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Abstract—In many antenna systems the primary feed or the
subreflector will most often be supported by struts which obstruct
the aperture and therefore cause a reduction in the directivity
and an increase in sidelobe levels. So as to be able to design
new structures which avoid these drawbacks, the problem of
plane wave scattering from an infinite axially periodic cylinder
of arbitrary geometric and material parameters is analyzed in
this paper by a hybrid finite element/boundary element method.
Covariant-projection edge elements are employed in the inhomo-
geneous region of the unit cell and the scattered field is expanded
in terms of cylindrical Floquet harmonics. The resulting prac-
tical numerical procedure has been tested to ensure that power
conservation rules are obeyed and checked satisfactorily against
both analytical results and measurements on periodically loaded
struts.

Index Terms—Boundary element method, cylinder, electromag-
netic scattering by periodic structure, finite-element method.

I. INTRODUCTION

I N antenna systems there are many situations where the
electromagnetic waves are obstructed by a mechanical

structure causing an increase in the sidelobes and a reduction in
gain. This problem arises especially when compact antennas
are designed.

The mechanical structure often consists of one or more rods
(i.e., feed support struts in axisymmetric reflector antennas or
the framework of a space frame radome), that are shaped and
loaded in such a way that the blockage is minimized.

The blockage effect of simple uniform cylindrical struts and
masts of different cross sections has been widely analyzed
[1]–[3]. However, in recent years new structures have been
designed in order to minimize this negative effect. This
has been done by appropiately shaping the structure and
by making it nonuniform in the axial direction in a way
similar to that adopted to create artificially “hard” surfaces [4].
The considerable improvements reported are very promising
[5]–[7].

Due to the complexity of the problem, so far only a few
simple cases of a corrugated axially symmetric cylinder have
been studied [8]–[11].
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Fig. 1. Geometry of the problem.

In this paper, a hybrid technique which utilizes a finite
element/boundary element method (FEM-BEM) is presented
to analyze the scattering of an electromagnetic plane wave
obliquely incident upon an axially periodic cylinder of arbi-
trary geometric and material parameters. This provides a useful
tool for the study of new struts and masts. In particular, the
complex periodic structure is analyzed by using a Galerkin
weighted residual finite-element method (FEM) employing
three-dimensional covariant-projection elements [12]: curvi-
linear bricks which impose only tangential field continuity
and work well even when sharp metal edges are present.
The periodicity of the structure has been properly taken into
account using periodic weight functions while the radiation
condition has been imposed through expanding the field in
the free space surrounding the structure in terms of cylindrical
Floquet harmonics. Numerical results of different corrugated
structures, for both TEand TM polarized incident fields are
shown and validated as far as is possible.

II. FORMULATION

The geometry of an infinitely long cylinder having axis
parallel to the -axis of the cylindrical coordinate system

and periodicity with respect to the direction
is shown in Fig. 1. We assume that the surrounding medium
is free space with permittivity and permeability The
direction of the incident plane wave makes an anglewith
the positive -axis and is parallel to the -plane. A harmonic
time dependence is assumed and suppressed.

Since the incident wave is a plane wave and the geometry
of the scatterer is a periodic function ofwith period , the
fields observed at two arbitrary points, separated by a distance

along a line parallel to the-axis, are identical except for
a constant phase shift This means that it
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Fig. 2. Unit periodic cell.

is necessary to determine the scattered field only in a basic
period

In particular, we can partition each basic period into two
regions (Fig. 2). Region 1 extends to envelope the periodic
structure and is delimited by a circular cylindrical surface

of radius concentric with the -axis. Region 2 con-
sists just of free space surrounding the periodic structure. In
Region 1 we solve the electromagnetic problem applying a
Galerkin weighted residual finite element formulation, based
on covariant-projection vector elements, while in Region 2 the
field is represented in terms of a double series of cylindrical
Floquet harmonics.

Since the medium that surrounds the corrugated cylinder is
homogeneous, we can express the fields in terms of transverse
electric and transverse magnetic potentials. Each of these two
potentials must satisfy the Helmholtz equation, in scalar form,
subject to the periodic boundary conditions. This equation
can easily be solved using the standard method of separation
of variables with application of the periodicity conditions as
similarly described in [13]. Taking into account the different
form of the separated differential equations for propagating
and evanescent modes, the components of the scattered field
tangential to the cylindrical surface can be expressed as

(1)

(2)

where and are unknown transverse electric and
magnetic constants, respectively, and

(3)

(4)

(5)

while is the propagation constant of free space.
Furthermore,

(6)

and

for
for

(7)

where and are the Hankel function and the modified
Bessel function of the second kind, respectively, and
indicates the derivative of these functions with respect to
the argument The choice of two different forms for
the function corresponds to the physics of the wave
harmonics, either propagating or evanescent, and allows an
easier and more efficient numerical evaluation of the solution.

