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Scattering from Planar Structures
Containing Small Features
Using the Adaptive Integral Method (AIM)

Sunil S. Bindiganavale, John L. VolakiBellow, IEEE and Hristos Anastassitember, IEEE

Abstract—Fast integral equation algorithms such as the adap- calculation is very time consuming. For planar applications of
tive integral method (AIM) have been demonstrated to reduce the method, the dimensionality of the FFT is reduced by one,
memory and execution time associated with moment-method so- yerepy significantly accelerating the solution. In this paper, we

lutions for arbitrarily shaped three-dimensional (3-D) geometries. . . .
In this paper, we examine the efficiency of AIM in modeling present the AIM formulation specialized to planar geometries

planar structures that contain small and intricate details as is the With particular emphasis on exploring the method's efficiency
case with spirals and slot antennas. Such geometries require high in dealing with highly tessellated geometries as is the case with
tessellation due to the inclusion of very small features resulting in surfaces containing small but important features. Examples

a large number of unknowns. AIM with its capability to translate j,01de slot and spiral antennas. While other fast integral-
the original grid to an equivalent sparser uniform grid is uniquely

suited for the analysis of such geometries. In the latter part of the equatiqn algorit.hms employ the same den;e grid,.the overlaid
paper, we demonstrate the application of AIM in connection with AIM uniform grid allows use of sparser grids. This leads to
a finite-element boundary-integral formulation for cavity-backed far fewer boundary integral unknowns, in addition to CPU and

antennas. memory gains inherent with the AIM implementation. After
Index Terms—Adaptive integral method, antennas, fastintegral Presenting the AIM formulation specialized to planar surfaces,
equation solvers, scattering. results are given that examine the accuracy for near- and

far-field calculations when sparser AIM grids are employed.
Five plate geometries (containing various narrow slots and
fine features) are examined to evaluate AIM's speed up and
AST integral-equation methods were introduced in th@emory reductions. Three antenna configurations are also
early 1990’s and have been shown effective in accenalyzed in the context of the finite-element boundary-integral
erating the computation of matrix—vector products requirqgtE-BI) method where AIM is employed to reduce memory

by iterative solvers. The adaptive integral method (AIM) [ljequirement and speed up the calculation of the boundary
and fast multipole method (FMM) [2] belong to this class ofntegral matrix—vector products.

fast integral-solution techniques. Other fast integral methods

(that can be considered as variations of AIM and FMM)

have been considered in [3] and [4]. However, these latter ) ] ) ]

methods have only been developed and applied to static fieldl & AIM algorithm for arbitrary 3-D bodies has been given

solutions. In contrast, [1] and [2] refer to three-dimensiond! [1]- I this section, we describe its specialization to planar

(3-D) solutions of time-harmonic fields. Both AIM and FMMgeometrles, giving onlly the essential gletalls requwgd for its

reduce the solution time and memory requirements of tH@Plementation. Consider a planar arbitrary conducting body

moment method (MM), and their initial applications focuse/Nose surfaces is illuminated by an incident plane wave

on scattering from large conducting bodies. More recentif - The boundary condition enforced ofi is (¢** time

FMM has been employed successfully in hybrid methods [gjonvention is employed)

[6] to evall_Jate s.cattering from compositg structures. ( E + E) - i=0 @
AIM achieves its central processing unit (CPU) and memory

reduction by mapping the original multipole method (MM)where the scattered fiel® is given by

discretization onto a rectangular grid and then exploiting the s )

Toeplitz property of the Green'’s function on this grid; that is, E =—jwA-V¢ (2)

the fast Fourier transform (FFT) is invoked to compute tI]ﬁ which

matrix—vector products in the iterative solver. For an arbitrary

. INTRODUCTION
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. . . —jkR
3-D body, a 3-D FFT is required and, as can be understood, this Alr) = 4& / 7. ¢ 4’ 3)
mJs
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Original MM discretization wherer,,,, are the position vectors df/? points on the square
e g surrounding the center of the edge affa) is the usual Dirac
delta function. The coefficients?;¥ are suitably chosen so that
the new expansion is equivalent to the original representation
using triangular elements with respect to generating identical
far field. A similar expansion is used for the divergence of the

