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Modal Analysis of Partially Coherent
Submillimeter-Wave Quasi-Optical Systems

Stafford Withington,Member, IEEE, and J. Anthony Murphy,Member, IEEE

Abstract—We consider the modal analysis of partially co-
herent submillimeter-wave quasi-optical systems. According to
our scheme the cross-spectral density at a plane is expanded
as a sum of partially coherent propagating free-space modes.
The coherence matrix, the elements of which are determined
by evaluating bimodal overlap integrals, completely describes
the state of the field at a plane. The coherence matrix can be
traced through an optical system to another plane by means of a
scattering matrix. Whereas diagonalizing the scattering matrix
gives the natural modes of the optical system, diagonalizing
the coherence matrix gives the natural modes of the field. We
demonstrate the technique by studying the behavior of Gaussian
beam telescopes when the field at the source plane is completely
incoherent.

Index Terms—Submillimeter-wave propagation.

I. INTRODUCTION

W E consider how modal techniques that have been
developed for the analysis of coherent submillimeter-

wave optical systems [1]–[3] can be extended to cover the
case when the field passing through the system is partially
coherent. Partial coherence arises in some form in all problems
of practical importance. For example, consider the situation
where a submillimeter-wave telescope is used to observe
an extended radio astronomical source. Usually, in the case
of a heterodyne detector, one would calculate the coupling
between the detector and the source by propagating the fully
coherent field of the horn “backward” through the optical
system onto the sky [4], [5]. There is no reason why, however,
the fully incoherent field of the source should not be prop-
agated “forward” through the optical system onto the focal
plane. Clearly, in the case of a single-mode detector, the first
approach is adequate, but there are many situations where it
is not possible to perform detailed calculations unless one has
access to the more general description afforded by the second
approach—reflect for a while on how one would calculate the
performance of a focal-plane array ofplanar bolometers.

In this paper, we describe a procedure that allows the
second-order statistical properties of a field to be traced
through a complex system of submillimeter-wave optical com-
ponents. Unlike Fourier optics [6], the analysis is not limited
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to conjugate Fourier planes and is applicable in cases where
significant aberrations are present. The partially coherent field
is constructed from a set of coherent diffracting free-space
modes. A central feature of the scheme is that the second-order
statistical properties of thefield are represented completely
and, therefore, problems of great complexity can be solved.
For example, it is possible to model the behavior of multimode
bolometer imaging arrays. Here the state of thewholefield is
described by asingle coherence matrix. Even in the case of
a single-mode detector, the unused orthogonal optical modes
are excited by noise and this noise appears in the analysis in
a natural and elegant manner. Looking to the future, it should
be possible to model the correlations that exist between the
outputs of a focal plane array when the atmosphere above a
radio telescope is varying. At a deeper level, modal analysis
provides an understanding of the thermodynamic entropy of a
beam in such a way that it should be possible to use maximum
entropy techniques to examine the state of a collimated field
from intensity measurements alone [7], [8].

II. GAUSSIAN-MODE EXPANSION

OF THE CROSS-SPECTRAL DENSITY

We assume that the submillimeter-wave system to be an-
alyzed comprises a sequence of components that interact
with and scatter a propagating free-space beam [9], [10]. For
partially coherent fields, the quantity we wish to decompose
into modes is the cross-spectral density; where, formally, we
understand the cross-spectral density to be the time Fourier
transform of the mutual coherence function. To this end we
assume that the optical system under consideration is one
member of an ensemble. If the bandwidth is sufficiently narrow
so that the coherence length is very much greater than the
physical size of the system, the phase at one point in one
member of the ensemble is well defined with respect to the
phase at another point in the same member of the ensemble.
As in the coherent case, the field can then be written as a
modal sum [11]

(1)

where denotes a particular member of the ensemble and
frequency dependence has been indicated by. We can now
represent the cross-spectral density as a bimodal expansion

(2)
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where

(3)

We have dropped the explicit reference to frequency, but an
integration must be carried if the bandwidth of the system is
large.

For convenience we can write the coefficients of the bimodal
expansion in matrix form

(4)

where is the column vector of mode coefficients corre-
sponding to theth member of the ensemble and denotes
the conjugate transpose. Once we know the expansion co-
efficients we have characterized the form of the partially
coherent field. The propagation of the coherence matrix in the
partially coherent case corresponds to the propagation of the
mode coefficients in the fully coherent case.