In Region 1, we need to solve the wave equation subject
to appropriate boundary conditions. In particular these are the
continuity of the tangential components of the electric and
magnetic field on surface and the periodicity of the field
along the direction. To solve the wave equation, a finite-
element procedure is applied which uses weighted residuals.
For the specific configuration, the weak form of the wave
equation can be written as [14]

(8)

where is the vector weighting function while, as shown in
Fig. 2, and are the upper and the lower plane surfaces
of Region 1, respectively, and is the volume enclosed by
these surfaces and the cylindrical surface

The Floquet theorem can be used as a constraint applied
to the boundaries of a single periodic unit cell, which can
thus be employed to provide the complete solution of the
infinite periodic structure. The vector weighting function is
chosen from the same field interpolation polynomials as used
to represent the field vector Without loss of generality,
may be assumed to be periodic with a constant phase term
equal to the conjugate of Floquet’s constant phase term [15]

(9)

The advantage of choosing a weighting function of such form
is that the integrals on the surfaces and required from
(8) over any pair of periodic boundaries cancel each other
out. Thus, only the periodic boundary condition needs to be
imposed in the final matrix equation in order to completely
take into account the contribution of surface integrals along
periodic boundaries [16].

The continuity of transverse field components through the
surface now has to be imposed. We can express the
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boundary integral on the cylindrical surface which appears
in (8) in terms of scattering and incident magnetic fields as

(10)

where and express the transverse components of the
incident magnetic field on the cylindrical surface By using
(2) we can also rewrite the integral (10) in terms of the
unknown coefficients and as

(11)

Furthermore, considering the orthogonality of the functions
, we can express the unknown transverse electric

and magnetic coefficients in terms of the unknown transverse
electric field on the surface as

(12)

(13)

where

(14)

(15)

(16)

(17)

If we consider a TM (i.e., ) incident plane wave,
of amplitude , the integrals (15) and (17) can be solved
analytically by employing a well-known addition theorem for
Bessel functions, giving

(18)

(19)

where is the Kroneker delta function and is the Bessel
function of the first kind of order Similarly, for a TE (i.e.,

) incident plane wave, of amplitude , we have

(20)

(21)

where is the derivative of the Bessel function of first kind
with respect to this argument.

Now, using (12) and (13) in (11), we can express the
boundary integral on the cylindrical surface as

(22)

where

(23)

(24)

(25)

(26)

and

(27)

(28)

(29)

It is worth noting that for TM polarization the term appearing
in (22)

(30)

for each value of and
Substituting (22) into the weak form of the wave equation

(8) we can solve for the total electric field within Region 1.
Furthermore, it is sufficient to substitute the electric field on
the surface thus determined into (12) and (13) to evaluate
the coefficients and and then, through (1) and (2),
the scattered field.
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III. N UMERICAL IMPLEMENTATION AND RESULTS

In order to apply the finite-element formulation in the
inhomogeous region (i.e., Region 1), we have implemented
a computer program which employs three-dimensional, 20-
node, isoparametric, Crowley–Silvester covariant-projection
elements of mixed order as described in [14]. This choice
prevents spurious modes and allows a better modeling of
singularities due to sharp metallic edges. Furthermore, since
only tangential continuity is enforced, there is no difficulty
caused by the discontinuity of the normal component of the
electric field at dielectric interfaces.

To take into account the radiation condition by the boundary
integral on the cylindrical surface , for each intersection
of a covariant-projection volume element with the surface

, we have defined an eight-node, isoparametric, covariant-
projection surface element of mixed order. Each surface ele-
ment has a local coordinate system that is not necessarily
orthogonal, but nevertheless can be used to define unitary vec-
tors at each point [17]. After calculating the covariant
components one can get the vector tangential to the
cylindrical surface by using the reciprocal vectors

(31)

The trial functions for are mixed-order; that is, each
trial function for is a polynomial of order two in but
order one in , and similarly of order one in and two in
for the other component.

