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Scattering from Planar Structures
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Abstract—Fast integral equation algorithms such as the adap-
tive integral method (AIM) have been demonstrated to reduce
memory and execution time associated with moment-method so-
lutions for arbitrarily shaped three-dimensional (3-D) geometries.
In this paper, we examine the efficiency of AIM in modeling
planar structures that contain small and intricate details as is the
case with spirals and slot antennas. Such geometries require high
tessellation due to the inclusion of very small features resulting in
a large number of unknowns. AIM with its capability to translate
the original grid to an equivalent sparser uniform grid is uniquely
suited for the analysis of such geometries. In the latter part of the
paper, we demonstrate the application of AIM in connection with
a finite-element boundary-integral formulation for cavity-backed
antennas.

Index Terms—Adaptive integral method, antennas, fast integral
equation solvers, scattering.

I. INTRODUCTION

FAST integral-equation methods were introduced in the
early 1990’s and have been shown effective in accel-

erating the computation of matrix–vector products required
by iterative solvers. The adaptive integral method (AIM) [1]
and fast multipole method (FMM) [2] belong to this class of
fast integral-solution techniques. Other fast integral methods
(that can be considered as variations of AIM and FMM)
have been considered in [3] and [4]. However, these latter
methods have only been developed and applied to static field
solutions. In contrast, [1] and [2] refer to three-dimensional
(3-D) solutions of time-harmonic fields. Both AIM and FMM
reduce the solution time and memory requirements of the
moment method (MM), and their initial applications focused
on scattering from large conducting bodies. More recently,
FMM has been employed successfully in hybrid methods [5],
[6] to evaluate scattering from composite structures.

AIM achieves its central processing unit (CPU) and memory
reduction by mapping the original multipole method (MM)
discretization onto a rectangular grid and then exploiting the
Toeplitz property of the Green’s function on this grid; that is,
the fast Fourier transform (FFT) is invoked to compute the
matrix–vector products in the iterative solver. For an arbitrary
3-D body, a 3-D FFT is required and, as can be understood, this
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calculation is very time consuming. For planar applications of
the method, the dimensionality of the FFT is reduced by one,
thereby significantly accelerating the solution. In this paper, we
present the AIM formulation specialized to planar geometries
with particular emphasis on exploring the method’s efficiency
in dealing with highly tessellated geometries as is the case with
surfaces containing small but important features. Examples
include slot and spiral antennas. While other fast integral-
equation algorithms employ the same dense grid, the overlaid
AIM uniform grid allows use of sparser grids. This leads to
far fewer boundary integral unknowns, in addition to CPU and
memory gains inherent with the AIM implementation. After
presenting the AIM formulation specialized to planar surfaces,
results are given that examine the accuracy for near- and
far-field calculations when sparser AIM grids are employed.
Five plate geometries (containing various narrow slots and
fine features) are examined to evaluate AIM’s speed up and
memory reductions. Three antenna configurations are also
analyzed in the context of the finite-element boundary-integral
(FE-BI) method where AIM is employed to reduce memory
requirement and speed up the calculation of the boundary
integral matrix–vector products.

II. AIM FOR PLANAR SURFACES

The AIM algorithm for arbitrary 3-D bodies has been given
in [1]. In this section, we describe its specialization to planar
geometries, giving only the essential details required for its
implementation. Consider a planar arbitrary conducting body
whose surface is illuminated by an incident plane wave

. The boundary condition enforced on is ( time
convention is employed)

(1)

where the scattered field is given by

(2)

in which

(3)

is the vector potential and

(4)
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Fig. 1. The process of transformation from the original MM grid onto the
AIM grid.

is the scalar potential. Substituting (2)–(4) into (1) gives the
necessary integral equation, which must be discretized for the
solution of . To do so, the equivalent electric current density

is expanded using linear basis functions [7] as

(5)

where are the unknown coefficients. Application of
Galerkin’s technique leads to the linear system

(6)

with being the elements interaction matrix whereas
is the vector of the unknown coefficients and is the
excitation vector. The matrix is fully populated, demand-
ing storage, and each matrix–vector product
requires multiplications.

