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Average Field Attenuation in the
Nonregular Impedance Street Waveguide

Nathan Blaunstein

Abstract—The propagation of electromagnetic (EM) waves
in a city with a regularly planned building as a model of a
straight street with buildings lining its sides is investigated. The
street is considered as a planar two-dimensional (2-D) multislit
waveguide with Poisson distributed screens (building walls) and
slits (gaps between buildings). The electrical properties of the
buildings’ walls are taken into account by introducing the elec-
trical impedance as a function of their surface permittivity and
conductivity. The average field from the vertical electric dipole
placed inside the street lower than rooftop level in the conditions
of line-of-sight is investigated using Green’s function formalism
and real boundary conditions on the building walls. Evaluations
show that the total field inside the waveguide can be presented as
a superposition of a continuous spectral propagation component,
which does not exist in the ideal unbroken waveguide, and a
discrete spectral component, which describes the exponential
attenuation of reflected and diffracted waves at distances of up
to 2–3 km depending on the width of street. The presented
model and evaluated formulas are in a good agreement with
experimental data of ultrahigh-frequency (UHF)/L-band wave
propagation in urban areas with a crossing-street plan.

Index Terms—Land mobile radio propagation factors.

I. INTRODUCTION

T HE conditions of electromagnetic (EM) wave propagation
in a built-up urban environment are the most difficult of

all the types found in ground radio communication because in
city areas with regularly planned buildings, multiray reflected
and diffracted fields are usually formed leading to significant
amplitude and phase variation [1]–[5].

These effects are more apparent in the case of the connection
between the base station (radio port) and a stationary or
moving object, both located at the street level below the
rooftops of buildings. Many experimental and theoretical in-
vestigations carried out in city areas show that most of the
buildings in built-up regions are practically nontransparent
and the total field for ground objects at heights lower than
roof level is formed mainly by radio waves reflected from
walls and diffracted from corners [5]–[8]. In this case, wide
shadow regions with sharp transitions to illuminated zones
with laminated interference pictures are observed [9]–[12].

In general, the main influence on field formation in city areas
with dense building arises from the local building plan [3],
[6], [13]. This is the reason why the processes of radio wave
propagation in the city with built-up areas are not described by
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Fig. 1. Ray tracing geometry of the street waveguide and locations of the
image sources.

general statistical [2], [14] or empirical (see bibliography, [15])
models. For the given case, acceptable results can be obtained
only for specific circumstances and for particular features of
city region planning [3], [6]–[8].

In this work, we investigate the case of EM wave propaga-
tion in a city with regular crossing street planning when both
objects, receiver and transmitter, are lower than rooftop level.
In Section II, the initial conditions of a nonregular multislit
waveguide model are presented. Section III describes the total
field construction in an impedance plate unbroken waveguide.
Section IV presents the method of construction of the wave
fields -times reflected from the broken waveguide screens.
In Section V, the procedure of averaging the total field in a
nonregular multislit impedance waveguide, using the direct
and inverse Fourier transforms for an average total field are
examined. The discrete and continuous spectra of the total
field are investigated.

Comparisons with results obtained from previously con-
structed models of ideal conductive broken and unbroken
waveguides, as well as with experimental data obtained from
the first Tadiran experiments in the urban and suburban envi-
ronment are presented.

II. THE WAVEGUIDE MODEL

The impedance plane parallel waveguide with randomly
distributed screens is considered as a model of a city street
(see Fig. 1). One waveguide plane is placed at waveguide side

, and the second one at . The screen and slit
lengths are distributed according to the Poisson law with the
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average values of and , respectively

(1)

Let us assume that a vertical electric dipole as a source of
EM waves is placed at the point (0, 0,) on the axis, where

(Fig. 1). The propagation of EM waves is observed
at the point inside the waveguide at the image surface (dotted
line in Fig. 1).

