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Average Field Attenuation in the
Nonregular Impedance Street Waveguide

Nathan Blaunstein

Abstract—The propagation of electromagnetic (EM) waves z
in a city with a regularly planned building as a model of a
straight street with buildings lining its sides is investigated. The
street is considered as a planar two-dimensional (2-D) multislit
waveguide with Poisson distributed screens (building walls) and
slits (gaps between buildings). The electrical properties of the
buildings’ walls are taken into account by introducing the elec-
trical impedance as a function of their surface permittivity and
conductivity. The average field from the vertical electric dipole
placed inside the street lower than rooftop level in the conditions
of line-of-sight is investigated using Green’s function formalism
and real boundary conditions on the building walls. Evaluations
show that the total field inside the waveguide can be presented as
a superposition of a continuous spectral propagation component,
which does not exist in the ideal unbroken waveguide, and a
discrete spectral component, which describes the exponential
attenuation of reflected and diffracted waves at distances of up Fig. 1. Ray tracing geometry of the street waveguide and locations of the
to 2-3 km depending on the width of street. The presented image sources.
model and evaluated formulas are in a good agreement with
experimental data of ultrahigh-frequency (UHF)/L-band wave
propagation in urban areas with a crossing-street plan. general statistical [2], [14] or empirical (see bibliography, [15])

Index Terms—Land mobile radio propagation factors. models. For the given case, acceptable results can be obtained

only for specific circumstances and for particular features of
city region planning [3], [6]-[8].
. INTRODUCTION In this work, we investigate the case of EM wave propaga-
HE conditions of electromagnetic (EM) wave propagatiotion in a city with regular crossing street planning when both
in a built-up urban environment are the most difficult obbjects, receiver and transmitter, are lower than rooftop level.
all the types found in ground radio communication because lim Section 1l, the initial conditions of a nonregular multislit
city areas with regularly planned buildings, multiray reflecte¢daveguide model are presented. Section Il describes the total
and diffracted fields are usually formed leading to significaifield construction in an impedance plate unbroken waveguide.
amplitude and phase variation [1][5]. Section IV presents the method of construction of the wave

These effects are more apparent in the case of the connecfieltls n-times reflected from the broken waveguide screens.
between the base station (radio port) and a stationary lorSection V, the procedure of averaging the total field in a
moving object, both located at the street level below th@onregular multislit impedance waveguide, using the direct
rooftops of buildings. Many experimental and theoretical irend inverse Fourier transforms for an average total field are
vestigations carried out in city areas show that most of tiexamined. The discrete and continuous spectra of the total
buildings in built-up regions are practically nontranspareffield are investigated.
and the total field for ground objects at heights lower than Comparisons with results obtained from previously con-
roof level is formed mainly by radio waves reflected fronstructed models of ideal conductive broken and unbroken
walls and diffracted from corners [5]-[8]. In this case, wid&vaveguides, as well as with experimental data obtained from
shadow regions with sharp transitions to illuminated zon#ge first Tadiran experiments in the urban and suburban envi-
with laminated interference pictures are observed [9]-[12]. ronment are presented.

In general, the main influence on field formation in city areas
with dense building arises from the local building plan [3],

[6], [13]. This is the reason why the processes of radio wave II. THE WAVEGUIDE MODEL

propagation in the city with built-up areas are not described byThe impedance plane parallel waveguide with randomly

distributed screens is considered as a model of a city street

Receiver

y
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average values of and!, respectively io;

L1 exp{—%}, 17t exp{—%"}. Q)

Let us assume that a vertical electric dipole as a source of

EM waves is placed at the point (0, &) on the axis, where

0 < h < a (Fig. 1). The propagation of EM waves is observed

at the point inside the waveguide at the image surface (dotted

line in Fig. 1).

