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Forward–Backward Averaging in the
Presence of Array Manifold Errors

Michael Zatman and Daniel Marshall

Abstract—In this paper, we investigate the use of forward–
backward (f=b) averaging for estimating the covariance matrix
used for adaptive beamforming and space–time adaptive process-
ing (STAP). We demonstrate that the estimation loss is reduced by
the use off=b averaging and, for some STAP cases,f=b averaging
can even quadruple the available sample support. We also show
that unknown array manifold errors have little effect on the
effectiveness off=b averaging. The gain from f=b averaging is
demonstrated on data from the mountaintop database.

Index Terms—Adaptive arrays.

I. INTRODUCTION

FOR certain array geometries, there exists an invariance
that allows each data vector to be used twice for covari-

ance estimation in a process known as averaging. Applica-
tions of averaging include an improved linear prediction
estimator [1] and, in conjunction with spatial smoothing, a
scheme to decorrelate coherent signals incident on an array
for direction finding [2]. The application considered here is to
improve adaptive beamformer performance by providing extra
snapshots for covariance estimation [4]. There are sample-
starved cases, e.g., when training over a small clutter discrete
in an adaptive radar scenario, where averaging signifi-
cantly improves performance.

By demonstrating how averaging improves adaptive
array performance, both in terms of the signal-to-interference-
plus-noise ratio (SINR) and the sidelobe level in the adapted
array pattern, with the possibility of quadrupling the sample
support in some scenarios, we extend previous results [4]. Fur-
thermore, we prove that performance gains are still achievable
with averaging in the presence of unknown array manifold
errors.

This paper is organized as follows. In Section II we briefly
review the data model used for adaptive array processing, and
introduce a model for array manifold errors. In Section III
averaging is reviewed and quadruple averaging appropriate for
some space–time adaptive processing scenarios are introduced.
In Section IV, the effect of array manifold errors on
averaging is analyzed. Section V contains examples of
averaging used on data from the mountaintop database [5]
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which demonstrate the utility of averaging on real data.
Conclusions are drawn in Section VI.

II. DATA MODEL

We assume the reader of this paper is familiar with the
signal model used for array signal processing. This section is
intended to briefly introduce the notation used later.

Consider a uniform linear array of sensors with an
interelement spacing though the analysis and all the results
given here may be extended to any array, which produces a
persymmetric covariance matrix, i.e., a matrix such that

where (1)

The matrix is known as the exchange matrix. The transfer
function between bearing and the output of the array is
represented by the Vandermonde steering vector

(2)

where represents wavelength. Note that to within a constant
phase term . The data received at the array
output is the sum of the incident signals and the noise

(3)

where is the complex amplitude of theth signal at
snapshot (e.g. range sample)and the noise vector at
time . We will define such that the signal to noise ratio
(SNR) of the th signal is . The noise is assumed
to be a zero-mean white complex Gaussian random process
(though the Gaussian assumption is not a requirement for
averaging).

The steering vector just described may be viewed as
representing either a desired array response for which the array
was designed, or apresumedarray manifold, which due to
modeling errors is different from thetrue manifold. In the
latter case, the true manifold may be related to
by taking the Hadamard product of the latter with a vector
of error coefficients , which preserves the
output power of the steering vector, i.e.

(4a)

and

(4b)
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Except for the special case where for the true array
manifold to within a constant phase term,
unlike the presumed array manifold . This inequality is
assumed for the remainder of the paper. By inserting
into (3), data vectors for the actual array may be obtained. The
elements of are taken to be

(5)

where is a real constant and is an error term with a
zero mean complex Gaussian distribution. Let the ratio of the
variance of to be . This model is used so that the
expectation of some vector inner products can be constructed
and used to give a “feel” for how performance varies as a
function of .