The real electrical properties of screens (walls) are de-
termined by the surface impedance ,

, where is the dielectric permittivity of the
wall’s surface, is the dielectric constant of vacuum,
is the electric conductivity, and is the angular frequency
of the radiated wave. Using the harmonic time-dependence

and the definition of the dipole field using the
Hertzian potential vector , we obtain the well-
known equation [16], [17]

(2)

the solution of which can be presented using Green’s function

(3)

Here, is the electric momentum of a point vertical electric
dipole , is a distance from the source. In real city
built-up conditions, the screen and slit lengths are much greater
than the radiation wavelength, i.e., , . In this
case, we can use the approximations of the geometrical theory
of diffraction (GTD) first introduced by Keller for the problems
of diffraction at the half-plane and wedge [18]. According to
the GTD the reflected and diffracted waves have same nature,
and the total field can be presented as a superposition of
direct wave fields from the source and reflected fields from the
screens. Moreover, following the previously constructed model
[19], we consider the resulting reflected fields as a sum of the
fields reaching the observer from the virtual image sources

(for the reflections from plate ) and (for the
reflections from plate ) (see Fig. 1).

III. T OTAL FIELD IN AN IMPEDANCE UNBROKEN WAVEGUIDE

As is well known [16], [17], the secondary (reflected) field
in an unbroken waveguide can be determined from the wave
equation for the Hertzian potential vector

(4)

Multiplying (4) by the factor and using the
Fourier transformation of (4), we finally obtain the equation
for the Fourier-transformant

(5)

the solution of which can be presented in well known form

(6)

Fig. 2. The integration contour along the semicircleC around the pole points
�1; 2 = �K.

where , is the wave number, and
. Using the inverse Fourier transform we can obtain

the reflected field as

(7)
The first (incident from the source) field can be calculated us-
ing the direct Fourier transform of free-space Green’s function
(3)

(8)

and the inverse Fourier transform with variable; we finally
obtain the following expression:

(9)

Here, an integral along the semicircular contouraround the
pole branch points and is introduced
in Fig. 2. Using Cauchy’s theorem for the branch points, we
finally obtain the expression for the Hertzian source potential
vector

(10)

where is a constant vector, . Now the
field from the source (first field) can be presented as

(11)

where sign “ ” corresponds to sign “ ” to .
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The total field in the unbroken waveguide can be rewritten
in the following form:

(12)

Here, as can be seen from (10), ;
is determined from boundary conditions . Let us now
evaluate the boundary conditions in the impedance-unbroken
waveguide.

Using the well-known boundary condition [16], [17]

(13)

and the relation between the electric and magnetic fields of an
EM wave and the Hertzian vector [16], [17], we finally obtain
at the boundaries and , respectively

for plate

(14)

from which

(15)

and for plate

(16)

from which

(17)

Finally, the total field in the impedance-unbroken waveguide
can be presented as

for

(18a)

for

(18b)

We shall use (10) and (18) for the construction of the average
field in the discrete multislit waveguide.

IV. EM WAVES -TIMES REFLECTED FROM

THE SCREENS IN A BROKEN WAVEGUIDE

Here we assume that screens (walls) and slits (gaps between
buildings) are distributed according to the Poisson law [see
(1)]. Reflection from screens and their corners is taken into
account by introducing the special “telegraph signal” functions

and defined for the first and the second waveguide
walls, respectively, as [19]

on the screen
on the slit.

(19)

Next, we introduce the image sources as presented in Fig. 1
and denote them for the first reflection from surface
by the symbol “+” and for the first reflection from surface

the symbol “ .” In first stage, we construct the reflected
wave fields when the first reflection takes place from the
waveguide wall . From geometrical construction we
define ;
from which we have a new calculated argumentfor the
function . Thus, the first wave field reflected from the
plate at the point on the image surface inside the
waveguide and along the axis is

(20)

Using the same geometrical considerations for the second
reflection from the wall (the image source ) in
the derivation of ,

, we obtain for the twice-reflected field at the
point inside the waveguide along theaxis

(21)

After the third reflection from the upper plate we
obtain at point for the function a new argument

, , and the
contribution from the third image source is

(22)

Following the same procedure by the induction method, we
obtain for the -time reflected wave field when the first
reflection taken place from the plate , the following:

for even ,

(23a)
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for odd ,

(23b)

The same procedure can be used for the first reflection taking
place from the second waveguide wall , i.e., for
the image sources (see Fig. 1). After similar geometric
consideration we obtain the following:

for even ,

(24a)

for odd ,

(24b)

V. THE AVERAGE FIELD IN THE

IMPEDANCE MULTISLIT WAVEGUIDE

As was shown in [19], the statistical moments of the
reflected field inside the multislit waveguide relate to the
statistical moments of “telegraph signal” functions and

defined by (19) using the procedure

(25a)

(25b)

(25c)

and

(25d)

where is the correlation function of the “telegraph”
signal functions

(26)

Taking into account the fact that the slit and screen distri-
butions in the street waveguide are statistically independent,
i.e.,

(27)

and using the relationships (25a)–(25c), we derived for the-
times reflected fields the expression as a sum of two terms.