Fast algorithms such as FMM and AIM are used to reduce
the operation count from down to , where

. Both algorithms work on approximating the far-zone
interactions. In the case of AIM, the CPU reduction is achieved
by first splitting the matrix as

(7)

based on a threshold distance referred to as the near-zone
radius. The matrix contains the interactions between
elements separated less than a threshold distance, whereas

contains the remaining interactions. The elements of
are evaluated with the exact MM while those of

and the product are evaluated in an approximate
manner as prescribed by the AIM procedure [1].

Application of AIM requires that the whole geometry be
enclosed in a regular rectangular grid. However, for planar
geometries, it is only necessary to employ a planar uniform
grid that can be coincident with the original triangular grid.
Equivalent point sources are placed at each node whose
strength is dictated by matching multipole moments of the
basis functions between the original and uniform grids. Basi-
cally, the field of each interior edge is re-expressed using a
new expansion involving delta sources located at the nodes of
the uniform AIM grid as depicted in Fig. 1. For theth edge,
this new expansion has the form

(8)

where are the position vectors of points on the square
surrounding the center of the edge and is the usual Dirac
delta function. The coefficients are suitably chosen so that
the new expansion is equivalent to the original representation
using triangular elements with respect to generating identical
far field. A similar expansion is used for the divergence of the
basis functions

(9)

To find a relation between the and coefficients,
we equate moments of the two expansions up to order.
Specifically, we set

(10)

where

(11)

(12)

with being the coordinates of the center of the edge.
Similarly, by equating moments of with the new
expansion (9), we establish a relation between and ;
that is, we set

(13)

where

(14)

(15)

Equations (10) and (13) give three systems yielding
the equivalence coefficients as the solution. This process is
depicted pictorially in Fig. 1.

Were we to use the equivalent expansions to represent the
currents everywhere, the resulting impedance matrix will be
of the form

(16)

In this, are the sparse matrices containing the coefficients
of the expansion (11) and (9), whereas is the Toeplitz
matrix whose elements are the free-space Green’s function
evaluated at the grid points. It has been shown in [1] that
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(a) (b)

Fig. 2. (a) Matrix-built operations. (b) Matrix–vector product computation
in AIM.

is not of sufficient accuracy for modeling the interac-
tions between the nearby current elements. To take advantage
of the Toeplitz structure of and sparsity of we can still
use to represent the far element interactions. However,
we will retain the exact interaction matrix elements for the near
element interactions; that is, we rewrite as

(17)

Comparing this to (7) and setting we can
rewrite the original matrix as

(18)

or

(19)

Fig. 3. Geometry of a cavity-backed annular slot antenna in a ground plane.

Fig. 4. Monostatic RCS for a circular plate of diameter 2�. Comparison of
the standard MM and AIM.

where is a sparse matrix corresponding
to the difference between the near-field interactions computed
by MM and AIM. The Toeplitz property of the Green’s
function defined on the regular grid enables use of the FFT
to accelerate the computation of the matrix–vector product.
The sequence of operations involved in the construction of
the coefficient and Green’s function matrices are indicated in
Fig. 2(a); those for the matrix–vector product execution are
outlined in Fig. 2(b).

III. EXTENSION TO PLANAR CAVITY -BACKED ANTENNAS

Consider now a cavity-backed antenna recessed in a ground
plane as depicted in Fig. 3. This class of configurations
have been modeled using the finite element [8]–[10] very
successfully. The most rigorous of the implementations is to
employ the finite-element method to model the interior volume
below the cavity and the boundary integral for truncating the
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Fig. 5. Monostatic RCS for a circular plate of diameter 2� with three slots computed with standard MM and AIM. (a) Geometry. (b) Effect of the slots on
the RCS. (c)�� polarization backscatter RCS for the plate with slots. (d)�� polarization backscatter RCS for the plate with slots.

finite-element mesh on the antenna/cavity aperture [8], [9].
As expected, for large apertures the CPU and memory re-
quirements are dominated by the boundary integral unknowns.
This situation is exacerbated for narrow slot antennas where
high tessellation is needed. Application of AIM for computing
the boundary-integral matrix–vector products is, therefore, an
important step toward reducing memory and CPU.