The real electrical properties of screens (walls) are de-

termined by the surface impedandgy; ~ ¢ /2, ¢ = /),\ I.( o,

€0 — t(4dno/w), wheree is the dielectric permittivity of the X v

wall's surface,esq is the dielectric constant of vacuurm,

is the electric conductivity, and is the angular frequency

of the radiated wave. Using the harmonic time- dependenlag 2. The integration contour along the semicit€l@round the pole points

~exp(—iwt) and the definition of the dipole field using the™* = = R

Hertzian potential vectol [ (x, v, z), we obtain the well-

known equation [16], [17] where K? = k* — o® — 3%, k is the wave number, and
A k = 27 /\. Using the inverse Fourier transform we can obtain

v2H k2H =——p:8(2)8()6(z —h)  (2) the reflected field as

/3 —iKz—itaz—iBy da dﬁ

i 47e etk
HZ(UU’ Y, 2) = o PR 3 (7)
The first (incident from the source) field can be calculated us-

Here, p- is the electric momentum of a point vertical electrig |ng the direct Fourier transform of free-space Green’s function
dipole R = |r|, r is a distance from the source. In real an )r
e

built-up conditions, the screen and slit lengths are much grea
than the radiation wavelength i.e., L,, > A, [,, > A. In this i Ari
case, we can use the approximations of the geometrical theory HZ(O% Byv) = T Prrr 2 B2 — A2 (8)
of diffraction (GTD) first introduced by Keller for the problems

of diffraction at the half-plane and wedge [18]. According t@nd the inverse Fourier transform with variablewe finally
the GTD the reflected and diffracted waves have same nat#gtain the following expression:

and the total field can be presented as a superposition of

the solution of which can be presented using Green’s functiﬁr(
ikR %4, 7) (2r)2 //

Cz'yh

. . ! i Aip. —iv(z—h)
direct wave fields from the source and reflected fields from the H (a, By 2) = — 3
screens. Moreover, following the previously constructed model = Znw Jooo K=y
[19], we consider the resulting reflected fields as a sum of the D =R )
fields reaching the observer from the virtual image sources T or c K2 —~?

H;’ (for the reflections from plate = a) and ][, (for the

reflections from plate: = 0) (see Fig. 1). Here, an integral along the semicircular contéuaround the

pole branch pointsy; = +K and~, = —K is introduced

in Fig. 2. Using Cauchy’s theorem for the branch points, we

finally obtain the expression for the Hertzian source potential
As is well known [16], [17], the secondary (reflected) fieldrector

in an unbroken waveguide can be determined from the wave D

equation for the Hertzian potential vector — KGR a<h

r . % o 37 . %I , ”
V2 Hz(‘rv Y, Z) + k‘2 HZ(:L'7 Y, Z) =0. (4) Hz( [ ) D ( )

%_Ke—ils’(z—h)’ 2 < h
Multiplying (4) by the factorexp{—iax — i3y} and using the
Fourier transformation of (4), we finally obtain the equatio
for the Fourier-transformarf]’ («, 3, 7)

I1l. TOTAL FIELD IN AN IMPEDANCE UNBROKEN WAVEGUIDE

where D is a constant vecto = —(4ni/w)p.. Now the
feld from the source (first field) can be presented as

i
II (v 2)
+oo

92 r
|:a 2+(k —062—/32):| H’(av /37 Z):O (5)
_ +iK(z—h)—iax—if3
the solution of which can be presented in well known form ™ (25)2 // H(O" Ple Y dadf (11)

Hz(o" p z) = Ala, f) exp{—iKz} () where sign %" corresponds to: > & sign “—"to z < h.
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The total field in the unbroken waveguide can be rewritten IV. EM WAVES n-TIMES REFLECTED FROM
in the following form: THE SCREENS IN A BROKEN WAVEGUIDE
H (z,y, 2) Here we assume that screens (walls) and slits (gaps between
* o buildings) are distributed according to the Poisson law [see
=53 Alar, B)e” i atan=iBy 4o 453 (1)]. Reflection from screens and their corners is taken into

1 - o account by introducing the special “telegraph signal” functions
+ e /H(a, B)eFil=h)—iaa=iby 4o 43, (12)  fi(y) and f2(y) defined for the first and the second waveguide
walls, respectively, as [19]
Here, as can be seen from (1Q]{«, 8) = D/2iK; A(«, f3)

is determined from boundary conditiods= |D|. Let us now 1, on the screen
evaluate the boundary conditions in the impedance-unbroken Ji2(v) = {0, on the slit. (19)
waveguide.