The first one describes the average reflected field inside the
waveguide when first reflection was from the wall

(28a)

(28b)

The second term describes the average reflected field inside the
waveguide when the first reflection was from the wall :

(29a)

(29b)

Here is the coefficient of
reflections from the impedance walls.

As was shown in [19], in (28) and (29) with great accuracy,
the condition of can be assumed.

Using this fact and after some straightforward calculations,
we can present the spatial spectrum of an average-time
reflected field in the following form:

(30)

Using the inverse Fourier transform for the second (reflected)
field (30) and the direct field transformation

for

(31a)

for

(31b)

we obtain the same integrals as in (18), which now describes
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the total field in the broken multislit waveguide

for

(32a)

for

(32b)

To evaluate these integrals, we introduce the polar coordinate
system: , , , ,
and take into account the following form of the Bessel function

representation [20]:

Now, taking into account the relationship between the Bessel
function and the first-order and second-order

Hankel functions: ,
we can rewrite the integrals in (32) in the simplified form

(33)

Here, and are the functions in brackets in
(32a) and (32b), respectively, where value is replaced
by . The integrals (33) can be separated into two
parts: the integral along the deformed contouron which
the integrand is analytic and the integral along a branch cut
contour near the poles depicted in Fig. 3. Here, taking into
account the requirement for the integrals (33) to be finite, the
condition Im must be applied, i.e., the contourmust

Fig. 3. The deformed contourC in the upper half-plane. The branch-cut
contour
 is placed near the poles.

be closed in the upper half-plane as presented in Fig. 3.

A. The Discrete Spectrum of Total Field

The integral along the closed contour in the upper half-
plane presents the discrete spectrum of the total field inside
the multislit waveguide and can be calculated using Cauchy’s
theorem

Res (34)

The pole points are determined from

from which the pole coordinates are determined

(35)

Now, the coefficient of reflection of normal modes in the
impedance multislit waveguide,

can be described by use of its phase
and its modules presentation as shown in (36) at the

bottom of the page. Using formulas (34) and (36), we finally
obtain for the discrete spectrum for the case

(37a)

(36)
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and for the case

(37b)

Each index in the poles (36) corresponds to a waveguide
mode of an average reflected field. It is easy to show that
for , this discrete waveguide mode spectrum can be
significantly simplified. Thus for the case we obtain

(38)

where , constant.
For the case of an ideal conductive waveguide model, when

and , , we obtain from (37a) and
(38) for , respectively

(39)

(40)

These formulas are the same as those obtained for the case of
an ideal conductive multislit waveguide and presented for case

in [19]. In both waveguides the modes of the discrete
spectrum attenuate according to (43) and (45) exponentially
inside the broken waveguide and their extinction lengths are
given by the following formula:

(41)

The extinction lengths depend on the number of reflections
“ ,” on the waveguide (street) width “,” on the parameter of
brokenness and on the parameter of wall’s surface electric
properties . For the case of an unbroken ideal conductive
waveguide ( , ) it follows from (41) that

and normal modes propagate as waves in an ideal
waveguide without attenuation [17]

(42)

Fig. 4. Transformation from the complex argument� to a new complex
plane arguments.

In the case of impedance waveguide the character
of reflected mode attenuation depends on the real values of the
electrical impedance . With increasing ( )
the extinction lengths becomes smaller and the normal waves
in the impedance multislit waveguide attenuate faster than in
the case of the ideal conductive multislit waveguide. The same
picture is observed with an increase in the number of reflec-
tions : the normal reflected modes in multislit waveguide
with numbers attenuate very quickly (corresponding
extinction length decreases). On the other hand, increasing
the value of (decreasing the distances between buildings)
leads to a decrease of the reflected wave attenuation factor.
In the limit of an unbroken waveguide the normal
waves with numbers (the main reflected modes) also
propagate without appreciable (in dependence on parameter

) attenuation at large distances.