For a finite element–boundary integral simulation of the
geometry in Fig. 3, the resulting system has the general form

(20)

where denotes the field unknowns within the volume
enclosed by whereas represents the corresponding
unknowns on the boundary . The excitation column
is associated with interior (antenna) sources whereas is

associated with incident-field excitations (for scattering). The
entries for the sparse finite element matrix are

(21)

and those for the boundary-integral matrix are given by

(22)
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Fig. 6. Monostatic RCS for a circular plate of diameter 3� with three holes computed with standard MM and AIM.

Note that refer to the edge-based basis [9], [10] and
are the Rao–Wilton–Glisson (RWG) basis [7]. Of importance
is that are the same integrals as those resulting from
enforcing (1) in conjunction with (2)–(5). The matrix–vector
products can, therefore, be evaluated as discussed in the
previous section using memory and
complexity ( number of aperture unknowns).

IV. RESULTS AND PARAMETER INVESTIGATION

When examining the merits of a fast integral algorithm
such as AIM, of importance is the memory and CPU require-
ments, both contrasted to the delivered accuracy. Although
approximate analytical expressions have been derived in [1]
for some of these parameters, these refer to implementations
involving cubical grids and the 3-D FFT. Our goal in this
paper is to assess the accuracy of AIM in treating small
details within an aperture/surface and to provide the reader
with quantitative measures on the performance of AIM when
implemented with the two-dimensional (2-D) FFT. The near-
zone radius or threshold distance has a dramatic impact on
the CPU requirements since it controls the nonzero element
population of the system matrix. In the case of AIM, because

of the inherent mapping to a different grid, we are highly
interested in examining its suitability to model small and
fine details embedded in much larger scale structures. The
calculations for plate configurations given next are intended
to address this issue by examining the method’s performance
for a number of representative and practical situations. All
of the included results were generated using single precision
arithmetic on an HP9000/C-110 workstation with a rated peak
speed of 47 Mflops. In all cases, a third order
multipole expansion was used with a grid spacing of .

Figs. 4–8 depict the and polarization radar cross-
section (RCS) patterns ( cut) as calculated by AIM
for the different threshold distances indicated on the figures.
The first circular plate (shown in Fig. 4) has no holes and was
used to validate the method. From the pattern comparisons, it
is clear that AIM recovers the exact result very well. As given
in Tables I and II, AIM achieves this with at least a factor of
five less memory than the traditional MM, even though the
geometries are still rather small to demonstrate the full impact
of AIM. Also, Table II shows that a near-zone radius of 0.3
is sufficient to maintain good accuracy (below 1 dB in root
mean square (rms) error [11]).
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Fig. 7. Monostatic RCS for a circular plate of diameter 1� sampled at 0.03� (smaller than the AIM grid spacing) due to the narrow center ridge.

TABLE I
SOLUTION CPU TIME, MEMORY REQUIREMENT, AND RMS

ERROR OF AIM (A LL ENTRIES IN THIS TABLE WERE

COMPUTED WITH AN AIM GRID SPACING OF 0.05�)

The advantage of AIM is more pronounced when gaps are
inserted into the plate’s surfaces and this is the primary reason
that one may prefer AIM over other fast integral methods for
planar structures. As depicted in Figs. 5 and 6, AIM maintains
its accuracy for the same threshold criterion even though the
gaps/slots have a dominant effect on the RCS pattern as shown
in Fig. 5. In the case of narrow slots (or thin ridges in the

TABLE II
SOLUTION CPU TIME, MEMORY REQUIREMENT, AND RMS

ERROR OF AIM (A LL ENTRIES IN THIS TABLE WERE

COMPUTED WITH AN AIM GRID SPACING OF 0.05�)

plates) of width 0.03 , the memory requirements of the
traditional MM increase quickly due to the higher element
density. For the geometry in Fig. 7, AIM yields a memory
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Fig. 8. (a) Geometry and mesh of the grated plate. (b) Geometry and mesh of the “groove” plate without gratings. (c)�� polarization backscatter RCS
computed by AIM and MM. (d)�� polarization backscatter RCS computed by AIM and MM.

