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On the Generation of Broad-Band Beams for a
Nondispersive Time-Signal Transmission

Itsik Dvir and Pinchas D. Einziger

Abstract—A novel aperture synthesis method is proposed for
a broad-band beam (BB) generation, which supports a nondis-
persive time-signal transmission to a single observation plane.
This plane, regarded here as the image plane (IP), is per-
pendicular to the axis of propagation and its location can be
varied continuously from the near-field zone to the far-field
zone. The spatial field of the BB at the IP can be shaped
by modifying the classical spatial filtering synthesis techniques
to construct a predetermined localized space–time (ST) field.
The method characteristics, effectiveness, and simplicity, are
demonstrated through two opposing analytic examples: Gaussian
and rectangular source-field-distributions (SFD’s).

Index Terms— Beams, broad-band beams, electromagnetic
pulse, electromagnetic transient propagation, Gaussian beams,
nondispersive time signal transmission, pulse generation.

I. INTRODUCTION

PULSED beams characterized by highly localized elec-
tromagnetic energy in space–time (ST), have received

due attention recently [1]–[4]. The localization property is
most promising in applications such as ultrawide bandwidth
pulse-driven arrays, covert broad-band communication, and
high-resolution detection and reconstruction of objects. In
some of these applications, the time envelope of the pulsed
beam has to be maintained undistorted. Unfortunately, strong
distortion is unavoidable due to the ST dispersion associated
with the propagation mechanism of the broad-band time signal,
even in homogenous nondispersive media. The objective of
this work is to overcome the distortion problem by properly
synthesizing the ST source-field distribution (SFD) to obtain
an undistorted time envelope at all prescribed observation
points.

Synthesis of source functions of array elements for pulse
radiation in the far-field zone have been considered by using
numerical approaches to achieve optimum performance under
specific criteria [5]–[7]. Specifically, optimization problems
have been studied to maximize; at a far-field point, the electric
field amplitude of the transient radiated field at a specific time
[5] or the radiated energy in a specified time interval [6],
where constraints have been imposed on the total energy and
the frequency bandwidth of the input signals at the terminals
of a linear dipole array. A least-square inverse propagating
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approach have been proposed [7] to find the corresponding
driving functions of a given array of radiating elements when
a scalar representation of a desired propagating field is given
at a finite number of remote spatial locations. An optimum set
of the unknown array driving functions has been calculated by
solving a system of linear equations in the frequency domain
for each frequency component.

This paper addresses a different inverse propagating prob-
lem [8]–[10], namely how to synthesize the broad-band beam
(BB) aperture field for a nondispersive transmission of a time
signal to all observation points located at the image plane (IP).

We solve this problem analytically through a closed-form
inversion of the radiation integral associated with paraxial
(beam-type) fields. An explicit expression for the BB SFD is
formulated in terms of a time-harmonic SFD specified at some
typical frequency. Each type of BB corresponds to a unique
time-harmonic SFD and can be synthesized by modifying the
classical spatial filtering techniques [11].

In contrast to the above previously published numerical
optimization schemes, the proposed method has three distinct
features: 1) aunique closed-formsolution; 2) the solution is
valid in thenear-field zoneas well; and 3) the solution depends
continuouslyon the ST variables, thus it may be implemented
by array elements through an appropriate discretization.

The paper is organized as follows. In Section II, the BB
integral representation is formulated for nondispersive trans-
mission of signals. In Section III, we present the main re-
sult, an explicit expression for the synthesized BB SFD.
Sections IV and V introduce closed-form expressions and
numerical results, respectively, derived for the Gaussian and
rectangular BB SFD’s. A summary and general conclusions of
this work are given in Section VI.

II. THE BB INTEGRAL REPRESENTATION

Let an aperture, located at the plane in a Carte-
sian coordinate system, be driven everywhere with a broad-
band signal , which is known by its spectral content

. Then, using the well-known
aperture theory formulations, the transient fields can be repre-
sented as follows [12]:

(1)

(2)

where and are the time-harmonic tangential

electric vectors at the source plane and the

observation point , respectively. The half-space

0018–926X/98$10.00 1998 IEEE



DVIR AND EINZIGER: BROAD-BAND BEAMS FOR NONDISPERSIVE TIME-SIGNAL TRANSMISSION 1775

is assumed to be linear, homogenous, dispersionless,
lossless, and isotropic medium.

Next, referring to in (2) as the system transfer
function, we impose the following well-known necessary and
sufficient constraint:

(3)

which guarantees a nondispersive signal transmission to the
prescribed observation point set, . Namely,

is represented as a product of a frequency-
independent attenuation and a linear phase-shift term. The
parameter in (3) is a time-delay constant related to the
traveling time to and is a typical frequency, which
can be arbitrarily selected. The left-hand side (LHS) of (3)

can be written explicitly using spatial convolution
formulation [13], [14], known as the Rayleigh–Sommerfeld
integral [15]

(4)

which constitutes an integral relation between the unknown

field and . In (4),
is the distance from to , is the

velocity, and represents two-dimensional (2-D)
integration variables.