Using the well-known boundary condition [16], [17] Next, we introduce the image sources as presented in Fig. 1

and denote them for the first reflection from surface= «

By = Zonlas B = —Zonly (13) by the symbol “+" and for the first reflection from surface

and the relation between the electric and magnetic fields of ar= 0 the symbol “-.” In first stage, we construct the reflected
EM wave and the Hertzian vector [16], [17], we finally obtaiwave fields when the first reflection takes place from the
at the boundaries = 0 and » = a, respectively waveguide wallz = a. From geometrical construction we
for plate z = 0 definer; = [(a—h)? + 4212 y1 = ym(a—h)/(2a—h— 2)
from which we have a new calculated argumemntfor the
aHZ . . function f;. Thus, the first wave field reflected from the
+ itk Zrm H =0 (14) . . o
Oz = plate » = a at the pointA on the image surface inside the
from which waveguide and along the axis is
K+kZpw 1 Ity 4
— = = k1
Al B) = o7 5K = 2k (15) T~ [(a - h)yM} 0)
21 1 2a —h — =z
and for platez = a
aH Using the same geometrical considerations for the second
- 2 —|—ikZEMH =0 (16) reflection from the wallz = 0 (the image sourcd[7) in
_ 0z i the derivation ofry = [(2a — )2 + 2]Y2, 1o = un(2a —
from which h)/(2a — h + ), we obtain for the twice-reflected field at the
_ 2iKa i2Ka : P : :
Ao, ) = K k:ZEM e o Rg(i (17) point N inside the waveguide along theaxis
K + kZEM 2K 2K e
Finally, the total field in the impedance-unbroken waveguide H+ ~C [ (o — h)yN}f [(QG — h)yN} (21)
can be presented as =T 2a—h+z]"" 20—+
forz=20 After the third reflection from the upper plate = a we
obtain at pointP for the function f; a new argumenys; =
(z, 1, 2) btai intP for the function f
o yp(3a — h)/(da — h — 2), 3 = [(3a — h)? + 42]1/2, and the
— —itKz—taz—i0; : . . . + 5
= (27r)2// Ry H(a, Be Ydadp contribution from the third image sourdq_, is
1 —iK(z—h)—iaz—ify t etk (a —M)yp (2a — h)yr
+ (27r)2// H(a, Be docdf I_L3 s f1 A — f2 A —
(18a) « f| Ba=Rur ] (22)
4a—h—z
for z = a
Following the same procedure by the induction method, we
Hz(x’ v ) obtain for then-time reflected wave field when the first

// Ry H(O" B)ei K H2a)—iaw—ify o g reflection taken place from the plate= a, the following:

(2r)?
1 (et —ica—iy for evenn = 2m, m=1,2,3, ---
+ W// H(a, Be PY dacdg. H+ N ek fl[ (a—h)y }b[ (2a — h)y }
Z, T na—h+z na—h+z
(18b) ((n—Da—h)y (na — h)y
We shall use (10) and (18) for the construction of the average o fl[ ne—h+z }fQ [na —h+ z}

field in the discrete multislit waveguide. (23a)
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foroddn =2m+1,m=1,2,3,--- The first one describes the average reflected field inside the
] waveguide when first reflection was from the walk= «
1—[+ etkrn s [ (a—h)y }f [ (2a — h)y
~ 1 2 .
2n T (n+la—h—=z (n+la—h—=z + cikrn -
_ npn ‘K ((n+l)a—z—h)
{«n—Da—My} (L) =5 r Tl pe
X +-e X f2 SN T/ g
(n+Lla—h-—= 2 2ay
x K — ],
« f (na — h)y (23b) (n+Lla—2z—h
M+ Da—h—z] n=2m+1, m=123,--- (28a)
eikrn

The same procedure can be used for the first reflection taking <1_[:r > == X" R" H(a, Betinata=h)
place from the second waveguide wall = 0, i.e., for " " 5
the image source$]. (see Fig. 1). After similar geometric x Kn2 <¢)7
consideration we obtain the following: na+z—h)
n=2m, m=1,23,---. (28b)
forevenn =2m,m=1,2,3, ---
ike! { hy }f { (a+ h)y } The second term describes the average reflected field inside the

- ik,
Hzn ~ r J2 na+h—z" Y \nath—=z waveguide when the first reflection was from the wa#: 0:
n—2)a+h n—1a+nh
X oo X fa [(( - _|_)h . Z)y} f [(( - _|_)h T Z)y} <H_ > _ kT, "R H(a, ﬁ)em((n—l)a+z+h)
(24a) S
WK 2 ,
foroddn =2m+1,m=1,2,3,--- (n—La+z+h
- n=2m+1, m=1,23,--- (29a)
-t hy (a-+h)y _L o .
Hzﬂ r f2 {(n —Da+nh+ z} h {(n —Da+h+ z} <Hzn> = x"R" H(av p)eiina==th)
((n—2)a+h)y} ! 2
><~~~><f1[— n—2 ay
(n—1a+h+=z XK <na—z+h ’
(n—1a+h+z