Although physically appealing the above argument is not
mathematically rigorous. The problem lies in the fact that in
order to generate the modal expansions, we tacitly assumed
that we could Fourier transform the time-dependent field of
each member of the ensemble and yet it is well known that
it is not possible, because of lack of convergence, to Fourier
transform the members of a stationary random process. Wolf
has considered the modal expansion of three-dimensional (3-
D) stationary random fields in some detail [12], [13]. The
arguments are somewhat lengthy, but the outcome is that
modal expansions of the above kind are valid, as physical
intuition would suggest. In other words, the expansions them-
selves are mathematically rigorous, but one has to be extremely
careful about the way in which the formalism is proven. The
essential point to bear in mind is that one is propagating a
statistical property of the field rather than the field itself and
this quantity, the cross-spectral density, propagates according
to Helmholtz equation. For a greater understanding of these
and related issues, the reader is referred to Mandel and Wolf’s
excellent book [14].

We now need to know how to calculate the bimodal coef-
ficients when the functional form of the cross-spectral density
is known. By a simple extension of the usual overlap integral
we find that the elements of the coherence matrix are given by

(5)

where we have assumed that expansion functionsform
an orthonormal set. At the outset we do not know the cross-
spectral density at every plane, but there is usually some plane
over which the cross-spectral density is known.

III. N ATURAL MODES OF A PARTIALLY COHERENT FIELD

We have expanded the cross-spectral density in terms of
some arbitrary mode set. We can, of course, transform to some
other basis set and describe the field equally well. Of particular
interest is the unitary transformation that diagonalizes the
coherence matrix. In a sense, the modes found in this way
are the natural modes of the field.

The problem of how to expand the cross-spectral density
of a 3-D random field in terms of its natural modes has
been considered by Wolf [12], [13]. Wolf’s approach was
to consider Mercer’s theorem, which states that if the kernel
of a homogeneous Fredholm equation of the second kind is
Hermitian and nonnegative definite, then the eigenvalue spec-
trum is discrete, real, and the eigenvectors form a complete
orthonormal set in terms of which the kernel can be expanded.
When looking for a bimodal expansion, it is therefore natural
to set up an integral equation of the form

(6)

so that the kernel can be expressed as a weighted sum of
eigenfunctions

(7)

These eigenfunctions are the natural modes of the field and
are the associated eigenvalues.

We can now ask what is the relationship between Wolf’s
natural mode set and the arbitrary set of modes we have
used. If we expand the natural modes as a sum of our as
yet undefined propagating modes, we have

(8)

and if we substitute this equation together with the bimodal
expansion (2) into the eigenvalue expression (6), we find that

(9)

where now are the mode coefficients of the natural mode
, is the associated eigenvalue, and orthonormality of the

expansion functions has been assumed.
To understand the physical meaning of the natural modes,

suppose that we have an ensemble of optical systems, where
the field associated with each member of the ensemble is
constructed from spatially coherent modes, the phases of which
are fully incoherent and uniformly distributed with respect to
each other. In this case, we have

(10)

The coherence matrix is diagonal as one would expect. Ex-
panding a random process as a sum of orthogonal uncorrelated
functions is known as a Karhunen–Loéve expansion and such
expansions are important in the related field of adaptive optics
[15].

In summary, we can expand the cross-spectral density in
terms of any convenient mode set by using the bimodal form
of the overlap integral. Because the modes are not chosen in
any particular way, correlations will exist between the mode
coefficients. If we diagonalize the coherence matrix, we can
express the cross-spectral density as a sum of modes which
are completely uncorrelated with respect to each other and,
therefore, have no definite phase relationship between them.
These are the natural modes of the optical field as defined by
Wolf.
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IV. COMPLETELY INCOHERENT SOURCES

Of particular interest is the case where the field at the
input plane is fully incoherent and has uniform intensity.
This situation occurs, for example, when the beam of a
submillimeter-wave telescope is directed toward to a source
having uniform brightness. For an incoherent field, we can
write

(11)

Substituting this expression into the bimodal overlap integral,
we find

(12)

Now if the source has uniform brightness

(13)

That is to say, all of the modes are excited equally and inde-
pendently. It can be shown that because of completeness, this
must be true regardless of what mode set is used. Physically,
one is saying that the resultant field cannot contain any spatial
information. In matrix form, we have for a uniform incoherent
source

(14)

where is the identity matrix. Clearly, if the brightness over
the plane of the source is not uniform, correlations must exist
between modes even though the source itself is incoherent.
This behavior is to be expected classically because the van
Cittert–Zernike theorem tells us that correlations exist in the
far field of a source of finite size, even when the source itself
is incoherent.