. AV AVa) * . .
VAVAVAVAVAVAY, AIM Representation [ 3
A %ixgﬁng’AgAgAgAgAeAgggég A Q I?I‘\”l Repr uc‘nmtmn for edge b aslIs fu n Ctlon S
1;%’ x;xgxgxgx vﬁé’ . m'" (Note: Each of the

* o ‘h‘égxggxﬁ‘ﬁﬁ" e & original basis functions is M2

e defined on triangle pairs)
4 d d
Original MM discretization Pm = § 6(x — Tmq)O(y — qu)Amq . 9)
2
M =3 = AIMcocfficients=M =9 q=1

Fig. 1. The process of transformation from the original MM grid onto thqfg find a relation between thd*¥ and I, coefficients,
AIM grid. we equate moments of the two expansions up to order

Specifically, we set
is the scalar potential. Substituting (2)—(4) into (1) gives the

necessary integral equation, which must be discretized for the My . =Fy o (10)
solution ofJ. To do so, the equivalent electric current densit%

. T . . here
J, is expanded using linear basis functions [7] as

J.) =3 Lf(r) 5) M, = /_ ~ /_ Tlw = )™y~ ya) e dy
N for 0 < gi,qo < M

where I, are the unknown coefficients. Application of M2
Galerkin’s technique leads to the linear system — Z(”” ¢ — Ta) (Ymg — Ya) 2 [AZ,, & + AY,_4]
m a m a myq myg
[Z11} ={V} (6) =t
with g = q1 + g (11)

with [Z] being the elements interaction matrix wherddg 00 poo

is the vector of the unknown coefficients afd’} is the F :/ / Tl —2a)™ (Y — 9a)®? dzx dy  (12)

excitation vector. The matrikz] is fully populated, demand- ToodTee

ing O(N?) storage, and eacfZ]{I} matrix-vector product with (x,,¥,) being the coordinates of the center of the edge.

requiresO(N?) multiplications. Similarly, by equating moments oV, - J, with the new
Fast algorithms such as FMM and AIM are used to reduexpansion (9), we establish a relation betweeh and I,,;

the operation count fromV? down to N®, where « < that is, we set

1.5. Both algorithms work on approximating the far-zone

interactions. In the case of AIM, the CPU reduction is achieved D2 = Hil (13)
by first splitting the matrix as where

Z — Znear + Zfar (7) oo oo

Ao e Dy, = [ et )t - ) dedy
based on a threshold distance referred to as the near-zone —o00 J —oo
radius. The matri{Z™**'] contains the interactions between M?
elements separated less than a threshold distance, whereas = Y (Tmg — o)™ (Umg — ¥a)Z AL, (14)
[Z%1] contains the remaining interactions. The elements of 7=1

Zn<ar] are evaluated with the exact MM while those[&f> m R et

gnd tr]le produc{Z™]{I} are evaluated in an appr[oxirrlate Hole, = /_Oo /_Oo(x = a)" (Y = ¥a) Vs S du dy.

manner as prescribed by the AIM procedure [1]. (15)
Application of AIM requires that the whole geometry be

enclosed in a regular rectangular grid. However, for planEquations (10) and (13) give thréé? x M? systems yielding

geometries, it is only necessary to employ a planar uniforihe equivalence coefficients as the solution. This process is

grid that can be coincident with the original triangular grigdepicted pictorially in Fig. 1.