The estimated interference-plus-noise covariance matrix of
the data over samples from the array is

(6)

Adapted beamforming weights are computed using the inverse
of the sample interference covariance matrix, i.e.,

(7)

SINR loss, the ratio of output SINR to the SNR that could
be achieved in the absence of interference by a matched filter,
will be used as the main performance metric. For a target at
angle

loss (8)

where is the exact interference-plus-noise covariance ma-
trix. In this paper, the radar scenario in which the target range
gate may be excluded from the data used to estimateis
assumed so that the interference-only covariance matrix may
be estimated and used to compute the adaptive weights.

As an extension to the array processing problem, a
space–time adaptive problem may also be formulated [6].
Given temporal samples (e.g., coherent pulses) from an

-element array, the received space–time data at theth
snapshot is represented by the by matrix . The
temporal sampling is assumed to be uniform. Errors in this
assumption are not dealt with here, though their effect may
be analyzed in the same way as spatial errors.

III. FORWARDS–BACKWARDS AVERAGING

, the spatial power spectral density (PSD) of(a single
data vector), may be defined as

(9)

for all values of (the dependence of on is implicit
here although it is not explicitly indicated in the notation).
Given , the conjugate of , and , the reverse sequence of

, i.e., , then the following is true:

and thus

(10)

Fig. 1. SINR loss verses sample size for no, double, and quadruplef=b
averaging computed using an eight-element eight-pulse STAP simulation.

Since and have the same spatial PSD, either or both may
be used for estimating the signals’ spatial parameters—e.g., in
(6). The use of both is referred to as averaging (dou-
ble averaging). If the noise is uncorrelated between sensors,
then from the covariance estimation perspectiveand
contain uncorrelated noise samples. To prove this, take the
noise vector of (3). The noise samples are uncorrelated if

is the expectation operator). By
simple algebra

(11)

for a zero mean complex Gaussian random uncorrelated
process.

In the space–time case, if and are the reverse spatial
and temporal sequences of, respectively, and

and is the two-dimensional PSD of , then
averaging may be used for space–time adaptive processing

(STAP) because

(12)

Furthermore, if there are only signals present with no temporal
structure, (e.g., wide-band jamming in STAP) or with the same
frequency structure either side of the center operating fre-
quency (e.g., some wide-band adaptive beamformer structures
employing tapped delay lines), then

(13)

Hence, in some scenarios it is possible to obtain three extra
samples when using averaging to estimate a space–time
covariance matrix (quadruple averaging). The extra samples,
all of which possess the same spatial PSD as, are ,

, and .
The improved convergence properties for STAP through

the use of averaging are demonstrated in Fig. 1 for
an eight-element eight-pulse STAP simulation. Two jammers
are present from bearings of 37and 64 , each with an
interference-to-noise-ratio (INR) per element per pulse of 50
dB. Fully adaptive STAP [6] was used and average SINR
loss curves are generated for a broadside target. With no

averaging the SINR loss as a function of samples is as
predicted in [3]

loss (14)
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Fig. 2. Adapted responses obtained using 200 samples.

For STAP, is replaced with . The use of double or
quadruple averaging improves the SINR loss performance
to levels equivalent to doubling or quadrupling the ratio of
to .

The normalized adapted response of a spatial array is
computed as

and (15)

The sidelobe levels in the spatial response are a function of the
number of samples [7]. Plots of the spatial adapted pattern for
the example above are shown in Fig. 2 for a beam formed at
broadside and zero Doppler with a 30-dB Chebychev taper in
each dimension. The sidelobe levels of the adapted responses
improve due to the addition of averaging.

IV. A RRAY MANIFOLD ERRORS

The effects of the differences between the true and presumed
array manifolds on averaging should be addressed in order
to quantify the practical usefulness of averaging. Although
the analysis in this section is for spatial adaptive beamforming,
the results also apply to STAP. Two effects of the differences
between the manifolds may be found.

