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Forward—Backward Averaging in the
Presence of Array Manifold Errors

Michael Zatman and Daniel Marshall

Abstract—In this paper, we investigate the use of forward— which demonstrate the utility of /b averaging on real data.

backward (f/b) averaging for estimating the covariance matrix Conclusions are drawn in Section VI.
used for adaptive beamforming and space—time adaptive process-

ing (STAP). We demonstrate that the estimation loss is reduced by

the use off /b averaging and, for some STAP caseg,/b averaging [I. DATA MODEL

can even quadruple the available sample support. We also show . . - .
that unknown array manifold errors have little effect on the We assume the reader of this paper is familiar with the

effectiveness off /b averaging. The gain from f/b averaging is signal model used for array signal processing. This section is
demonstrated on data from the mountaintop database. intended to briefly introduce the notation used later.

Consider a uniform linear array olN sensors with an
interelement spacing though the analysis and all the results
given here may be extended to any array, which produces a

Index Terms—Adaptive arrays.

I. INTRODUCTION persymmetric covariance matrix, i.e., a mathk such that
OR certain array geometries, there exists an invariance 0 0 1
that allows each data vector to be used twice for covari- M* = JMJ whereJ = o - ol. 1)
ance estimation in a process knownfa$ averaging. Applica- ’ 1 0 0

tions of f/b averaging include an improved linear prediction
estimator [1] and, in conjunction with spatial smoothing, @ahe matrixJ is known as the exchange matrix. The transfer
scheme to decorrelate coherent signals incident on an arfagction between bearing and the output of the array is
for direction finding [2]. The application considered here is tepresented by the Vandermonde steering vector

improve adaptive beamformer performance by providing extra
shapshots for covariance estimation [4]. There are samplél(e) =

§tarved cases, €.9., when trammg overa smaII.cIutteTr q'.scr\?vtﬁere)\ represents wavelength. Note that to within a constant
in an adaptive radar scenario, wheféb averaging signifi-

cantly improves performance phase terma(8) = Ja(6)*. The data received at the array

By demonstrating howf /b averaging improves adaptiveOUtpUt is the sum of thé{ incident signals and the noise
array performance, both in terms of the signal-to-interference- K
plus-noise ratio (SINR) and the sidelobe level in the adapted x(t) = Z ar(t)a(fr) + n(t) 3)
array pattern, with the possibility of quadrupling the sample k=1

support in some scenarios, we extend previous results [4]. Fillere ax(t) is the complex amplitude of theth signal at

thermore, we prove that performance gains are still aChieanﬁ’apshot (e.g. range samplelnd n(¢) the noise vector at
with f/b averaging in the presence of unknown array manifolgya + e will define (£) such that the signal to noise ratio

errors. (SNR) of the kth signal is |ay(#)]2. The noise is assumed

This paper is organized as follows. In Section Il we brieflyO be a zero-mean white complex Gaussian random process

review the data model used for adaptive array processing, ?ﬂﬁjough the Gaussian assumption is not a requiremenyt for
introduce a model for array manifold errors. In Sectionfifb averaging)

averaging is reviewed and quadruple averaging appropriate fOFI'he steering vectoa(8) just described may be viewed as

some space-time adaptive processing scenarios are introdugglesenting either a desired array response for which the array

In Sec'tion.IV, the effect of'array manifold errors ofyb was designed, or @resumedarray manifold, which due to
averaging is analyzed. Section V contains example§ A ,oqeling errors is different from theue manifold. In the

averaging used on data from the mountaintop database I@(}er case, the true manifola,(¢) may be related ta(6)

by taking the Hadamard product of the latter with a vector
of error coefficientsh = [hy,---,hn]|*, which preserves the
“gBitput power of the steering vector, i.e.

[1’ 6j27r drx—! sin(@)’ e ej?ﬂ'(N_l) AN sin(&)]T (2)
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Except for the special case whdie= Jh* for the true array 0
manifold a,(6) # Jay(6)* to within a constant phase term,
unlike the presumed array manifolg(#). This inequality is
assumed for the remainder of the paper. By insertin(¢)

into (3), data vectors for the actual array may be obtained. The
elements ofh are taken to be

SINR LOSS (dB)
]
s

—— ORDINARY
h; =c+ g 5 _ — —DOUBLE
' s ©) 18 .-~ QUADRUPLE
where ¢ is a real constant ang; is an error term with a
zero mean complex Gaussian distribution. Let the ratio of the '2050 100 150 200
. > . )
variance ofg; to ¢ be ¢*. This model is used so that the NUMBER OF SAMPLES

expectation of some vector inner products can be construc;t:ed L SINR | o size doubl d quadg
H . » : P 0SS verses sample size 1or no, double, and qual e
and Psed to give a feel” for how performance varies asa eraging computed using an eight-element eight-pulse STAP simulation.
function of &.
The estimated interference-plus-noise covariance matrix

the data over, samples from the array is gifncex andx®™ have the same spatial PSD, either or both may

be used for estimating the signals’ spatial parameters—e.g., in

.1 & y (6). The use of both is referred to g5 averaging (dou-

R=— > xx(. (6) ble averaging). If the noise is uncorrelated between sensors,
=1 then from the covariance estimation perspectivend x*