saving of 79% and the CPU time is reduced by a factor of
12 while retaining the monostatic pattern accuracy to within
a tenth of a decibel. This is achieved by using a uniform
AIM grid density of 20 points per linear wavelength even
though the cell density of the original plate mesh is much
greater due to the narrow slot. One may assume that this
change in grid density will affect the near-zone field. However,
our observations indicate that the surface current is equally
accurate. For the configuration in Fig. 7 the average current
density error is 7.3% for a threshold distance of 0.2and
6% for a threshold distance of 0.4. The currents for the
geometry in Fig. 7 along the center narrow strip are plotted
and compared in Fig. 9. These results demonstrate that the
near-zone threshold criterion is not affected by the specific
geometrical details, leading to tremendous memory savings.
Moreover, the accuracy of the results provide a convincing
argument that AIM can efficiently handle highly irregular and
resonant (i.e., antenna) geometries as well as smooth scatterers.

At the same time, the convergence rate of the AIM system is
unaffected indicating that the system condition is unchanged.
This is of critical importance for fast iterative solutions since
an increase in the iteration count would annul the faster
computation of the matrix–vector product.

Fig. 8 shows the monostatic RCS pattern for a grating
structure that acts as a “polarization filter.” The thin ridges
in the grating cause a strong specular return for the
polarization (almost 10 dB above the return in the absence
of the gratings) as is evident from the results in Fig. 8(d).
Of importance is that the MM triangular mesh in Fig. 8
required a cell size of 0.02 per linear dimension because
of the narrow grating. However, the overlaid rectangular AIM
grid could be selected to have a much coarser discretization.
More specifically, we chose grid spacings of 0.05and 0.1

for the AIM grid and, thus, computational requirements
of AIM were much lower. For the 0.1 grid spacing the
solution time was reduced from 2.75 min down to only 12
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Fig. 9. Electric currents (solution coefficients) on the narrow ridge for the geometry of Fig. 7.

s at the expense of some accuracy (fraction of a decibel).
To further increase in accuracy, we employed a 0.05grid
spacing and as shown in Fig. 8(b) the AIM curve is now
indistinguishable from the reference MM result (within 0.1
dB). From Tables I and II, the AIM computational and memory
requirements are eight times and nine times less, respectively,
without loss of accuracy. This is a significant observation and
we have found that both the convergence rate and condition
of the AIM system remains essentially unchanged from the
original moment-method system.

We next consider examples where AIM was used to speed-
up computation of the boundary integral (BI) in the context
of FE-BI for cavity-backed antenna modeling. The first step
was to validate the spatial-domain FE-AIM formulation (i.e.,
the FE-BI formulation with AIM for implementing the BI
matrix–vector products). To this end, Fig. 10 compares the

FE-AIM solution with spectral-domain FE-BI data presented
in [12] for scattering by a cavity-backed patch antenna. We
next proceed to demonstrate memory savings and CPU time
afforded by FE-AIM. Fig. 11 shows the radiation pattern in the

elevation plane. The normal direction in this plane
reveals the characteristic separation between copolarization
and cross-polarization levels for the annular slot at observation
angles close to normal in the elevation plane. From this figure
it is gleaned that the threshold distance in AIM can be reduced
down to even 0.15 if an average error of a decibels could be
tolerated. From the computation of near-zone matrix entries
such a threshold would result in a factor of five saving in
memory.

A quantity of vital importance in antenna computations is
the input impedance. Fig. 12 depicts the input impedance of
a very narrow probe-fed annular slot computed using FE-
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(a)

(b)

Fig. 10. (a) Geometry and surface discretization of a cavity-backed patch antenna. (b) Monostatic RCS at normal incidence versus frequency-cavity
filling has a �r = 2:2 � j0:002 and �r = 1.