The first effect appears when the spatial PSD is computed
with the true array manifold. The true spatial PSD’s of (a
single true data vector) and are different, i.e.,

(16)

where

(17)

over all . If averaging is used with thetrue array
mainfold, then, as a result of this inequality, the adaptive
beamformer will adapt to a spatial PSD that does not cor-
respond to the actual environment and performance will be
degraded. However, in practice, the true array manifold is
unknown, and presumed array manifold is used instead. If the
spatial PSD’s of and are the same for the presumed
array manifold, then this first effect will not appear when the
presumed manifold is used.

Theorem: If a presumed array manifold where
is used, then , where

.

Proof:

(18)

The second effect of array manifold errors is that a co-
variance matrix estimated from the true data vectors with

averaging may have a higher interference rank than
one estimated without averaging. This will limit the
improvement available due to averaging. The rank of the
interference increases because the signals inand (the
forward and backward samples) are not spatially identical and
it is easily shown that [from (3) and (4)] and are
uncorrelated. Applying averaging to (3) results in

(19)

Note that in (19) the modulating signal has been conju-
gated. The correlation between and is

(20)

since the mean values of the in-phase and quadrature
components of are the same. Since each signal in

is uncorrelated with its equivalent in and will be
slightly different spatially, a covariance matrix produced
using averaging will have two signal subspace eigenval-
ues/eigenvectors for each signal present1. However, the second
eigenvalue/eigenvector will only affect adaptive beamformer
performance if it is above the noise floor.

Given two spatially similar but otherwise uncorrelated sig-
nals, it is possible to determine the eigenvalues of their
covariance matrix. The following equation for the smaller of
the two eigenvalues was derived by Hudson [8]:

(21)

where and are the powers of the two signals, and
is the “spatial cross-correlation” of the two signals. For the
case of averaging using the true array manifold with a
single signal present

(22)

Given the model of from Section II, it can be shown that
the expectation of the right-hand side (RHS) of (22) for small
values of can be approximated as

(23)

Assuming that the term in (23) may be ignored and
the RHS of the equation may be approximated as .
The term may be viewed as the power in the error terms
of the presumed array manifold. Due to the random nature of
the errors modeled, on average the fraction of the error

1This is why f=b averaging has a decorrelating effect in the presence of
coherent/correlated multipath [2].
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Fig. 3. SINR loss versus sample size with array errors.

power is spatially correlated with the signal. Providingis
large this may be also be ignored. Hence, the approximation

(24)

may be made. Substituting this into (21) and noting that
for the averaging case being considered

here, the following equation is derived for the magnitude of
the second eigenvalue, which appears due toaveraging

(25)

If is above the noise floor, then the performance of
the adaptive beamformer will be compromised due to
averaging. From (25), it can be seen that when

(26)

is below the noise floor, and there will be no loss in adaptive
beamformer performance.

Instead of quantifying the loss for the single signal case
when is above the noise floor, we will look at the more
general case when averaging causes the rank of the
interference covariance matrix to increase fromto ,

. Here, is the interference rank prior to averaging
and the increase in rank due to averaging in the presence
of array manifold errors. Apart from being orthogonal to
the rest of the signal subspace, each new signal subspace
eigenvector will be random in nature (due to the random nature
of the array manifold errors modeled). In this scenario, the
following expression for the SINR loss due to the increased
interference rank is derived in Appendix A:

loss (27)

e.g., for and the SINR loss is ,
which is about 0.5 dB. This loss will decrease as the number
of array elements increases. From the combination of (14)
(the gain due to improved sample support) and (27) (the loss
due to array manifold errors) it may be determined when
averaging will improve performance.

Simulations for a 20-element array with array manifold
errors of and were run. Two jammers
from 37 and 64 are present, each with a 50-dB INR. Fig. 3
is a plot of mean SINR loss (averaged over the unjammed

Fig. 4. Azimuth cut of SINR loss for file IDPCA65.

angles) versus the number of samples. For
averaging always improves performance, as would be expected
from consideration of (26), (the additional eigenvalues due
to averaging are below the noise floor). However, with

averaging only improves performance below
about 90 samples. Equation (26) shows that for the
rank of the interference will double from two to four with

averaging. Hence, from consideration of (14) and (27)
averaging should improve performance below about 90

samples. Simulation and theory agree.