Since propagation of a beam wave is localized around
the beam axis, the parabolic approximation [15]–[20] can be
applied to reduce (4) into a simpler form

(5)

i.e., a Fresnel convolution integral. Here, the undetermined
time-delay in (3) assumes an explicit form

(6)

where

(7)

is the parabolic approximation of the observation distance. It is
well recognized that the accuracy of the Fresnel approximation
is extremely good throughout the far-field and near-field zones
for observation points in the beam [15], [20].

In general, a complete inversion of (4), which must be
carried out for all frequencies [one-dimensional (1-D) space]
and for all points [three-dimensional (3-D) space], may
become quite cumbersome task. Furthermore, uniqueness and
existence of the solution are open problems, which seems to
be strongly dependent on the selection of both
and the observation point set. However, recognizing
in (3) as the geometrical optics field [21], we may conclude
that nondispersive signals indeed propagate along the set of
the geometrical optics rays and that , the solution
of (4) or (5), may be obtained by backpropagation along

these rays to the aperture plane . Unfortunately, beam
waves associated with the parabolic approximation cannot be
represented, in general, by geometrical optics fields in the
entire half-space. Therefore, to successfully inverting
(5), the set should be significantly reduced. In the following
discussion, we select this set to be a 2-D subspace, namely,
the IP at . A further reduction into a 1-D subspace has
been recently addressed [22].

III. SYNTHESIS

A. Inversion of (5)—The Synthesis Scheme

At a single frequency may be found by
spatial inversion of the propagation operator LHS of (5) using
classical time-harmonic aperture synthesis methods [11]. Thus,
it is assumed throughout the paper that is known.

Next, we obtain for and through
an analytic inversion of (5). Rewriting (5) for

(8)

then, introducing a change of variables (scaling) ,

and , we obtain

(9)

Finally, noting that both LHS’s of (5) and (9) must be equal
and utilizing the uniqueness of the Fourier transform, the result
is

(10)
The closed form and explicit expression given in (10)

establishes the main result of this paper. The SFD
is expressed in terms of the time-harmonic SFD ,
indicating an appropriate ST coupling between spatial vari-
ables and temporal frequency. Equation (10), which can be
considered as an ST filter at the source plane, consists of three
frequency-dependent operations: gain, scaling, and focusing.
The first two terms agree with the Fourier scaling rule, assuring
same field energy for each frequency component, i.e., for

, is compressed while its amplitude is
increased by the same ratio. The focusing term, which has
a ST quadratic phase term, is inversely proportional to the IP
location .

Consequently, the BB field may be obtained by substituting
(10) into (5), with

(11)



1776 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 12, DECEMBER 1998

where is given in (6). The time-domain BB field can
be determined via inverse Fourier transformation of (11). The
integral representation (11) has a form of Fresnel integral, and
is valid in the paraxial region, which extends from the near-
field zone to the far-field zone [15]–[20]. It can be readily
shown that (11) is reduced into (3) at the IP by substituting

and following a reverse of the sequence given in (8)
and (9). Thus, the time envelope of the BB at the IP is similar
to except for a propagation delay factor and a
constant attenuation factor .

The spatial localizationaround the propagation axis can
be determined by an appropriate selection of the spatial
distribution at via the well-known time-
harmonic spatial filtering techniques [11]. Consequently, we
obtain an extensive class of BB solutions since each form of a
typical SFD in (10) (e.g., rectangular, circular, etc.) generates
a distinct type of BB in terms of the widely tabulated Fresnel
integrals in (11).

The IPlocationcan be adjusted continuously from the near-
field zone to the far-field zone by properly setting in the
focusing term in (10). As it approaches the far zone ,
the focusing term becomes negligible and (10) is reduced into

(12)

The remaining two operations—scaling and amplitude vari-
ation—are sufficient to obtain the frequency-independent far-
zone field. Equation (12) represents a necessary and sufficient
constraint that guarantees afar-fieldBB. This expression could
be obtained directly via a direct inversion of the far-field
version of (5), where the Fresnel integral is reduced into the
Fraunhofer diffraction integral (spatial Fourier transformation
of the SFD) [21]. Similarly, the BB field representation in (11)
is reduced in the far-field limit into

(13)

where .

B. Implementation

Implementation of (10) is essential for the realization of BB.
Here, we briefly discuss two alternatives: a dispersive thin lens
and array-elements discretization.

1) Dispersive Thin Lens:Comparing the focusing term in
(10) and the expression for a focal lengthof a thin lens [21]

(14)

with curvature radii , , and refraction index , we obtain
the following relations:

(15)

which are essential for focusing. Here, the IP location is
shifted by adjusting the curvature radii , , while the thin

lens index of refraction varies linearly over a broad-band of
frequencies.