Here R = (K — kZrm)/(K + kZr\) is the coefficient of
reflections from the impedance walls.
As was shown in [19], in (28) and (29) with great accuracy,
e condition of K»~2(7) ~ 1 can be assumed.
Using this fact and after some straightforward calculations,

V. THE AVERAGE FIELD IN THE
IMPEDANCE MULTISLIT WAVEGUIDE

As was shown in [19], the statistical moments of th
reflected field inside the multislit waveguide relate to th
statistical moments of “telegraph signal” functiofigy) and

f2(y) defined by (19) using the procedure we can present the spatial spectrum of an averagene
I reflected field in the following form:
, L+1 D Y2R2IK (2a=k) |y Reikh]
i i) =K — ) @) Tt 59 = e { | g |
(Filyr) filw2) fi(ys)) = x> K (y1 — v2)K (y2 — ys) (25¢€) 912 K iKh
and n [X R ' xRe """ (K (20—2)
. 1— x2R2¢i2Ka ’
Silud filw) - Jilw2)) =x" [ _| K1~ ) (250) (30)
where K (w) is the correlation function of the “telegraph”
signal functions Using the inverse Fourier transform for the second (reflected)
1 11 field (30) and the direct field transformation
K(w):xQ{l-i-z exp[—<z+7>|w|} } (26)
. . ] forz<h
Taking into account the fact that the slit and screen distri- i K ()
butions in the street waveguide are statistically independent, Hz(o" piz) = H(O" Pe (31a)
€ for z > h
_ - i .
(L f(y)) = (1) (f2(¥)) = x (27) Hz(a, B, 2) = [J(a, BTG (31b)

and using the relationships (25a)—(25c), we derived forthe
times reflected fields the expression as a sum of two termage obtain the same integrals as in (18), which now describes
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the total field in the broken multislit waveguide iK;
for z < h
C
H (.’L’ Y, Z , — // dadﬁ— —iar—i18Yy

XR(XRGZA (2a—h) + eiKh) ke
X 1 — y2R2ci2Ka ¢

XRCiI((Qa—}L) + R C—iKz Kr
1 — x2R2¢i2Kea
(32a)
Fig. 3. The deformed contouf’ in the upper half-plane. The branch-cut
for z > h contour~ is placed near the poles.
” be closed in the upper half-plane as presented in Fig. 3.
H (z,y, = da dﬁ— —iar—ify
z

A. The Discrete Spectrum of Total Field

% {[XR(XRd et T TR (20'_}L))} iz The integral along the closed contodrin the upper half-
1 — x2R?¢i2Ra plane presents the discrete spectrum of the total field inside
xRe Bl 4 gmiKIY the multislit waveguide and can be calculated using Cauchy’s
{ 1 — y2R2¢i2Ka } } theorem

b 0
(325) =2 RedHP () ao) 0] (@9

To evaluate these integrals, we introduce the polar coordmeﬁ;?e pole points are determined from
systemi = p cos ¢, S =psin ¢, x =7 cos 1, y = r sin P,
and take into account the following form of the Bessel function 1= x?R?e?ke =0

Jo(z) representation [20]: from which the pole coordinates are determined

1 2w —4b . = k? _ KTQL 1/2
Jolpr) = 5 / oIS W gy, on = _ )1n| |
g K,=+24; 20X _%n
a a a
Now, taking into account the relationship between the Bessel =Re K, + Im K, n=123--. (39

E?Qc)tion ;O(le ?r;d tr}f fir.s;-ordeﬂo ((1)) and she}%c;nd or2der Now, the coefficient of reflection of normal modes in the
o (2) anxel functions: 0(_75) = [Hy'(2) + (2)]/ impedance(Zgy # 0) multislit waveguide,R,, = (K,, —
we can rewrite the integrals in (32) in the S|mpI|f|ed form kZgn)/ (K, + kZgy) can be described by use of its phase
¢, and its modulesR,,| presentation as shown in (36) at the
D[ pFy o H( )(m) d 33 bottom of the page. Using formulas (34) and (36), we finally
H (@9, 2) = /k2 2 p- (33) obtain for the discrete spectrum for the case

D H(l) .