V. PROPAGATING THE COHERENCEMATRIX

It is well known that a coherent field can be traced through
a submillimeter-wave optical system by multiplying the mode
coefficients of the incident beam by a scattering matrix.
Moreover, if the optical system comprises a number of optical
components then the scattering matrix associated with the
overall system is simply the product of the scattering matrices
associated with the individual components [2]. We now need
to ask how a partially coherent field can be traced through a
submillimeter-wave optical system.

We know that for each member of the ensemble we can
propagate the field according to the usual Gaussian mode-
scattering matrix . Hence, if the field at the input plane has
mode coefficients then the field at the output plane has
mode coefficients where

(15)

The coherence matrix at the output plane therefore becomes

(16)

or

(17)

where is the coherence matrix at the output plane,is the
usual coherent mode-scattering matrix, andis the coherence
matrix at the input plane. Numerically, the procedure is
straightforward and the scattering matrix only has to be
calculated once for a given optical system. The scattering
matrix contains all of the information necessary to propagate
a coherent or incoherent field. Notice also that if the optical
system under consideration is varying with time, as would be
the case for a turbulent atmosphere above a radio telescope,
then the ensemble average would include the time-varying
scattering matrix also.

VI. GENERAL CONSIDERATIONS

It is vitally important to appreciate that the coherence matrix
characterizes the modal properties of the field, whereas the
scattering matrix characterizes the modal properties of the
optical system: the two are quite distinct. We can diagonalize
the coherence matrix to get the mode coefficients of the natural
modes of the field. The eigenvalues then give the amount of
power in each mode. When performing numerical calculations
on a practical system, we do not know and are not, therefore,
able to use the natural modes of the field (in general, the natural
modes have complex functional forms) but nevertheless we
should, from the point of view of numerical efficiency, use
a convenient set of modes that diagonalizes the coherence
matrix as nearly as possible.

In a previous paper [2], we discussed the diagonalization
of the scattering matrix. In this case, the eigenvectors give
the mode coefficients of coherent field distributions that pass
through the optical system unchanged, and the eigenvalues
give the loss associated with the propagation of these fields.
These modes are the normal modes of the optical system and,
in general, any incoming field distribution can be expanded in
terms of these modes and propagated simply by multiplying
by the eigenvalues. For convenience, we should, for coherent
fields, choose a mode set that propagates easily and yet which
diagonalizes as nearly as possible the scattering matrix. For
partially coherent fields, the natural modes of the optical
system are not the same as the natural modes of the field and
we can ask whether it is more reasonable to choose a mode
set that near diagonalizes the coherence matrix or a mode set
that near diagonalizes the scattering matrix.

To answer this question, it is particularly revealing to
ask what happens when an optical system, described by
a scattering matrix , is illuminated by a uniform fully
incoherent source. We know that for any set of modes the
coherence matrix of the source is diagonal and, therefore, the
field at the output plane is given by

(18)

It is clear that although the field at the input plane is fully
incoherent, the field at the output plane has coherence induced
on it due to mode filtering. The introduction of coherence
is evidenced by the appearance of off-diagonal terms in the
output-coherence matrix. We know, however, that there is
some mode set that diagonalizes the scattering matrix and,
in this case, the coherence matrix at the output plane is also
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diagonal. Hence, if an optical system is illuminated by a
uniform incoherent field, the natural modes of the resultant
field are the same as the natural modes of the optical system
itself. We will, therefore, make the physically reasonable
assumption that we should choose a mode set that diagonalizes
as nearly as possible the scattering matrix of the system,
regardless of the state of coherence of the incoming field.