Equivalent point sources are placed at each node whosédVere we to use the equivalent expansions to represent the

strength is dictated by matching multipole moments of thgurrents everywhere, the resulting impedance matrix will be

basis functions between the original and uniform grids. Bagi the form

cally, the field of each interior edge is re-expressed using a 3
new expansion involving delta sources located at the nodes of S Z[A]i[G] [A]T. (16)
the uniform AIM grid as depicted in Fig. 1. For theth edge, i=1

this new expansion has the form . . - -
P In this, [A]; are the sparse matrices containing the coefficients

_ M X o of the expansion (11) and (9), wherefs] is the Toeplitz
Vrn =D (& = Tng)5(y — Umg) AL 3 + A% 01 (8) matrix whose elements are the free-space Green's function
7=l evaluated at the grid points. It has been shown in [1] that
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Fig. 2. (a) Matrix-built operations. (b) Matrix—vector product computatiorfrig. 4. Monostatic RCS for a circular plate of diameteyv. Zomparison of
in AIM. the standard MM and AIM.

[Zig8a] is not of sufficient accuracy for modeling the interacwhere[S] = [Z27*] - [Z}1}]] is a sparse matrix corresponding
tions between the nearby current elements. To take advantt@éhe difference between the near-field interactions computed
of the Toeplitz structure of?] and sparsity ofA] we can still by MM and AIM. The Toeplitz property of the Green’s
use[Z3!] to represent the far element interactions. Howevekinction defined on the regular grid enables use of the FFT
we will retain the exact interaction matrix elements for the ne#® accelerate the computation of the matrix—vector product.

element interactions; that is, we rewr{tg!5i!] as The sequence of operations involved in the construction of
X . the coefficient and Green’s function matrices are indicated in
[Zi] = (23531 + [Z 50l (17)  Fig. 2(a); those for the matrix—vector product execution are

: . _ outlined in Fig. 2(b).
Comparing this to (7) and settingZ™] ~ [Z&&,,] we can

rewrite the original[Z] matrix as
ginal[Z] IIl. EXTENSION TO PLANAR CAVITY -BACKED ANTENNAS

[Z] ~ ([Z7] — [Z5%2]) + [ 2558 (18) Consider now a cavity-backed antenna recessed in a ground
plane as depicted in Fig. 3. This class of configurations
have been modeled using the finite element [8]-[10] very

3 successfully. The most rigorous of the implementations is to
[Z] = [S]+ Z[A]i[G] [A]F (19) employ the finite-element method to model the interior volume
i=1 below the cavity and the boundary integral for truncating the

or
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Fig. 5. Monostatic RCS for a circular plate of diameter Rith three slots computed with standard MM and AIM. (a) Geometry. (b) Effect of the slots on
the RCS. (c)96 polarization backscatter RCS for the plate with slots. @) polarization backscatter RCS for the plate with slots.

finite-element mesh on the antenna/cavity aperture [8], [@fssociated with incident-field excitations (for scattering). The
As expected, for large apertures the CPU and memory emtries for the sparse finite element mafi] are
quirements are dominated by the boundary integral unknowns.
This situation is exacerbated for narrow slot antennas where A5 = ///{(V x W) BT (V x W)
high tessellation is needed. Application of AIM for computing /
the boundary-integral matrix—vector products is, therefore, an Ve ) _
important step toward reducing memory and CPU. — koW, & - W;tdv (21)
For a finite element—boundary integral simulation of the , ) )
geometry in Fig. 3, the resulting system has the general foffid those for the boundary-integral matrix are given by

{E} [0] [0o]]f{EV}Y _ [{b"} s _ // // 26500\ | £5 (0! / /
[A]{{ES} + [0] [B] {ES} = {bS} (20) Bzg = 2k5 f; ("') f]("' )GO("'a"' ) ds ds
s, s
where {EV} denotes the field unknowns within the volume e
enclosed byS, whereas{E®} represents the corresponding + 2// // V- [fi(r) x 2V
unknowns on the boundar§,. The excitation columr{s"'} S, S,
is associated with interior (antenna) sources whe{éds is f;07) x £]Go(r,r') dS dS'. (22)
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Fig. 6. Monostatic RCS for a circular plate of diametei 3vith three holes computed with standard MM and AIM.