. . . _ 0 (pnT)

Here, Fi(p) and Fx(p) are the functions in brackets in HZ(% Ys %) =% 5

(32a) and (32b), respectively, where valéé€ is replaced [Rn —2%}

by \/k2 — p2. The integrals (33) can be separated into two (Kn + kZen)

parts: the integral along the deformed cont@uron which « {an cos[Kn(z — h)]

the integrand is analytic and the integral along a branch cut

contour~ near the poles depicted in Fig. 3. Here, taking into I 1 [e_iK”(Z'i'h) 1 eiKn(z+h—2a):|}
account the requirement for the integrals (33) to be finite, the X

condition ImK > 0 must be applied, i.e., the contoGr must (37a)

VIR K, 2§ (K, )2 — (Zpx)°P + 4(m K,) 22,
(ReKn + kZEM)Q + (Im Kn)2
2Im Knk‘ZEM
Re K, )? + ImK,,)2 — (kZp)?

| B | =

©0n = tan™" (36)
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and for the case: < h ip;
1
I oy = 2 H6"t0r)
2 2a |:R _9 kZEM :|

(K, + kZpm) - /’\ K -
X

X {RnEiKn(z—h—a) + e—iKn(Z-I—h—i—a)

+ eil&'n(z—l—h—&z) + i e—il&'n(z—h—l—&z)}'
(37b) sy
Each indexn in the poles (36) corresponds to a waveguide

mode of an average reflected field. It is easy to show that 0+

for r/a > 1, this discrete waveguide mode spectrum can be St
significantly simplified. Thus for the case> h we obtain g
[ ]
d C . ) |In xR,| {71 — ¢p 95 )
H ~ — explip, ') exp|— r @
VT pﬁf”a a .
\4@
(38)
wherepSJ) = k? — (n7/a)?, C = constant. Fig. 4. Transformation from the complex argumgntto a new complex

For the case of an ideal conductive waveguide model, whe/gne argument.
Zwm = 0 and|R,| = 1, ¢, = 0, we obtain from (37a) and

(38) for = > h, respectively
In the case of impedance waveguid®,,| # 1) the character

H (x,y, 7) = D H((Jl) (, /12 Kfﬂ‘) of reflected mode attenuation depends on the real values of the
# 2a electrical impedanc&gy;. With increasingZey (Zev > 0)
> {2 cos[ K, (z — )] 1 Fhe ext.inction lengths l:_)ef:omes smaller and the normal waves
in the impedance multislit waveguide attenuate faster than in
% [ ¢ iKn(ath) 4 ik, (z+h72a):| (39) the case of the ideal conductive multislit waveguide. The same
picture is observed with an increase in the number of reflec-

tions n: the normal reflected modes in multislit waveguide
d C . o) [In x| s 7n X ) :
H ~ —= exp(ipy)r) exp| — (—)7 . (40) with numbersn > 5 attenuate very quickly (corresponding
Vr pra > @ extinction length(,, decreases). On the other hand, increasing

These formulas are the same as those obtained for the cas@%évalue O:;X (decrea?inﬁ] theﬂdista(;wes between b_uild:cngs)
an ideal conductive multislit waveguide and presented for ¢ §80S t(_) a decrease o the re ecte_ wave attenuation tactor.
# > hin [19]. In both waveguides the modes of the discretd the limit of an unbroken waveguidgx = 1) the normal

spectrum attenuate according to (43) and (45) exponentia\ﬁg‘veS with qur]mberm < 5.(tbh|e malg reflegted modes) also
inside the broken waveguide and their extinction lengths apEoPagate without appreciable (in dependence on parameter
Zrnm) attenuation at large distances.

given by the following formula:

‘o m Vg 1) B. The Continuous Spectrum of Total Field
T (= In [x R |' A continuous spectrum has been evaluated from integration
X along the contouty around the branch points (see Fig. 3). We

will examine this integral for the case > h, adding it to

The extinction lengths depend on the number of reflectio%e source field (31b), which is also found from the contour
“n,” on the waveguide (street) width:,” on the parameter of integral with branch-c;Jt poing = k

brokenness; and on the parameter of wall's surface electric
propertiesR,,. For the case of an unbroken ideal conductive