It is also interesting to notice that spatial coherence builds
up as modes are filtered. We know that when a low through-
put submillimeter-wave optical system is illuminated by a
coherent source, the output of the system will tend to the
lowest-order eigenmode regardless of the precise nature of the
incoming field and this is why low throughput submillimeter-
wave optical systems always, somewhat conveniently, tend to
produce Gaussian beams. In the case of incoherent illumination
the situation is similar: as more and more low throughput
components are added, the output becomes a fully coherent
Gaussian beam.

A further important and useful consideration is that the
number of significant nonzero eigenvalues found when diag-
onalizing the scattering matrix gives the number of degrees
of freedom of the optical system. The number of nonzero
eigenvalues found when diagonalizing the coherence matrix
gives the number of degrees of freedom of the field. Clearly,
the number of degrees of freedom of the output field can
only be as many as the optical system and the two will be
the same when the incident field is fully incoherent. In the
case where the incoming field is fully coherent, the coherence
matrix will have only one nonzero eigenvalue, a feature that
can be traced to the fact that the elements of the coherence
matrix factorize. In general, this will mean that because the
coherence matrix has elements it will not be possible to
diagonalize. The solution to this apparent paradox—that is
to say we have a matrix with elements which seems to
have only one nonzero eigenvalue—is that the modes of the
optical system will all, at some level, be excited by noise. In
fact, it can easily be seen that we can add a noise coherence
matrix to a fully coherent coherence matrix to get a matrix
that can be diagonalized and if the signal-to-noise ratio is
high, one eigenvalue will be much greater than all of the
others. The ability to study the signal and noise properties of a
field through diagonalization is a particularly useful technique.
For example, if the field “produced” by acomplete arrayof
detectors [16] is described by asingle coherence matrix, the
eigenvalues will give the relative sensitivities of the pixels.

VII. SCATTERING MATRIX OF

THE GAUSSIAN BEAM TELESCOPE

Although the technique described can be used to analyze
the behavior of almost any system, in this section, we shall
apply the theory to the Gaussian beam telescope [1]. Not only
does the Gaussian beam telescope exhibit features that are
present in all systems, but it also produces results that can be
interpreted easily in terms of classical analysis [17], [18]. In
order not to cloud the central features of the model, we shall
work in one dimension, but the extension to two dimensions
is straightforward.

Fig. 1. A Gaussian beam telescope.

A diagram of a Gaussian beam telescope is shown in
Fig. 1. This arrangement is important because the field at the
input plane is imaged onto the field at the output plane in a
frequency-independent way. We have included two apertures
in order to limit the throughput of the system, as would be the
case for any real system with finite size components.

To begin, we must calculate the scattering matrix. Let us
represent the fields in the regions between the components in
terms of propagating Gaussian–Hermite modes. Each mode
has the form

(19)

where

(20)

and

(21)

also is the Hermite polynomial of order in . The
functions are orthonormal in the sense that

(22)

In these equations, the symbols have their usual meanings
[1]: characterizes the scale size of the beam at a plane;
characterizes the large-scale radius of curvature of the phase
front; and , the phase slippage between modes, characterizes
the form of the field as the beam propagates and diffracts.is
the Rayleigh distance. As has already been described in some
detail [2], a mode set is not completely defined until the size

and position of the waist are given. We do know that for
a Gaussian beam telescope, the large-scale phase front of the
field at the focal planes is flat and, therefore, we can place the
waists at these positions.

Having decided on the mode set, we know that the scattering
matrix of the whole system is just the product of the scattering
matrices of the individual components. The components in this
case are the apertures and the free-space paths; as usual, the
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focusing effects of the ideal lenses are taken up by choosing
the mode sets appropriately; that is to say the waists at all
but the input plane are chosen according to the usual single-
mode Gaussian beam analysis. If we adopt this scheme, there
is no modal scattering associated with the ideal lenses. If off-
axis mirrors are incorporated then the appropriate scattering
matrices must, of course, be used [19].

The size of the waist at the input plane is still undetermined
and although any waist would produce a complete mode set,
some particular input waists will be numerically more efficient
than others. In a previous paper [2], we discussed (at some
length) that the waist should be chosen to diagonalize as nearly
as possible the scattering matrix. In fact, in that paper, we
diagonalized the scattering matrix to recover the eigenmodes
and eigenvalues, which are known from classical analysis to
be prolate spheroidal wavefunctions. We are, of course, merely
talking about efficiency of convergence and so the precise
choice is not critical anyway.