Note thatW, refer to the edge-based basis [9], [10] afid of the inherent mapping to a different grid, we are highly
are the Rao-Wilton—Glisson (RWG) basis [7]. Of importancaterested in examining its suitability to model small and
is that B;; are the same integrals as those resulting frofine details embedded in much larger scale structures. The
enforcing (1) in conjunction with (2)—(5). The matrix—vectokalculations for plate configurations given next are intended
products can, therefore, be evaluated as discussed in theddress this issue by examining the method’s performance
previous section using)(Ns) memory andO(Nslog Ns) for a number of representative and practical situations. All
complexity (Vs = number of aperture unknowns). of the included results were generated using single precision
arithmetic on an HP9000/C-110 workstation with a rated peak
IV. RESULTS AND PARAMETER INVESTIGATION speed of 47 Mflops. In all cases, a third ordéd = 3)
When examining the merits of a fast integral algorithr?ultipole expansion was used with a grid spacing @bA.
such as AIM, of importance is the memory and CPU require- Figs. 4-8 depict théd and ¢¢ polarization radar cross-
ments, both contrasted to the delivered accuracy. Althou§RCtion (RCS) patternsp(= 0° cut) as calculated by AIM
approximate analytical expressions have been derived in ?Q]" the different threshold distances indicated on the figures.
for some of these parameters, these refer to implementatidi¥ first circular plate (shown in Fig. 4) has no holes and was
involving cubical grids and the 3-D FFT. Our goal in thig!sed to validate the method. From the pattern comparisons, it
paper is to assess the accuracy of AIM in treating smafi clear that AIM recovers the exact result very well. As given
details within an aperture/surface and to provide the readerTables | and I, AIM achieves this with at least a factor of
with quantitative measures on the performance of AIM whdive less memory than the traditional MM, even though the
implemented with the two-dimensional (2-D) FFT. The neageometries are still rather small to demonstrate the full impact
zone radius or threshold distance has a dramatic impact @nAIM. Also, Table Il shows that a near-zone radius of 0.3
the CPU requirements since it controls the nonzero eleméstsufficient to maintain good accuracy (below 1 dB in root
population of the system matrix. In the case of AIM, becausaean square (rms) error [11]).
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Fig. 7. Monostatic RCS for a circular plate of diameteA sampled at 0.03\ (smaller than the AIM grid spacing) due to the narrow center ridge.
TABLE |

SoLuTioN CPU TiME, MEMORY REQUIREMENT, AND RMS
ERROR OFAIM (A LL ENTRIES IN THIS TABLE WERE

TABLE I
SoLutioN CPU TiME, MEMORY REQUIREMENT, AND RMS
ERROR OFAIM (A LL ENTRIES IN THIS TABLE WERE

CoMPUTED WITH AN AIM GRID SPACING OF 0.05 A)

CoMPUTED WITH AN AIM GRID SPACING OF 0.05 A)

Discretization AIM Data

Geometry | Facets | Edges | Unknowns | MM memory (MB) | MM solution time Geometry | Threshold | Non-Zeros | Memory Solution time RMS Error(dB)
66 pol (0 = 0° inc.) (A) inNear % | (MB) | 8 pol (8 = 0° inc.) | 66 pol | ¢ pol
Figure 4 586 908 850 5.51 32 secs 0.3 59928 0.68 23 secs 0.1718 | 0.0755
Figure 5 554 890 72 4.54 29 secs Figure 4 0.4 100182 1.14 25 secs 0.1490 | 0.0693
Figure 6 1130 1806 1584 19.14 4 mins 50 secs 0.7 257390 2.94 28 secs 0.0728 | 0.0490
Figure 7 1036 1667 1441 15.84 4 mins Figure 5 0.4 79030 0.9 21 secs 0.0728 | 0.0583
Figure 8 1038 1957 1157 10.21 2 mins 45 secs 0.6 157994 1.8 27 secs 0.0721 | 0.0520
Figure 6 0.7 283774 3.24 3 mins 32 secs 0.8017 | 0.5185
Figure 7 0.2 296250 3.39 20 secs 0.1063 | 0.0949