2) Array Elements Driven by Frequency-Dependent Array
Filters: Through spatial sampling of the continuous ST SFD
(10), the frequency characteristics of the filter adjoined to each
element are determined. Each filter is characterized as a low-
pass filter prototype with a ST quadratic phase. The frequency
band of each filter is inversely proportional to its distance
from the array center.

IV. BB GENERATION VIA ELEMENTARY SFD’s

We focus here on two opposing simple examples: Gaussian
and rectangular BB SFD’s. Without loss of generality, it is
assumed through the next two sections that the aperture SFD
is separable, thus reducing and simplifying the 3-D analysis
into a 2-D scalar case, i.e., (10) and (11), are readily reduced
for -independent apertures into

(16)

(17)

respectively. We derive closed-form expressions for the syn-
thesized aperture SFD (16), and the generated BB field (17).
Numerical results, highlighting the effectiveness and simplicity
of our method and comparisons to other ST beams, are
presented in the next section.

A. The Gaussian SFD

The Gaussian SFD given at

(18)

generates via (16) and (17) the frequency-dependent SFD, and
the broad-band Gaussian beam (BGB) field, respectively

(19)

(20)

where

(21)

The BGB has the well-known form of the time-harmonic
Gaussian beam [23] with an explicit expression for the
frequency-dependent complex-source-pointgiven in (21).
It can be readily observed that the complex shift has
frequency-dependent real and imaginary parts, which represent
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(a)

(b)

Fig. 1. Amplitude versus transverse distancex=a0 of the (a) PGF (31) and
(b) the PSF (32) at three frequencies:!min (solid line),!0 (dashed line), and
!max (dotted line),!max=!min = 10. Low-pass filtering can be perceived
for off-axis observation points, which yields smoothing of the time signal.

real (beam-waist width) and imaginary (waist location)
displacements along theaxis. The constant represents the
complex-source-point location of the classical time-harmonic
Gaussian beam at .

B. The Rectangular SFD

Here, the finite support SFD of width

for

for
(22)

generates via (16) and (17) the frequency-dependent SFD, and
the broad-band sinc-beam (BSB), respectively

(23)

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2. The amplitude of the PSF (32) is depicted in the temporal and spectral
domains atzo=a0 = 10. The time envelope of the PSF is shown in (a),
(c), (e) and (g), while the signal spectrum is depicted in (b), (d), (f) and
(h) at x=a0 = 0; 0:5; 1:0; and 1:5, respectively. The distortions in the
time envelope, associated with additional pulses and oversmoothing of the
transmitted signal, is due to periodicity and low-pass filtering in the spectral
domain.

(24)

where

(25)

and are defined as in (7) and (11), respectively. The
function in (24) represents the Fresnel integral [24]

(26)

with the following parameters:

(27)

C. Reference SFD’s

For comparison purpose, we derive here reference Gaussian
and rectangular SFD’s, with frequency-independent width
parameters, and , respectively. We note that the gener-
ated reference beam fields do not support nondispersive time
envelope at the IP, since their SFD’s are not constructed in
accordance with the proposed synthesis scheme, given in (10),
or its 2-D version (16). Fixing the width parameters for all
frequencies

(28)



1778 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 12, DECEMBER 1998

(a) (b)

(c) (d)

Fig. 3. Amplitude of the BGB (20) versus transverse distancex=a0 at (a)z=zo = 0:1, (b) z=zo = 0:95, (c) z = zo, and (d)z=zo = 5, at three frequencies:
!min (solid line),!0 (dashed line), and!max (dotted line). At the IPz = zo the amplitude is frequency-independent and nondispersive signal transmission
can be implemented. Note the ST localization property at the proximity of this plane in (b)z=zo = 0:95.

the reference SFD’s

(29)

and

(30)

generate the following well-known beam fields [15], [23]: the
pulsed-Gaussian-field (PGF)

(31)

and the pulsed-sinc-field (PSF)

(32)

respectively.

V. SIMULATION RESULTS

A. The Signal

The signal spectrum given in (1), is selected to be
constant over the frequency band

for

otherwise
(33)

to avoid any impact of the signal spectrum upon the BB or
the reference pulsed fields. Thereby, focusing only on the
dispersive characteristics of the propagation mechanism. To
maintain the paraxial approximation in the space coordinates
the effective aperture length contains at least ten wave-
lengths in the entire frequency band

(34)

The frequency is taken to be and
chosen as the carrier frequency of the base-band signal, which
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(a) (b)

(c) (d)

Fig. 4. Same as Fig. 3 but for the BSB (24).

has an information bandwidth with

.