Hence, as before [2], we take the input waist of the optimum
mode set to be

(23)

where and are the half widths of the apertures, and
is the focal length of the lenses. The number of modes that
should be used in the expansion is approximately the Fresnel
number where

(24)

We are now in a position to derive the scattering matrix.
First, we must calculate the scattering matrices of the aper-
tures. By evaluating the field overlap integral over the output
plane of each aperture [20], [21], we find that the scattering
matrices are given by

(25)

where is the normalized truncation. Because the
mode set is, by definition, chosen so that the truncation at
each stop is the same, we can easily write

(26)

Hence, once we have chosen the Fresnel number, the scattering
matrices of the two apertures are the same and given by the
above expression. We could evaluate this matrix numerically,
but we have found the following recurrence relationships
useful. First, we calculate the lowest-order element through

(27)

where is the error function. Then, for all odd
we have

(28)

and for all even we have

(29)

Also, for odd

(30)

and for even

(31)

These equations show that power does not scatter between
odd- and even-ordered modes as would be expected.

We also need the scattering matrices of the free-space paths.
These are easily found because we know that there is a Fourier
transform relationship between the fields at the focal planes
or, equivalently, the phase slippage is [2]. The scattering
parameters of the free-space paths become

(32)

If we denote the scattering matrices of the free-space paths
by and the scattering matrices of the apertures bythen
the scattering matrix of the whole Gaussian beam telescope is
simply given by the product

(33)

This matrix is extremely simple to generate using the above
equations and it is remarkable that it completely characterizes
the coherent and partially coherent behavior of the system.

VIII. PARTIAL COHERENCE AND

THE GAUSSIAN BEAM TELESCOPE

Now that we have generated the scattering matrix, we can
investigate its response to various different kinds of excitation.
Before studying the propagation of partially coherent radiation,
it is worthwhile verifying the integrity of the scattering matrix
by investigating the coherent behavior.

First, we can plot the point-spread function. Calculating the
mode coefficients of the one-dimensional (1-D) delta function
by evaluating the overlap integral and then substituting the
mode coefficients into the modal expansion of the field, we
find that the point-spread function is given by

(34)

where are the elements of the scattering matrix andis
the position of the delta function in the input plane. Clearly,
this expression applies to any system for which the scattering
matrix is known. In Fig. 2, we show the point-spread functions
of Gaussian beam telescopes having Fresnel numbers of 4, 8,
and 16.

Rather than plotting the point-spread function for different
input positions, it would be convenient to have some simple
measure of its form. Classically, the crudest method use to
use the Strehl ratio, where the Strehl ratio is defined as the
height of the central peak normalized to the height of this
peak when excited by a signal at the central position. In the
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Fig. 2. The point-spread functions of Gaussian beam telescopes having
Fresnel numbers of 4, 8, and 16. The largest peak corresponds to the largest
Fresnel number. The off-axis distance is normalized to the waist:x=w. 48
modes were used to construct these plots.

Fig. 3. The Strehl ratios of Gaussian beam telescopes having Fresnel num-
bers of 4, 8 and 16. The largest aperture corresponds to the largest Fresnel
number. In each case, the Strehl ratio is shown as a function of normalized
x=w off-axis distance and 48 modes were used to construct these plots.

case of Gaussian modes it is particularly easy to calculate the
Strehl ratio; it is given by

(35)

Notice that the sign on the argument on one of the Hermite
functions has been changed to take into account the fact that
the image is inverted. In Fig. 3, we show the Strehl ratio as a
function of normalized off-axis position for Fresnel numbers
of 4, 8, and 16.

The Strehl ratio is independent of position over the whole
of the field of view and this independence occurs simply
because we did not include any abberations in our system.
Some ringing can be seen at the edge of the input aperture.
This ringing is not an optical effect, but exists merely because
we are trying to represent the abrupt disappearance of the
input field behind theinput aperture with a finite number
of modes. This behavior is the modal equivalent of Gibb’s
phenomenon. The most impressive feature of these plots is that
they demonstrate that a small number of modes can represent
the behavior of the system over the whole of the field of view
and this has significant implications for modeling the behavior
of submillimeter-wave imaging arrays.