V. REAL DATA EXAMPLES

Results from the application of averaging to data from
the mountaintop radar data base are also presented here. A
14-element nominally uniform linear array is used. Although
all of the receive channels were equalized, the array itself is
not perfectly calibrated. The radar transmitter array is capable
of simulating platform motion (see [5] for more details on the
mountaintop system). PRI-staggered STAP [6] with a three-
pulse sub-CPI was used to process the data.

The first data set (file IDPCA65 collected on 3/9/94) con-
tains ground clutter returns, which form a ridge that is an
unambiguous function of bearing and Doppler. 100 training
samples were used to compute the adapted weights, with

averaging doubling the sample size. Fig. 4 shows an
azimuth cut of the estimated2 SINR loss at 64-km range
and 0-Hz Doppler. Assuming no array manifold errors, the
expected improvement due to averaging given by (14) is about
1.25 dB. Excluding the clutter null at broadside, the average
improvement is 2.9 dB. This measured figure suggests that the
range samples are not completely independent.

The second data set (file STAP2017 collected on 3/28/94)
contains two wide-band jamming signals at 5and 30 from
broadside. Fifty training samples were used to compute the
adapted weights with type averaging quadrupling this
figure. Fig. 5 shows an azimuth cut of the estimated SINR loss
at 164-km and 0-Hz Doppler. Assuming no array manifold
errors, the expected improvement from (14) is about 6 dB.
The average improvement for the plot due to averaging
(excluding areas near the jammers) is 5.7 dB.

2Since for exprimental data the exact covariance matrix is unknown, an
estimated covariance matrix was used in the denominator of (8) to compute
the SINR loss.
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Fig. 5. Azimuth cut of SINR loss for file STAP2017.

VI. CONCLUSION

We have shown that for STAP averaging can double
or even quadruple the sample support. Furthermore, we have
proven that there are many scenarios where averaging
improves adaptive beamformer performancedespitethe pres-
ence ofunknown-array manifold errors. These cases are when
a medium to large array with only poor or adequate sample
support is used. The improvement due to averaging was
demonstrated by simulation and on experimental data from
the mountaintop database.

APPENDIX A

SINR Loss Due to Random Eigenvectors:Noting that
and , (8) for SINR loss becomes

loss (28)

Providing the eigenvalues of all of the interference subspace
eigenvectors are above the noise floor, then

(29)

where is the matrix of interference
subspace eigenvectors. This approximation will overestimate
the influence of eigenvectors with eigenvalues near to the noise
floor. However, simulation shows that this approximation is
adequate for eigenvalues at least 10 dB above the noise floor.

By plugging (29) into (28), the following equation which
assesses the effect of each interference subspace eigenvector
on the SINR loss is produced:

loss (30)

It is instructive to first consider the case of an interference
subspace of rank 1 where the interference eigenvector is
“random.” By consideration of two vectors lying on an-
dimensional sphere, it is easily shown that the expected value
of the quotient on the RHS of (30) is

(31)

Thus, the expected value of the SINR loss in this scenario is
about , which for large becomes insignificant. Now
consider the case of random eigenvectors andnonrandom
eigenvectors, (as may exist after averaging in the presence
of random array manifold errors). Since all of the eigenvectors
are orthogonal to one another therandom eigenvectors lie
randomly in the -dimensional vector subspace orthogonal
to the nonrandom eigenvectors. Then for each of the
random eigenvectors the expected value of the quotient on
the RHS of (30) is

(32)

Extending this to the case ofrandom eigenvectors results in
an SINR loss of

loss (33)
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