B. The Reference Pulsed Field: PGF and PSF

In the narrow-band limit ( ) all the time-
harmonic beam constituents in the frequency band have ap-
proximately the same amplitude distribution. Consequently,
the spectral content of the pulsed field at a given plane is
nearly constant and no significant signal dispersion is expected.
However, in the broad-band limit we expect
that the proposed synthesis scheme reduces significantly the
signal dispersion and, thus, select throughout this section

. For this bandwidth ratio, as shown in
Fig. 1(a) and (b), for the PGF and PSF, respectively, the
amplitude distributions have strong deviations and low-pass
filtering at off-axis points can be observed. Notice that the
two SFD’s (29) and (30) are inherently different. The PGF
SFD width depends on the frequency, while the PSF SFD
is constant over the entire bandwidth. This property explains

the stronger low-pass filter decaying in the Gaussian case, in
which the effective aperture width decreases as the frequency
increases.

An interesting property of the PGF (31) is the nondispersive
transmission of signal to each on-axis point but not to
off-axis points, i.e., along a real ray, also known as the central
ray [17], which is in agreement with the discussion at the end
of Section II and in [22]. Yet, for the rectangular SFD where
no real ray exists, distortions occur along theaxis as well, as
shown in Fig. 2(a). The signal distortions shown in Fig. 2(a),
(c), (e), and (g), associated with additional pulses and over
smoothing of the transmitted pulse are due to periodicity and
low-pass filtering, as depicted in Fig. 2(b), (d), (f), and (h) for

, and , respectively. Also note that the
time interval between the pulses is related to the transverse
distance from the off-axis point to the beam axis.

C. The BB Field: BGB and BSB

The characteristics and effectiveness of the proposed syn-
thesis method are demonstrated for the BGB and the BSB.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5. The amplitude of the BSB (24) is shown for on-axisx = 0 and
off-axis x=a0 = 0:8z=zo observation points, at the same plane location as
in Fig. 4. At the IP the time envelope is identical with the predetermined
broad-band!max=!min = 10 transmitted time signal.

The amplitude of the BGB (20) and the BSB (24) is depicted
in Figs. 3 and 4, respectively, for several planes perpendicular
to the beam-axis: 1) ; 2) ; 3) ;
and 4) at three frequencies: and .
The IP is taken to be in the near-field zone of
the time-harmonic beam at . At the IP, the BGB and
the BSB amplitude distribution coincide, for all frequencies
with the amplitude distribution of the time-harmonic Gaussian
and sinc-beam at , respectively. Since the phase at this
plane is linear in frequency, the signal is transmitted without
distortions.

The time envelope of the BSB is depicted, in Fig. 5 for
on-axis and off-axis observation
points at the same plane locations as in Fig. 4. Notice, from
Fig. 5(a) and (b) at for on-axis and off-axis
points, respectively, that the signal emerges at earlier time
from off-axis points at the source plane and it has different
time variations than the on-axis signal. While there are still
distortions in the time envelope near the IP at ,
as shown in Fig. 5(c) and (d) for and ,
respectively, the distortions disappear at the IP, as shown in
Fig. 5(e) and (f) for and , respectively. Also
note that the off-axis point is outside the effective beam width
at that plane. However, far from the IP at the time
envelope of the BSB undergoes dispersion for both on-axis and
off-axis points, as shown in Fig. 5(g) and (h), respectively.

VI. SUMMARY AND CONCLUSIONS

This paper deals with ST aperture synthesis for the genera-
tion of prescribed broad-band time signal at a given plane. The

synthesis is performed within the framework of the parabolic
approximation (Fresnel integral) in the spatial variables, appli-
cable for radiation fields localized around the propagation axis.

The ST SFD solution for the aperture synthesis problem is
unique and presented in a closed-form explicit expression in
(10). The solution, the main result of this paper, is formulated
in terms of a time-harmonic SFD at , which undergoes
frequency-dependent focusing, scaling, and amplitude varia-
tions that are not dependent on the signal spectrum, but rather
on its frequency band. Thus, each time-harmonic SFD defines
via (10) a distinct BB field solution, which supports a predeter-
mined time envelope at the IP. The location of this plane can
be varied continuously from the near-field zone to the far-field
zone by changing the parameter in the focusing term.

Although the nondispersive time signal is obtained at a
single plane it is localized in ST at the proximity of this
plane as well. Thus, in that region the BB is reduced into
a pulsed beam, which maintains its analytical ST structure
along the propagation axis. However, since this location can
be arbitrarily determined it is possible to convey localized
field with predetermined ST structure to any region in the
near-field or far-field zones.

Sensitivity analysis for the proposed synthesis scheme has
been carried out in [8]. It is demonstrated that, in general,
the BB field solutions for the BGB as well as for the BSB
are stable, i.e., small variations in the SFD parameters: gain,
scaling, and focusing, cause small variations in the BB field
at the IP, even in the near-field zone.
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