BI and FE-AIM. The probe is placed at and we
observe that the evaluation of the boundary integral with AIM
enables the reduction of the near-zone nonzeros by more than
half. Computation of the input impedance demands very high
accuracy and the threshold distance was held constant at 10.5
cm (corresponding to 0.35 at 1 GHz and 0.49 at 1.4
GHz—the corresponding diameter of the entire BI contour
varying from 0.513 to 0.718 ).

Figs. 11 and 12 demonstrated how AIM leads to efficient
BI computations by employing uniform grids rather than the
original triangular tessellations. On the other hand, Fig. 13
indicates the importance of a low-threshold distance in model-
ing cavity-backed antenna arrays. It shows that for acceptable
errors of less than 1 dB in scattering and radiation (radiation
curves not shown) patterns, it is possible to reduce the number
of nonzeros in the near-zone portion of the impedance matrix
by a factor of six, resulting in substantial memory savings.
This is a consequence of employing a threshold distance of
10 cm, i.e., about a fifth of the cavity diameter. Employing

such a threshold distance results in a majority of the inter-
actions between different slots being treated with the AIM
procedure. This is of paramount importance in modeling slot
arrays or other aperture antennas. Figs. 14 and 15 show the
memory requirement and computational complexities for the
implemented AIM algorithm. The plotted curves were obtained
using actual data from the developed code. These curves along
with the previous example computations lead to the following
general conclusions.

• The rectangular AIM grid can be chosen to be much
coarser than the original antenna grid. Thus, small antenna
details do not drive the final degrees of freedom (DOF’s)
used for calculating the final matrix-vector products.
Experience has shown that in computing far zone inter-
actions (beyond 0.3) the accuracy compromise in using
nominal discretization (around 0.1 is quite acceptable.

• For antenna applications, there is little or no wastage of
grid points which may lie beyond the aperture when the
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(a)

(b)

Fig. 11. Radiation pattern from an annular slot in the� = 90
� elevation plane.

original grid is overlaid with the rectangular AIM grid.
Thus, 2-D FFT’s can be efficiently employed for calcu-
lating the matrix–vector products are done in [13]–[15].

• The near-zone matrix elements are calculated using the
original boundary matrix and discrete elements. Thus, as
in the case of FMM (but not so with the implementation in
[16] and [17]), AIM makes no compromises in modeling
the near-zone interactions. In the implementation of AIM
this is achieved by decomposing the matrix into two
matrices, one that contains the near zone interaction (a
sparse matrix) and another that is a product of sparse and
Toeplitz matrices and represents the interactions of the
equivalent sources on the AIM rectangular grid.

• AIM leads to CPU requirements for the
BI matrix–vector product evaluation as a consequence
of the Toeplitz/Circulant nature of the boundary matrix
associated with the uniform AIM grid. The corresponding

memory requirements are of the same order or less and
this holds even for small subsystems.

V. SUMMARY

A memory reduction of 5–10 times over traditional MM was
observed without noticeable compromise in accuracy when
AIM is applied using a threshold radius of 0.2. This CPU
reduction is achieved without resorting to parallelization or
optimization techniques (as is known, AIM is particularly
amenable to such improvements). More importantly, AIM
with coarser overlaid uniform grids is capable of modeling
very small details in large bodies using considerably less
memory while retaining a high degree of accuracy. This is
of importance when modeling broad-band antennas (spirals or
log periodics) and gratings, which are both large in overall
size but can contain features as small as in size.
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Fig. 12. Input impedance of a very narrow annular slot computed with FE-BI
and FE-AIM.

Fig. 13. Bistatic RCS at normal incidence (� = 90
� plane) from a

cavity-backed slot array computed with FE-BI and FE-AIM.

Fig. 14. Approximate memory required by the implemented AIM and BI
algorithms; symbols refer to actual data and the solid line is an average curve
through the actual data.

Fig. 15. Time per iteration complexity of the implemented BI and AIM
algorithms; symbols refer to actual data and the solid lines are average curves
through the actual data.
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