at all
but the input plane are chosen according to the usual single- Stm1),(n4+1) = Snt1),(my1) = 0 (30)
mode Gaussian beam analysis. If we adopt this scheme, ther
is no modal scattering associated with the ideal lenses. If of”
axis mirrors are incorporated then the appropriate scatterin m4+1\Y2 9
matrices must, of course, be used [19]. i ) Smn <
The size of the waist at the input plane is still undetermined
and although any waist would produce a complete mode SEhese equations show that power does not scatter between
some particular input waists will be numerically more efficierddd- and even-ordered modes as would be expected.
than others. In a previous paper [2], we discussed (at somepe also need the scattering matrices of the free-space paths.
length) that the waist should be chosen to diagonalize as nedrhese are easily found because we know that there is a Fourier
as possible the scattering matrix. In fact, in that paper, wensform relationship between the fields at the focal planes
diagonalized the scattering matrix to recover the eigenmodss equivalently, the phase slippagerig2 [2]. The scattering
and eigenvalues, which are known from classical analysis garameters of the free-space paths become
be prolate spheroidal wavefunctions. We are, of course, merely m m
talking about efficiency of convergence and so the precise Smn = [cos(T) +4 Sin(j)}ém,n- (32)
choice is not critical anyway.
Hence, as before [2], we take the input waist of the optimuth we denote the scattering matrices of the free-space paths

a for(m + 1) + (n + 1) even

1/2
) Bt (VO (VE). (31)

n—+1 n—+1

mode set to be by S, and the scattering matrices of the aperturesSpythen
1/2 the scattering matrix of the whole Gaussian beam telescope is
)\fal . .
wy = (23) simply given by the product
mTas
wherea; anda, are the half widths of the apertures, afid S =8;8.5/8,. (33)

is the focal length of the lenses. The number of modes thag_ . v simol : he ab
should be used in the expansion is approximately the Fres-nr {S matrix is extremely simple to generate using the above

number ¢ where equations and it is remarkable that it completely characterizes
the coherent and partially coherent behavior of the system.
2maas
= . 24
We are now in a position to derive the scattering matrix.
First, we must calculate the scattering matrices of the aper- _ _
tures. By evaluating the field overlap integral over the output Now that we have generated the scattering matrix, we can

plane of each aperture [20], [21], we find that the scatterigvestigate its response to various different kinds of excitation.

VIIl. PARTIAL COHERENCE AND
THE GAUSSIAN BEAM TELESCOPE

matrices are given by Before studying the propagation of partially coherent radiation,
V3, it is worthwhile verifying the integrity of the scattering matrix
S, . = / P (1) P () s (25) Dy investigating the coherent behavior.
’ —V2k, First, we can plot the point-spread function. Calculating the

where k, = a/w is the normalized truncation. Because thghode coefficients of the one-dimensional (1-D) delta function

mode set is, by definition, chosen so that the truncation by evaluating the overlap integral and then substituting the
each stop is the same, we can easily write mode coefficients into the modal expansion of the field, we

find that the point-spread function is given by

+ve
Sn = / T (W) (1) due. (26) ,
’ 2 2 2
—Ve EI)Sf(.T,.T/) == <£> Zzsnl7nhn<\/—x )h’nl<\/_x>
. w w w
Hence, once we have chosen the Fresnel number, the scattering m n
matrices of the two apertures are the same and given by the (34)

above expression. We could evaluate this matrix numericallyh ) ) ]
but we have found the following recurrence relationshipdn€reSm,» are the elements of the scattering matrix ands

useful. First, we calculate the lowest-order element througHP€ Position of the delta function in the input plane. Clearly,
this expression applies to any system for which the scattering

Soo = erf(v/c) (27)  matrix is known. In Fig. 2, we show the point-spread functions
where erf(u) is the error function. Then, for ak + 1 odd Of Gaussian beam telescopes having Fresnel numbers of 4, 8,
we have and 16.
Rather than plotting the point-spread function for different
S0,(n+1) = Snt1),0 = 0 (28) input positions, it would be convenient to have some simple
and for alln + 1 even we have measure of its form. Classically, the crudest method use to

1/2 use the Strehl ratio, where the Strehl ratio is defined as the
) ho(v/E)hn(/E). (29) height of the central peak normalized to the height of this
peak when excited by a signal at the central position. In the

2
n—+1

S0,(n41) = S(nt1),0 = —<
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Point—spread function

Fig. 2. The point-spread functions of Gaussian beam telescopes having
Fresnel numbers of 4, 8, and 16. The largest peak corresponds to the largest
Fresnel number. The off-axis distance is normalized to the wajst:. 48

modes were used to construct these plots. %
©
T_’
S <
[ T B B T ]
o — 7
© r ]
5 ]
% o | Off—axis distance Off—axis distance
3 ok ] (© (d)
o F Fig. 4. (a) The Gaussian intensity (solid line) and cross-spectral density
S e (faint line) of the field at the input plane of a Gaussian beam telescope. Sixty
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modes were used to synthesize a nearly fully incoherent field. The Gaussian
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input field has an effective normalized width of 0.707. In (b), (c), and (d),
we show the intensity and cross-spectral density at the output plane when the
Fig. 3. The Strehl ratios of Gaussian beam telescopes having Fresnel nfni@snel number is 16, 8, and 4, respectively.