The advantage of AIM is more pronounced when gaps are
inserted into the plate’s surfaces and this is the primary reason 04 649556 | T3 31 sees 0.0518 | 0.0632
that one may prefer AIM over other fast integral methods fofigues | 02 20220 | 137 18 secs 0.0469 | 0.0469

planar structures. As depicted in Figs. 5 and 6, AIM maintains

its accuracy for the same threshold criterion even though tphkates) of width 0.03\, the memory requirements of the
gaps/slots have a dominant effect on the RCS pattern as shdradlitional MM increase quickly due to the higher element
in Fig. 5. In the case of narrow slots (or thin ridges in thdensity. For the geometry in Fig. 7, AIM yields a memory
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saving of 79% and the CPU time is reduced by a factor @t the same time, the convergence rate of the AIM system is
12 while retaining the monostatic pattern accuracy to withianaffected indicating that the system condition is unchanged.
a tenth of a decibelThis is achieved by using a uniformThis is of critical importance for fast iterative solutions since
AIM grid density of 20 points per linear wavelength evemmn increase in the iteration count would annul the faster
though the cell density of the original plate mesh is muotomputation of the matrix—vector product.

greater due to the narrow slot. One may assume that thidig. 8 shows the monostatic RCS pattern for a grating
change in grid density will affect the near-zone field. Howevestructure that acts as a “polarization filter.” The thin ridges
our observations indicate that the surface current is equailly the grating cause a strong specular return for &h;b
accurate. For the configuration in Fig. 7 the average currgularization (almost 10 dB above the return in the absence
density error is 7.3% for a threshold distance of Q.2nd of the gratings) as is evident from the results in Fig. 8(d).
6% for a threshold distance of 04 The currents for the Of importance is that the MM triangular mesh in Fig. 8
geometry in Fig. 7 along the center narrow strip are plottadquired a cell size of 0.02 per linear dimension because
and compared in Fig. 9. These results demonstrate that tifighe narrow grating. However, the overlaid rectangular AIM
near-zone threshold criterion is not affected by the specificid could be selected to have a much coarser discretization.
geometrical details, leading to tremendous memory savind#ore specifically, we chose grid spacings of 0.b&nd 0.1
Moreover, the accuracy of the results provide a convincing for the AIM grid and, thus, computational requirements
argument that AIM can efficiently handle highly irregular andf AIM were much lower. For the 0.1\ grid spacing the
resonant (i.e., antenna) geometries as well as smooth scattemssition time was reduced from 2.75 min down to only 12
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s at the expense of some accuracy (fraction of a decibdfE-AIM solution with spectral-domain FE-BI data presented
To further increase in accuracy, we employed a Q\08rid in [12] for scattering by a cavity-backed patch antenna. We
spacing and as shown in Fig. 8(b) the AIM curve is nowext proceed to demonstrate memory savings and CPU time
indistinguishable from the reference MM result (within 0.&fforded by FE-AIM. Fig. 11 shows the radiation pattern in the
dB). From Tables | and Il, the AIM computational and memory = 90° elevation plane. The normal direction in this plane
requirements are eight times and nine times less, respectiveyeals the characteristic separation between copolarization
without loss of accuracyThis is a significant observation andand cross-polarization levels for the annular slot at observation
we have found that both the convergence rate and conditiangles close to normal in the elevation plane. From this figure
of the AIM system remains essentially unchanged from thieis gleaned that the threshold distance in AIM can be reduced
original moment-method system. down to even 0.15 if an average error of a decibels could be
We next consider examples where AIM was used to speddierated. From the computation of near-zone matrix entries
up computation of the boundary integral (Bl) in the contexduch a threshold would result in a factor of five saving in
of FE-BI for cavity-backed antenna modeling. The first stememory.
was to validate the spatial-domain FE-AIM formulation (i.e., A quantity of vital importance in antenna computations is
the FE-BI formulation with AIM for implementing the BI the input impedance. Fig. 12 depicts the input impedance of
matrix—vector products). To this end, Fig. 10 compares tleevery narrow probe-fed annular slot computed using FE-
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Fig. 10. (a) Geometry and surface discretization of a cavity-backed patch antenna. (b) Monostatic RCS at normal incidence versus frequency-cavity
filling has ae, = 2.2 — 50.002 and p,, = 1.