B. The Continuous Spectrum of Total Field

A continuous spectrum has been evaluated from integration
along the contour around the branch points (see Fig. 3). We
will examine this integral for the case , adding it to
the source field (31b), which is also found from the contour
integral with branch-cut point

(43)

Then the continuous part of the total field can be presented as

(44)
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where

(45)

This formula describes the continuous radiation, i.e., average
continuous spectrum inside the multislit waveguide. We
now transform the integration variables by including a
new arguments (see Fig. 4): ; ;

. For this argument we have
a branch cut point and poles

,
where Im . Using Cauchy’s
formula for the poles and the asymptotic approximation

, we finally derive the
continuous spectrum of the total field for

(46)

For the case of ideal conductive multislit waveguide when
, , we can obtain from (46) the same

formula presented in [19]. As can be seen from (46) in
the broken waveguide the continuous part of the total field
propagates as a spherical wave and reduces to the
unbroken waveguide case in the limit . But, if in the
ideal conductive unbroken waveguide for the large distances
( ) , in the impedance ideal waveguide with
continuous walls the continuous part of total field does not
vanish because for the case and , , as can be
seen from (46) differs from zero. This is a new principal result
which is absent in the case of an ideal conductive waveguide
with continuous walls (unbroken).

VI. CONTRIBUTION TO PATH LOSS

In the impedance unbroken waveguide ( ) the existence
of additional term (46) in the case of ( )
leads to the additional losses of EM waves propagated inside
it. This fact is clearly seen from investigations of path loss.
Thus, taking into account the characteristics of a vertical
electrical dipole field in free-space and (38) and (46), we can
approximately obtain the path loss of radio wave intensity

in an impedance multislit waveguide

(47)

which, for the case , , is the
same with path loss estimated for the case of ideal conductive
broken waveguide [19].

VII. COMPARISON WITH EXPERIMENTAL DATA

The measurement were carried out by Tadiran in Kefar
Yona, Israel, for the testing the Tadiran Multigain Wireless
system as a typical example of local loop system. The tested
system operates at the frequencies band 902.5–927.5
MHz. The tested microcellular built-up area is a typical
suburban environment with a crossing-street plan in which
the two three-storied buildings (with 8–10 m) are
irregularly distributed along the street. The installed radio port
(base station) is located near rooftop level ( 7 m); the
moving receiving antenna is placed below the rooftop level
( m). The first experiment was carried out in line-of-
sight conditions when receiver and transmitter antennas were
placed at the street level with direct visibility and the moving
receiver changed its distance from the base station in the range
10–350 m. At the distance m from the base station
the measurements gave

dB dB dB
(48)

Estimations from the evaluated formula (47) for the case of
mean densely distributed building at the street level ( )
and for street-width m, range m, and

– MHz gave

1) for ferroconcrete building walls with :

dB

2) for brick building walls with 15–17,
– mho/m, – :

– dB

VIII. C ONCLUSIONS

The theoretical model of multislit impedance waveguide
constructed above gives a good agreement with experimentally
found exponential wave attenuation along streets in the urban
and suburban areas up to 1–2 km from the source. This
model can be used for the prognosis of ultrahigh-frequency
(UHF)/ -band propagation in street-planned urban and subur-
ban microcells having radius less than 1–2 km in the conditions
of line-of-sight.

REFERENCES

[1] F. I. Kegami, S. Yoshida, and M. Takahar, “Analysis of multipath
propagation structure in urban mobile radio environments,”IEEE Trans.
Antennas Propagat.,vol. 20, pp. 531–537, May 1980.

[2] G. K. Chan, “Propagation and coverage prediction for cellular radio
systems,”IEEE Trans. Veh. Technol.,vol. 40, pp. 665–670, July 1977.

[3] A. J. Rustako, N. Amitay, G. J. Owens, and R. S. Roman, “Radio
propagation at microwave frequencies for line-of-sight microcellular
mobile and personal communications,”IEEE Trans. Veh. Technol.,vol.
40, pp. 203–210, Feb. 1991.

[4] S. T. S. Chia, “Radiowave propagation and handover criteria for
microcells,” British Telecom Tech. J., vol. 8, pp. 50–61, Oct. 1990.