bers of 4, 8 and 16. The largest aperture corresponds to the largest Fresnel

number. In each case, the Strehl ratio is shown as a function of normalized

x/w off-axis distance and 48 modes were used to construct these plots. overlap integral and a cross-spectral density of the form

Off—axis distance

W(x',z) = I(x)(x — ')

case of Gaussian modes it is particularly easy to calculate the 2z — )2
= K?exp [—720} S(x—2z')  (36)
g

Strehl ratio; it is given by

S Zrn Zn Snl,nhn (%) hrn ( _fx) (35) we find
- Ern En S"l:"hn(o) hrn(o) +o0 _ 2
o = K2 V2 / exp[_w o) }
Notice that the sign on the argument on one of the Hermite w —oo g

functions has been changed to take into account the fact that V2 2z
the image is inverted. In Fig. 3, we show the Strehl ratio as a X <T> B <T> dz. (37)
function of normalized off-axis position for Fresnel numbers
of 4, 8, and 16. In Fig. 4, we show the intensity of the field at the input
The Strehl ratio is independent of position over the wholend output planes when the Fresnel number is 4, 8, and 16.
of the field of view and this independence occurs simplyhe normalized width of the effective input field distribution,
because we did not include any abberations in our systemyaw;, was taken to be 0.707. Superimposed on each plot is the
Some ringing can be seen at the edge of the input apertuwmss-spectral density when the normalized reference position
This ringing is not an optical effect, but exists merely because « /w3 = 0.35; we could, trivially, have chosen any other
we are trying to represent the abrupt disappearance of tleéerence position and the result would have been essentially
input field behind theinput aperture with a finite number the same.
of modes. This behavior is the modal equivalent of Gibb’s For the purpose of presenting (in the diagram) a highly
phenomenon. The most impressive feature of these plots is timabherent input field, we used 60 modes, but this large
they demonstrate that a small number of modes can represamnber of modes is not actually needed for the analysis. The
the behavior of the system over the whole of the field of viewain feature is, as would be expected, a slight spreading of
and this has significant implications for modeling the behavitine output intensity with decreasing Fresnel number and an
of submillimeter-wave imaging arrays. increasing degree of coherence. What is not seen, because of
We would now like to investigate the behavior of the systemormalization, is the large amount of power lost, which would
when a fully incoherent source with a Gaussian intensityot be the case for coherent illumination.
distribution is applied. To perform this calculation, we require In addition to these plots, it is also convenient to look at
the coherence matrix. Using the 1-D form of the bimodahe behavior when the input is a flat incoherent field of finite
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To solve the problem, we require the coherence matrix of
the whole field at the input plane. It is trivial to show that if we
combine two fields that are generated incoherently, the overall
coherence matrix is the sum of the two individual coherence
matrices regardless of the states of coherence of the individual
fields. This theory has application when a submillimeter-wave
beam is truncated by a lossy aperture that injects noise of its
own. Because in our case, the three principle fields (two fully
coherent offset cosine fields and one fully incoherent sheet
with a hole) are mutually uncorrelated, we simply need to find
the individual coherence matrices and then add them together.
Notice that we have chosen the example specifically so that
we have to combine fully coherent and fully incoherent input
fields.

The first task is to find the coherence matrix of a uniform
sheet of microwave absorber with a hole in the middle.

] There are various ways of approaching this problem, but first
5 o 2 consider placing another sheet of absorber behind the hole
so as to block it off. If the two absorbers are at the same
temperature, then we see a black surface having a coherence
© (d) matrix of I, I, wherel, is a multiplying factor proportional to

Fig. 5. (a) The top-hat intensity (solid line) and cross-spectral density (faithe radiometric temperature; actually, we know that the power
line) of the field at the input plane of a Gaussian beam telescope. Si diated is

modes were used to synthesize a nearly fully incoherent field. The top-

input field has an effective normalized half-width ¢®. In (b), (c), and (d),

we show the intensity and cross-spectral density at the output plane when 1, P= Tl“(C) = Z Cii = NKI'B= NI, (39)

2, and 4 Gaussian beam telescopes, each having a Fresnel number of four, i

are connected in series.