. . i 1 1) D
waveguide ¢ — 1, R, — 1) it follows from (41) that | | :—</ +/ )Hé (pr) —
z 8w . [12 — 2
~ left ~right P

¢, — oo and normal modes propagate as waves in an ideal

waveguide without attenuation [17] % ev‘,s/kZ—pZ(z—h)pdp. (43)
11 278 gD ey + BO (S — (T - ,
e o o (kr)+ H, k* — (7) 7 Then the continuous part of the total field can be presented as

mnh TN D [i H(l)(pr)
— . 42 = 0 MW O
X COS < . ) cos ( o )] (42) Hc sni /. s Q(z)pdp (44)
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where VII. COMPARISON WITH EXPERIMENTAL DATA
(xR NP 4 =i ( ReiK (2a=2) | ¢if=) The measurement were carried qut by Ta_dlrgn in Kefar
Qz) = X X Yona, Israel, for the testing the Tadiran Multigain Wireless

1 — x2R2c2Ka
(xRe— it 4 iRy (y Re—iK(20=2) 4 o=iKz)
1 — x2R2¢i2Ka :

system as a typical example of local loop system. The tested
system operates at the frequencies bgpd= 902.5-927.5
MHz. The tested microcellular built-up area is a typical
suburban environment with a crossing-street plan in which
the two three-storied buildings (witth, = 8-10 m) are

This formula describes the continuous radiation, i.e., averajggularly distributed along the street. The installed radio port
continuous spectrum inside the multislit waveguide. ase station) is located near rooftop levey:(= 7 m); the

now transform the integration variables by including #0ving receiving antenna is placed below the rooftop level
new arguments (see Fig. 4y = k + is%, dp = 2isds; (hr =3 m). The first experiment was carried out in line-of-

s = exp{—i3(n/4)}(k — p)*/. For this argument we have Sight conditions when recei_ver gnd trgns_mitter antennas were
a branch cut points exp{i(r/4)}(2k)*/? and poles placed at the street level with direct visibility and the moving
s2 = ik £ (=K% + [i In x|Rn|/a + (nm — @n/a)]?)/2, receiver changed its_distance from the base station in thg range
where Injexp{i3(x/4)}(2k + is2)1/2] > 0. Using Cauchy’s 10-350 m. At the distance = 350 m from the base station
formula for the poles and the asymptotic approximatiofl€ measurements gave

Ho(pr) ~ (=2i/mpr)t/? exp{ipr}, we finally derive the — 46 dB: I — 43 dB:
continuous spectrum of the total field foya > 1 e ’ averase ’

+
(45)

Loin = 40 dB.

(48)
Estimations from the evaluated formula (47) for the case of
mean densely distributed building at the street leltél£ 0.5)
and for street-widtha 20 m, ranger 350 m, and
. . o . fo = 902-928 MHz gave
For the case of ideal conductive rr_1u|t|sl|t waveguide when 1) for ferroconcrete building walls withi,.| = 1:
|R.| = 1, Zgm = 0, we can obtain from (46) the same
formula presented in [19]. As can be seen from (46) in
the broken waveguide the continuous part of the total field
propagates as a spherical wavéc*” /) and reduces to the
unbroken waveguide case in the limjit= 1. But, if in the
ideal conductive unbroken waveguide for the large distances
(r > a) T[° = 0, in the impedance ideal waveguide with
continuous walls the continuous p3ft’ of total field does not ViIl
vanish because for the cage= 1 and|R,,| # 1, [[°, as can be '
seen from (46) differs from zero. This is a new principal result The theoretical model of multislit impedance waveguide

which is absent in the case of an ideal conductive waveguig@nstructed above gives a good agreement with experimentally
with continuous walls (unbroken). found exponential wave attenuation along streets in the urban

and suburban areas up to 1-2 km from the source. This
model can be used for the prognosis of ultrahigh-frequency
V. (UHF)/L-band propagation in street-planned urban and subur-
In the impedance unbroken waveguide=£ 1) the existence ban microcells having radius less than 1-2 km in the conditions
of additional term (46) in the case gy # 0 (JR,| # 1)  of line-of-sight.
leads to the additional losses of EM waves propagated inside
it. This fact is clearly seen from investigations of path loss.
Thus, taking into account the characteristics of a vertica#1
electrical dipole field in free-space and (38) and (46), we can propagation structure in urban mobile radio environmenE&EE Trans.
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2) for brick building walls withey = 15-17, ¢
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