Bl and FE-AIM. The probe is placed af = 0 and we such a threshold distance results in a majority of the inter-
observe that the evaluation of the boundary integral with AlMctions between different slots being treated with the AIM
enables the reduction of the near-zone nonzeros by more th@gcedure. This is of paramount importance in modeling slot
half. Computation of the input impedance demands very higlirays or other aperture antennas. Figs. 14 and 15 show the
accuracy and the threshold distance was held constant at Jémory requirement and computational complexities for the
cm (corresponding to 0.33 at 1 GHz and 0.49\ at 1.4 jmplemented AIM algorithm. The plotted curves were obtained
GHz—the corresponding diameter of the entire Bl contoyfsing actual data from the developed code. These curves along

Vain”Q from 0.513) to 0.718)). .. with the previous example computations lead to the following
Figs. 11 and 12 demonstrated how AIM leads to efficie neral conclusions

Bl computations by employing uniform grids rather than th
P y empoyind g The rectangular AIM grid can be chosen to be much

original triangular tessellations. On the other hand, Fig. 13° o )
indicates the importance of a low-threshold distance in model- COarser than the original antenna grid. Thus, small antenna
details do not drive the final degrees of freedom (DOF’s)

ing cavity-backed antenna arrays. It shows that for acceptable _ i |

errors of less than 1 dB in scattering and radiation (radiation Uused for calculating the final matrix-vector products.
curves not shown) patterns, it is possible to reduce the number EXperience has shown that in computing far zone inter-
of nonzeros in the near-zone portion of the impedance matrix actions (beyond 0.3) the accuracy compromise in using
by a factor of six, resulting in substantial memory savings. nominal discretization (around 0X) is quite acceptable.
This is a consequence of employing a threshold distance of For antenna applications, there is little or no wastage of
10 cm, i.e., about a fifth of the cavity diameter. Employing  grid points which may lie beyond the aperture when the
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Average Error
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Fig. 11. Radiation pattern from an annular slot in the= 90° elevation plane.
original grid is overlaid with the rectangular AIM grid. memory requirements are of the same order or less and

Thus, 2-D FFT’s can be efficiently employed for calcu-  this holds even for small subsystems.
lating the matrix—vector products are done in [13]—-[15].

¢ The near-zone matrix elements are calculated using the
original boundary matrix and discrete elements. Thus, as
in the case of FMM (but not so with the implementation in . . "
[16] and [17]), AIM makes no compromises in modelin& A memory reduction of 5-10 times over traditional MM was

V. SUMMARY

the near-zone interactions. In the implementation of Al bserved without noticeable compromise in accuracy when

this | hieved by d g th trix into tw IM is applied using a threshold radius of 0&2 This CPU
IS IS achieved by decomposing the malrix into Wy, +tion js achieved without resorting to parallelization or

matrices, one that contains the. near zone 'nteracnonc(ﬁtimization techniques (as is known, AIM is particularly
sparse matrix) and another that is a product of sparse alfidenable to such improvements). More importantly, AIM
Toeplitz matrices and represents the interactions of tg, coarser overlaid uniform grids is capable of modeling
equivalent sources on the AIM rectangular grid. very small details in large bodies using considerably less
* AIM leads to O(Nslog Ns) CPU requirements for the memory while retaining a high degree of accuracy. This is
Bl matrix—vector product evaluation as a consequenegimportance when modeling broad-band antennas (spirals or
of the Toeplitz/Circulant nature of the boundary matrixog periodics) and gratings, which are both large in overall
associated with the uniform AIM grid. The correspondingize but can contain features as small\d$00 in size.
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Fig. 12. Inputimpedance of a very narrow annular slot computed with FE-BI

and FE-AIM.
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Fig. 13. Bistatic RCS at normal incidence> (= 90° plane) from a

cavity-backed slot array computed with FE-BI and FE-AIM.
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Fig. 14. Approximate memory required by the implemented AIM and BI
algorithms; symbols refer to actual data and the solid line is an average curve
through the actual data.
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