Intensity

Intensity

-0.5

-2 0 2

Off—axis distance Off—axis distance

whereN is the total number of modes aiglis the bandwidth.

extent. In this case, the elements of the coherence matrix XY@ also know that the contributions from_ the individual
given by screens are uncorrelated and so we can write

e () [ 2 () )

v —b v where C and D are the coherence matrices of the front and
whereb is the extent of the field. In the case whéres> oo, back screens, respectively. Now the contribution from the back
the coherence matrix becomes diagonal, as expected. In Figcgeen is given by (18) and, therefore
we show the intensity and cross-spectral density at the input T
and output planes when one, two, and four Gaussian beam D = [,(I-88"). (41)
telescopes having Fresnel numbers of four are connected jn . .
series. The scattering matrix of the overall system is SimSﬁence,' we can easily calculate the coherencg matrix of an
the scattering matrix of one telescope raised to the appropri orbing ape_rture of any sh_ape '.f the scattermg _parameters
power. It can be seen how coherence builds up due to md known. This trreorem is vitally |mport§mt and it is closely
filtering and, after four passes, a nearly fully coherent Gaussi; pied to Bosma’'s theorem [25] for microwave networks.

field is produced despite having started with fully incohere ctually, we bellleve that it mu_st be possmle to calculate the
top hat. Indeed, this is precisely the way in which coheren€ herence matrix of any passive optical component once the

builds up in a laser cavity [22]-[24]. Here we have simply use'HOdal scattering parameters are known. Also notice that the

this well-known phenomenon to demonstrate the scatterirﬁ;Qise performance of the optical component is completely
matrix technique escribed by a set of complex temperatures in much the

As a final more complicated demonstration, consider placir§ me way that the noise performance of a microwave network
a two-element array of detectors in the focal plane. completely described by a set of complex t(_amperatures.
recognize that the focal plane is not completely populat oreover, these could be transformed to an equivalent set of

and represent the missing elements by microwave absorﬂla i.Se parameters at the input of the complete optical system
Moreover, in order to retain the simple 1-D geometry, wh reth#redth[ZG]. ing th tteri ix to deride
assume that each element in the array is an open—endeﬁza er than using he scattering matrix 10 derik as

rectangular waveguide. Each waveguide is single moded, %ﬁlscnbed above_, V\llet.can flr(dhdlrectly. By using (12) and
as a pair they essentially form a two-moded detector: we cou ,er some manipulation, we have

of course, have used a single-overmoded piece of waveguide V2K,
to produce a few-moded detector. We now wish to calculate Crn = / P (1) e () du (42)
the statistical properties of the field at the output plane. —V2k;
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<~ —— | + . number. Although we have only used a simple scheme for
. i demonstrating the method, it is remarkable that all of this
M - — M = . . . . . . . -
ok ok information is contained in just one composite matrix.
E; ~N i % o~ =
C - N
Q @ £
IS JE
- IX. CONCLUSION
oF l ‘ S We have described a procedure for calculating the behavior
4 —9 o 2 4 of partially coherent submillimeter-wave quasi-optical sys-
o o tems. The technique, like its coherent equivalent, is based on
Off -axis distance Off —axis distance

the ability to scatter power between free-space modes at optical
@) (b) components. Rather than describing the propagating coherent

Fi% 6. _Thebintensit)i distributri‘on_s at th::% (@ irlmut agd (blg igtplﬁ Plarr\]ES_ﬁﬁeld by a vector, the second-order statistical properties of the
a Gaussian beam telescope having a Fresnel number o when the i : - : .
field is produced by an array of two single-moded open-ended rectangt?fg#hlany coherent field are described by a matrix. Because

waveguides surrounded by a sheet of microwave absorber. The inner edgd& description of the field is more complete problems of
the absorber is at a normalized off-axis distance/@. great complexity can be solved. In the paper, we demonstrated
the procedure by propagating the field from a pair of horns,
lérounded by microwave absorber, through a Gaussian beam
elescope. In practice there seems to be no reason why the
IIgé:hnique cannot be applied to practical systems incorporating

when Gaussian-Laguerre modes are used [20], [21]. many awkwardly placed optical elements. The modeling of

We also need to calculate the coherence matrix associat@Mmilimeter-wave multimode bolometer imaging arrays is a

with each offset waveguide. For a coherent field, we simp rticularly topical issue at the present time. The next stage in
have ur work is to assess the application of this technique to these

practical problems. The work will need extending from one to

C=AA"T (43) two dimensions, but we do not see any major problem here,

) ) particularly when one considers the alternative to be the full

and, therefore, the coherence matrix of any coherent field c@fraction integral analysis of the system for every incoherent
be calculated once the ordinary mode coefficients are k”OV@}citing mode. In some ways, one of the great strengths of
The mode coefficients of many of the common horns hayge formalism is the conceptual insight it gives into the way

been derived in the literature [27], [28]. For the cosine ﬁe'ﬁartially coherent submillimeter optical systems behave.
associated with open-ended waveguide it can be shown that

but we have already derived a set of recursion relationshi
for constructing this matrix [see (27)—(31)]. Recurrence rel
tionships are also available in the case of circular apertu
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