We would now like to investigate the behavior of the system
when a fully incoherent source with a Gaussian intensity
distribution is applied. To perform this calculation, we require
the coherence matrix. Using the 1-D form of the bimodal

(a) (b)

(c) (d)

Fig. 4. (a) The Gaussian intensity (solid line) and cross-spectral density
(faint line) of the field at the input plane of a Gaussian beam telescope. Sixty
modes were used to synthesize a nearly fully incoherent field. The Gaussian
input field has an effective normalized width of 0.707. In (b), (c), and (d),
we show the intensity and cross-spectral density at the output plane when the
Fresnel number is 16, 8, and 4, respectively.

overlap integral and a cross-spectral density of the form

(36)

we find

(37)

In Fig. 4, we show the intensity of the field at the input
and output planes when the Fresnel number is 4, 8, and 16.
The normalized width of the effective input field distribution,

, was taken to be 0.707. Superimposed on each plot is the
cross-spectral density when the normalized reference position
is ; we could, trivially, have chosen any other
reference position and the result would have been essentially
the same.

For the purpose of presenting (in the diagram) a highly
incoherent input field, we used 60 modes, but this large
number of modes is not actually needed for the analysis. The
main feature is, as would be expected, a slight spreading of
the output intensity with decreasing Fresnel number and an
increasing degree of coherence. What is not seen, because of
normalization, is the large amount of power lost, which would
not be the case for coherent illumination.

In addition to these plots, it is also convenient to look at
the behavior when the input is a flat incoherent field of finite
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(a) (b)

(c) (d)

Fig. 5. (a) The top-hat intensity (solid line) and cross-spectral density (faint
line) of the field at the input plane of a Gaussian beam telescope. Sixty
modes were used to synthesize a nearly fully incoherent field. The top-hat
input field has an effective normalized half-width of

p
2. In (b), (c), and (d),

we show the intensity and cross-spectral density at the output plane when 1,
2, and 4 Gaussian beam telescopes, each having a Fresnel number of four,
are connected in series.

extent. In this case, the elements of the coherence matrix are
given by

(38)

where is the extent of the field. In the case where ,
the coherence matrix becomes diagonal, as expected. In Fig. 5
we show the intensity and cross-spectral density at the input
and output planes when one, two, and four Gaussian beam
telescopes having Fresnel numbers of four are connected in
series. The scattering matrix of the overall system is simply
the scattering matrix of one telescope raised to the appropriate
power. It can be seen how coherence builds up due to mode
filtering and, after four passes, a nearly fully coherent Gaussian
field is produced despite having started with fully incoherent
top hat. Indeed, this is precisely the way in which coherence
builds up in a laser cavity [22]–[24]. Here we have simply used
this well-known phenomenon to demonstrate the scattering-
matrix technique.

As a final more complicated demonstration, consider placing
a two-element array of detectors in the focal plane. We
recognize that the focal plane is not completely populated
and represent the missing elements by microwave absorber.
Moreover, in order to retain the simple 1-D geometry, we
assume that each element in the array is an open-ended
rectangular waveguide. Each waveguide is single moded, but
as a pair they essentially form a two-moded detector: we could,
of course, have used a single-overmoded piece of waveguide
to produce a few-moded detector. We now wish to calculate
the statistical properties of the field at the output plane.

To solve the problem, we require the coherence matrix of
the whole field at the input plane. It is trivial to show that if we
combine two fields that are generated incoherently, the overall
coherence matrix is the sum of the two individual coherence
matrices regardless of the states of coherence of the individual
fields. This theory has application when a submillimeter-wave
beam is truncated by a lossy aperture that injects noise of its
own. Because in our case, the three principle fields (two fully
coherent offset cosine fields and one fully incoherent sheet
with a hole) are mutually uncorrelated, we simply need to find
the individual coherence matrices and then add them together.
Notice that we have chosen the example specifically so that
we have to combine fully coherent and fully incoherent input
fields.