Adapted beamforming weights are computed using the inve@@ntain uncorrelated noise samples. To prove this, take the

of the sample interference covariance matrix, i.e., noise vector of (3). The noise samples are uncorrelated if
. E{n(t)*n(¢)?} = 0(E{-} is the expectation operator). By
w(f) =R a(f). (7)  simple algebra
SINR loss, the ratio of output SINR to the SNR that could E{n(®)*n(t)?} = E{IJn(®)n(t)T}* =0 (11)

be achieved in the absence of interference by a matched filtf%

r, .
: : . [ a zero mean complex Gaussian random uncorrelated
will be used as the main performance metric. For a target parocess
angle 6, '

In the space—time case,X* andX! are the reverse spatial
|w(6:) 2 a(6,)|? 8 and temporal sequences &, respectively,(X* = JX and
Nw(6,)HRw(6,) (8) X! = XJ) and F»(X) is the two-dimensional PSD &, then

) . . ) f/baveraging may be used for space—time adaptive processing
whereR is the exact interference-plus-noise covariance m TAP) because

trix. In this paper, the radar scenario in which the target range .
gate may be excluded from the data used to estirfatis Fy(X*) = F3(X). 12)

assumed so that the interference-only covariance matrix Mayrhermore, if there are only signals present with no temporal

be estimated and used to compute the adaptive weights. gicture, (e.g., wide-band jamming in STAP) or with the same
As an extension to the array processing problem, faguency structure either side of the center operating fre-

space-time adaptive problem may also be formulated [l,ency (e.g., some wide-band adaptive beamformer structures

Given M temporal samples (e.g., coherent pulses) from @Mploying tapped delay lines), then

N-element array, the received space-time data attthe

snapshot is represented by thé by A matrix X(t). The Fy(X') = By (X™) = Fa(X). (13)
temporal. sampling is assumed to be uniform. Errors in thifence, in some scenarios it is possible to obtain three extra
assumption are not dealt with here, though their effect M3%mples when using /b averaging to estimate a space-time

SINR loss=

be analyzed in the same way as spatial errors. covariance matrix (quadruple averaging). The extra samples,
all of which possess the same spatial PSDXgsare X*:,
[ll. FORWARDS-BACKWARDS AVERAGING Xt and X*s.
F(x), the spatial power spectral density (PSDxdf single The improved convergence properties for S_TAFf through
data vector), may be defined as the use of f/b averaging are demonstrated in Fig. 1 for
an eight-element eight-pulse STAP simulation. Two jammers
F(x) = |a(6)"x|? (9) are present from bearings of 37nd 64, each with an

... interference-to-noise-ratio (INR) per element per pulse of 50
for all values ofé (the dependence df'(x) on 8 is implicit dB. Fully adaptive STAP [6] was used and average SINR
here although it is not explicitly indicated in the notation)

Gi “ th Laate ok andx” . th TIoss curves are generated for a broadside target. With no
venx i € conjugate ok, andx-, the reverse sequence Of/b averaging the SINR loss as a function of samples is as
X, i.e., x” = Jx, then the following is true:

predicted in [3]
F(x*) = F(x") = (F(x))" and thus F(x*) = F(x). SINR loss— Zt2-N (14)
(10) L+1
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0 . Proof:
——ORDINARY g2 .
-10 — -DOUBLE F(xir) = |a(@)"x3x|” = |(a(6)*) " xn|?
= |a(6)"xp|* = F(xn). (18)

- - - “QUADRUPLE

The second effect of array manifold errors is that a co-
variance matrix estimated from the true data vectors with

MAGNITUDE (dB)
8

-30 f/b averaging may have a higher interference rank than
one estimated withoutf/b averaging. This will limit the
-40 improvement available due tf/b averaging. The rank of the
interference increases because the signats,imndx;* (the
BEARING forward and backward samples) are not spatially identical and
Fig. 2. Adapted responses obtained using 200 samples. it is easily shown thaky, (¢) [from (3) and (4)] andk;*(¢) are
uncorrelated. Applyingf/b averaging to (3) results in
For STAP, N is replaced withVA/. The use of double or K
quadruplef /b averaging improves the SINR loss performance xn(t)™ = ax(t) Jan(bi)* + In(t)". (19)
to levels equivalent to doubling or quadrupling the ratiolof k=1
to N. Note that in (19) the modulating signa}. has been conju-