[5] J. Fumio and J. Susumi, “Analysis of multipath propagation structure
in urban mobile radio environments,”IEEE Trans. Antennas Propagat.,
vol. 28, pp. 531–538, May 1980.

[6] J. Walfish and H. L. Bertoni, “A theoretical model of UHF propagation
in urban environments,”IEEE Trans. Antennas Propagat.,vol. 36, pp.
1788–1796, Dec. 1988.

[7] A. J. Levy, “Fine structure of the urban mobile propagation channel,”
in Proc. CommsphereHerzlia, Israel, Oct. 1991, pp. 5.1.1–5.1.6.



BLAUNSTEIN: AVERAGE FIELD ATTENUATION IN NONREGULAR IMPEDANCE STREET WAVEGUIDE 1789

[8] S. Y. Tan and H. S. Tan, “UTD propagation model in an urban street
scene for microcellular communications,”IEEE Trans. Electromagn.
Compat.,vol. 35, pp. 423–428, Apr. 1993.

[9] K. A. Hughes, “Mobile propagation in London at 936 MHz,”Electron.
Letters,vol. 18, pp. 141–143, Mar. 1982.

[10] R. Y. Samuel, “Mobile radio communications at 920 MHz,” in2nd
Int. Conf. Antennas Propagat.,London, U.K., Apr. 1981, vol. 2, pp.
143–147.

[11] J. H. Whitteker, “Measurements of path loss at 910 MHz for proposed
microcell urban mobile systems,”IEEE Trans. Veh. Technol.,vol. 37,
pp. 376–381, Apr. 1988.

[12] P. Harley, “Short distance attenuation measurements at 900 MHz and
1.86 MHz using low antenna heights for microcells,”IEEE Select. Areas
Commun.,vol. 10, pp. 7–16, Feb. 1989.

[13] L. R. Maciel, H. L. Bertoni, and H. H. Xia, “Unified approach to
prediction of propagation over buildings for all ranges of base station
antenna height,”IEEE Trans. Veh. Technol.,vol. 42, pp. 41–45, Feb.
1993.

[14] F. I. Kegami, T. Takeuch, and S. Yoshida, “Theoretical prediction of
mean field strength for urban mobile radio,”IEEE Trans. Antennas
Propagat.,vol. 39, pp. 299–302, Mar. 1991.

[15] W. C.-Y. Lee, Mobile Communication Design Fundamentals.Indi-
anapolis, IN: Sams, 1986.

[16] I. Tolstoy, Wave Propagation. New York: McGraw-Hill, 1973.
[17] L. B. Felsen and N. Marcuvitz,Radiation and Scattering of Waves.

Englewood Cliffs, NY: Prentice-Hall, 1973.
[18] J. B. Keller, “Geometrical theory of diffraction,”J. Opt. Soc. Amer.,

vol. 52, pp. 116–130, Jan. 1962.

[19] N. Blaunshtein and M. Levin, “Prediction of UHF-wave propagation in
suburban and rural environments,” inProc. Commsphere, Eilat, Israel,
Jan. 1995, pp. 191–200.

[20] Handbook of Mathematical Functions,M. Abramowitz and I. A. Stegun,
Eds. New York: Dover, 1972.

Nathan Blaunstein received the B.Sc. and M.Sc.
degrees in radiophysics and electronics from Tomsk
University, Tomsk, Russia, in 1972 and 1976, re-
spectively, and the Ph.D. and D.Sc. degrees in ra-
diophysics and electronics from the Institute of Geo-
magnetism, Ionosphere, and Radiowave Propagation
(IZMIR), Academy of Science USSR, Moscow,
Russia, in 1985 and 1991, respectively.

From 1993 to 1995, he was a Scientist. Since
1995 was a Senior Scientist of the Department of
Electrical and Computer Engineering and a Visiting

Professor in the Wireless Cellular Communication program at the Ben-Gurion
University of the Negev, Beer-Sheva, Israel. Currently, he is an Associate
Professor there. His research interests include problems of radiowave propaga-
tion, diffraction, and scattering in various media for purpose of radiolocation,
mobile-satellite and terrestrial communications, and for cellular and mobile
systems performance and services.