The first task is to find the coherence matrix of a uniform
sheet of microwave absorber with a hole in the middle.
There are various ways of approaching this problem, but first
consider placing another sheet of absorber behind the hole
so as to block it off. If the two absorbers are at the same
temperature, then we see a black surface having a coherence
matrix of , where is a multiplying factor proportional to
the radiometric temperature; actually, we know that the power
radiated is

(39)

where is the total number of modes andis the bandwidth.
We also know that the contributions from the individual
screens are uncorrelated and so we can write

(40)

where and are the coherence matrices of the front and
back screens, respectively. Now the contribution from the back
screen is given by (18) and, therefore

(41)

Hence, we can easily calculate the coherence matrix of an
absorbing aperture of any shape if the scattering parameters
are known. This theorem is vitally important and it is closely
related to Bosma’s theorem [25] for microwave networks.
Actually, we believe that it must be possible to calculate the
coherence matrix of any passive optical component once the
modal scattering parameters are known. Also notice that the
noise performance of the optical component is completely
described by a set of complex temperatures in much the
same way that the noise performance of a microwave network
is completely described by a set of complex temperatures.
Moreover, these could be transformed to an equivalent set of
noise parameters at the input of the complete optical system
if required [26].

Rather than using the scattering matrix to derive, as
described above, we can find directly. By using (12) and
after some manipulation, we have

(42)
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(a) (b)

Fig. 6. The intensity distributions at the (a) input and (b) output planes of
a Gaussian beam telescope having a Fresnel number of 16 when the input
field is produced by an array of two single-moded open-ended rectangular
waveguides surrounded by a sheet of microwave absorber. The inner edge of
the absorber is at a normalized off-axis distance of

p
2.

but we have already derived a set of recursion relationships
for constructing this matrix [see (27)–(31)]. Recurrence rela-
tionships are also available in the case of circular apertures
when Gaussian–Laguerre modes are used [20], [21].

We also need to calculate the coherence matrix associated
with each offset waveguide. For a coherent field, we simply
have

(43)

and, therefore, the coherence matrix of any coherent field can
be calculated once the ordinary mode coefficients are known.
The mode coefficients of many of the common horns have
been derived in the literature [27], [28]. For the cosine field
associated with open-ended waveguide it can be shown that

(44)

where we have normalized the power in each waveguide mode
to unity. The first set of limits, which corresponds to one horn,
is associated with the positive sign and the second set, which
corresponds to the other horn, with the negative sign.

In Fig. 6, we show the input and output intensity distribu-
tions when the composite field, as described above, is fed into
a Gaussian beam telescope having a Fresnel number of 16. A
total of 60 modes were used to produce a highly incoherent
input field and the edge of the absorbing aperture was placed
at a normalized off-axis distance of . It can be
seen that on the input side, the two coherent waveguide fields
are surrounded by the highly incoherent radiation from the
absorber. On the output side the two waveguide fields reappear
(actually they are swapped over although it is not seen in
this plot) and the field from the absorber is truncated on
the outer edge due to the finite field-of-view of the optical
system. Another feature is that the incoherent background has
been reduced in intensity with respect to the coherent field
and this is simply the well-known aperture-stop effect. If one
plots the mutual coherence function it also becomes clear that
the output field is partially coherent and also the number of
coherence areas in the output plane is half of the Fresnel

number. Although we have only used a simple scheme for
demonstrating the method, it is remarkable that all of this
information is contained in just one composite matrix.

IX. CONCLUSION

We have described a procedure for calculating the behavior
of partially coherent submillimeter-wave quasi-optical sys-
tems. The technique, like its coherent equivalent, is based on
the ability to scatter power between free-space modes at optical
components. Rather than describing the propagating coherent
field by a vector, the second-order statistical properties of the
partially coherent field are described by a matrix. Because
the description of the field is more complete problems of
great complexity can be solved. In the paper, we demonstrated
the procedure by propagating the field from a pair of horns,
surounded by microwave absorber, through a Gaussian beam
telescope. In practice there seems to be no reason why the
technique cannot be applied to practical systems incorporating
many awkwardly placed optical elements. The modeling of
submillimeter-wave multimode bolometer imaging arrays is a
particularly topical issue at the present time. The next stage in
our work is to assess the application of this technique to these
practical problems. The work will need extending from one to
two dimensions, but we do not see any major problem here,
particularly when one considers the alternative to be the full
diffraction integral analysis of the system for every incoherent
exciting mode. In some ways, one of the great strengths of
the formalism is the conceptual insight it gives into the way
partially coherent submillimeter optical systems behave.
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