The normalized adapted respong#) of a spatial array is gated. The correlation between, and o} is
computed as
R Elop(a) } = E{agart =0 20
#(0) {on(og) } = E{okar} (20)
max{p(6)}" since the mean values of the in-phase and quadrature
fmponents ofay, are the same. Since each signal in

is uncorrelated with its equivalent is;* and will be

B(0) = [w(8)"a(®)]*, and p(6) =

The sidelobe levels in the spatial response are a function of

number of samples [7]. Plots of the spatial adapted pattern
ples {7] P ptec p g{ghtly different spatially, a covariance matrix produced

the example above are shown in Fig. 2 for a beam formed=at i : X )
broadside and zero Doppler with a 30-dB Chebychev taper$iind /b averaging will have two signal subspace eigenval-
§/eigenvectors for each signal preerbwever, the second

each dimension. The sidelobe levels of the adapted responlé_% . i ;
improve due to the addition of /b averaging eigenvalue/eigenvector will only affect adaptive beamformer

performance if it is above the noise floor.
Given two spatially similar but otherwise uncorrelated sig-
nals, it is possible to determine the eigenvalues of their
The effects of the differences between the true and presunggflariance matrix. The following equation for the smaller of
array manifolds ory /b averaging should be addressed in ordghe two eigenvalues was derived by Hudson [8]:
to quantify the practical usefulness pfb averaging. Although )
the analysis in this section is for spatial adaptive beamforming, Ay A2 Npipo(1 = [¢7) (21)
the results also apply to STAP. Two effects of the differences DL+ p2

be_'i_vxeefr'\ ttheﬁmatnifolds mayhbe ft%und. tial PSD i tngerep]L andp, are the powers of the two signals, ajt]?
e first efiect appears when he spatia IS COMPUlROihe “spatial cross-correlation” of the two signals. For the

with the true array manifold. The true spatial PSD's0f (8 ;556 of /4 averaging using the true array manifold with a
single true data vector) anxi; are different, i.e., single signal present

IV. ARRAY MANIFOLD ERRORS

Fh(xh) 7£ Fh(x'};) (16) |,(/ |2 a(e){;{a(e)y 2 hHh*r 2 (22)
A— = .
where a(0)Ha(6), hih
F(x1) = |an(0)x,)? a7) Given the model oh from Section I, it can be shown that

o ) the expectation of the right-hand side (RHS) of (22) for small
over all 4. If f/b averaging is used with thérue array values of¢ can be approximated as

mainfold, then, as a result of this inequality, the adaptive
beamformer will adapt to a spatial PSD that does not cor- 9 1 2 1

- - B{lp?} = = (23)
respond to the actual environment and performance will be 1+¢&2 14262 4 ¢4
degraded. However, in practice, the true array manifold is _ . _
unknown, and presumed array manifold is used instead. If tfigsuming that < 1 the term¢™ in (23) may be ignored and
spatial PSD's ofx;, andx; are the same for the presumedne RHS of the equation may be approximatedlas 2¢~.
array manifold, then this first effect will not appear when théhe term2¢= may be viewed as the power in the error terms

presumed manifold is used. of the presumed array manifold. Due to the random nature of
Theorem: If a presumed array manifold whera(¢) = the errors modeled, on average the fractidn' of the error
Ja(f)* is used, thenf'(x;) = F(x;*), where Fi(x) = 1This is why f/b averaging has a decorrelating effect in the presence of

la(6) x| coherent/correlated multipath [2].
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Fig. 3. SINR loss versus sample size with array errors. Fig. 4. Azimuth cut of SINR loss for file IDPCAB5.

power is spatially correlated with the signal. Providingis angles) versus the number of samples. Eoe 107° f/b
large this may be also be ignored. Hence, the approximatiaiveraging always improves performance, as would be expected
|2 & 1 — 262 (24) from consideration of (26), (the additional eigenvalues due
to f/b averaging are below the noise floor). However, with
may be made. Substituting this into (21) and noting thgt= 10=! f/b averaging only improves performance below
p1 = p2 = 0.5|a|? for the f /b averaging case being considereé@bout 90 samples. Equation (26) shows thatéfer 10! the
here, the following equation is derived for the magnitude @fink of the interference will double from two to four with
the second eigenvalue, which appears dug foaveraging  f/b averaging. Hence, from consideration of (14) and (27)
f/b averaging should improve performance below about 90

2
Ao a2 262 la N = 1£2|a|2N. (25) samples. Simulation and theory agree.
2 2
If X2 is above the noise floor, then the performance of V. REAL DATA EXAMPLES

the adaptive beamformer will be compromised duefi®

averaging. From (25), it can be seen that when Results from the application of /b averaging to data from

the mountaintop radar data base are also presented here. A
£2 < 2 (26) 14-element nominally uniform linear array is used. Although
la]2N all of the receive channels were equalized, the array itself is
Jt perfectly calibrated. The radar transmitter array is capable
beamformer performance. of simulating platform motion (see [5] for more details on the
Instead of quantifying the loss for the single signal cadBountaintop system). PRI-staggered STAP [6] with a three-
when ), is above the noise floor, we will look at the mord®UISe Sub-CPl was used to process the data.
general case wherf/b averaging causes the rank of the _The first data set (file IDPCA6_5 collected on 3/9/94)_con-
interference covariance matrix to increase fromo v 4+, t@inS ground clutter returns, which form a ridge that is an
(r < v). Here,v is the interference rank prior t/b averaging unambiguous function of bearing and Doppler. 1OQ tralnlng
and- the increase in rank due iyb averaging in the presenceSamples were used to compute the adapted weights, with
of array manifold errors. Apart from being orthogonal td/? a@veraging doubling the sample size. Fig. 4 shows an
the rest of the signal subspace, each new signal subsp&giEnuth cut of the estimatédSINR loss at 64-km range

eigenvector will be random in nature (due to the random nat.f#8d 0-Hz Doppler. Assuming no array manifold errors, the
of the array manifold errors modeled). In this scenario, tfgkPected improvement due to averaging given by (14) is about
dg25 dB. Excluding the clutter null at broadside, the average

following expression for the SINR loss due to the increase ) . )
interference rank is derived in Appendix A: improvement is 2.9 dB. This measured figure suggests that the
range samples are not completely independent.
STNR loss~ -V~ " (27)  The second data set (file STAP2017 collected on 3/28/94)
N —w contains two wide-band jamming signals atd&hd —30° from
e.g., forN = 20 andv = » = 2 the SINR loss isl6/18, broadside. Fifty training samples were used to compute the
which is about-0.5 dB. This loss will decrease as the numbetdapted weights withf /6 type averaging quadrupling this
of array elements increases. From the combination of (1ﬁgure. Fig. 5 shows an azimuth cut of the estimated SINR loss
(the gain due to improved sample support) and (27) (the lo®s 164-km and 0-Hz Doppler. Assuming no array manifold
due to array manifold errors) it may be determined wifg¢h errors, the expected improvement from (14) is about 6 dB.
averaging will improve performance. The average improvement for the plot due fi¢h averaging
Simulations for a 20-element array with array manifoldexcluding areas near the jammers) is 5.7 dB.

errors of¢ = 107° and ¢ = 107! were run. Two jammers ,_ . . o
Since for exprimental data the exact covariance matrix is unknown, an

from 37 and 64 are present, each with a 50-dB lNR'.Fig' %stimated covariance matrix was used in the denominator of (8) to compute
is a plot of mean SINR loss (averaged over the unjamme® SINR loss.

A2 is below the noise floor, and there will be no loss in adapti
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Thus, the expected value of the SINR loss in this scenario is
aboutl —1/N, which for largeN becomes insignificant. Now
consider the case af random eigenvectors andnonrandom
eigenvectors, (as may exist aftéfb averaging in the presence
of random array manifold errors). Since all of the eigenvectors
are orthogonal to one another therandom eigenvectors lie
randomly in thelV —v-dimensional vector subspace orthogonal
to the v nonrandom eigenvectors. Then for each of the
random eigenvectors the expected value of the quotient on
the RHS of (30) is

SINR LOSS (dB)
t
5 o o

1
N
[=]

0 20 40 60

BEARING {Ia(G)H ei|2} _ 1 (32)
Fig. 5. Azimuth cut of SINR loss for file STAP2017. a(f)"a(f) N-wv
Extending this to the case efrandom eigenvectors results in
VI. CONCLUSION an SINR loss of
We have shown that for STAF /b averaging can double SINR loss~ 1 — — ' — N—-v—r 33)
or even quadruple the sample support. Furthermore, we have N —w N — '

proven that there are many scenarios whéyé averaging
improves adaptive beamformer performaniesspitethe pres-
ence ofunknownarray manifold errors. These cases are whem] S. W. Lang and J. H. McClennan, “Frequency estimation with maxi-

a med|um to |arge array W|th only poor or adequate Sample mum en_tropy spectral estimatorsEEE Trans. Acoust., Speech, Slgnal
Processing vol. ASSP-28, pp. 850-861, 1980.

support is used. Th_e imp_rovement duefi¢h ?Veraging Was 2] s. U. Pillai and B. H. Kwon, “Forward/backward spatial smoothing
demonstrated by simulation and on experimental data from for coherent signal identification/EEE Trans. Acoust., Speech, Signal

i Processing vol. 37, pp. 8-15, 1989.
the mountaintop database. [3] I. S. Reed, J. D. Mallet, and L. E. Brennan, “Rapid convergence in

adaptive arrays,|EEE Trans. Aerosp. Electron. Systol. AES-9, pp.
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