Since we have chosen the vector weighting functionto be
selected from the vector interpolation functions representing
the electric field , all the integrals (14), (16), (23)–(26)
involved in (22) are of the same form, namely,

with (32)

where can be either or or or depend-
ing on integral under examination. Expressing the covariant
components of the electric field or of the vector
weighting function , tangential to the cylindrical
surface , by means of the integral (32) can be
rewritten as

with (33)

where are metrical coefficients. This allows
us to carry out easily and efficiently the integration on each
surface element numerically, using a 25-point Gaussian
quadrature method.

A sparse-matrix conjugate gradient solver has been em-
ployed to solve the final finite-element matrix equation, which
is sparse, complex, and asymmetric.

The same covariant-projection surface elements of mixed
order have been employed to evaluate the coefficients
and after the electric field on the surface has been
found.

As previously mentioned, available measured or computed
data is rather scarce, and as a consequence we are forced to

rely on limited number of test cases in order to validate this
work.

The first validation attempt relied upon a power conserva-
tion test. In this way, we have verified that when the materials
involved are lossless, the net power flow from the unit cell
is zero.

The power dissipated in the basic cell can be derived
from the knowledge of the scattering coefficients and of the
amplitude of the incident plane wave , supposed to be real,
as

total power dissipated (34)

where

(35a)

(35b)

and for TE incidence or for TM incidence.
It might be assumed that one can look at the numerically

evaluated power dissipated in the lossless structure also in
order to estimate the error introduced by a less than optimum
mesh or perhaps to investigate the tolerance set for the
conjugate gradient solver. However, we have established that
this quantity may nevertheless give us a very small net power
dissipation even when an inappropriate choice of either mesh
or tolerance is made, making the latter difficult to identify.
Now, the term , appearing in (34), is related to only the
components of the scattered field while is the mutual
interaction term of the incident and scattered field components.
Furthermore, these two terms are related to the real part of the
equivalent blockage width [7] as

(36)

and, therefore, they are also related to the real part of the
induced field ratio IFR [2] being , where

is the width of the cylinder orthogonal to the plane of
incidence.

If the structure is lossless, for any numerical result, the two
terms and provide two different estimates of the same
quantity and their relative error can indicate the uncertainty in
the evaluation of the equivalent blockage width.

Although the power consevation test is very useful to check
whether the program code works correctly or not, it is a
necessary but not sufficient test if we want to investigate
the suitability of the mesh or the accuracy of the conjugate
gradient solver solution [18].

The convergence of the method has been tested by analyzing
simple structures for which an analytical solution is known. In
particular, we have studied the scattering from cylinders which
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Fig. 3. Co-polar (upper curves) and cross-polar (lower curves) scattering
width for a plane wave, with TMz polarization, impinging at an angle
�
i = 85� (a1 = 0:4�0; a2 = 0:5�0;Dz = 0:3�0; d = 0:2�0).

FEM solution (solid symbols), mode matching solution (continuous line),
method-of-moment solution (dashed line).

are uniform in the -direction and made up from concentric
dielectric layers of circular cross section. Such a cylinder can
be considered as a periodic structure with arbitrary period
In all the simulations the evaluated scattering coefficients
and agreed with the analytical ones up to the fourth
decimal digit when we have employed elements with largest
side smaller than one third of the wavelength in the material
considered. Furthermore, we have analyzed an infinitely long
cylinder of circular cross section periodically loaded with by
infinitely thin metallic annular rings. A good agreement for the
results of our finite-element solution and an analytical solution
has been reported already for this somewhat idealized structure
[11]. Results for more practical structures are now reported
below.

Fig. 3 shows the co-polar (upper curves) and cross-polar
(lower curves) scattering width (two-dimensional RCS) for a
plane wave, with TM polarization, impinging at an angle

on a circular conducting cylinder of radius
loaded with conducting disks of radius

The periodicity of the structure is and the spacing
between discs is In the figure, the solution obtained
from our FEM code (solid symbols) is compared with that
evaluated from a mode-matching method (continuous line)
described in [10] and a method-of-moment solution (dashed
line) [19]. The agreement can also be considered good for the
cross-polar component because of the very low value of the
scattering width.

Additionally, we have considered the scattering of a dielec-
tric circular cylinder of radius mm loaded
with metallic bands having width of 3 mm and a periodicity

mm, as sketched in Fig. 4.
Fig. 5 shows the real part of the equivalent blockage

width in the range from 7 to 13 GHz when a plane wave
impinges on the cylinder at an angle In particular,

Fig. 4. Geometry of the structure relatives to the results in Figs. 5 and 6.

Fig. 5. Real part of the equivalent blockage width versus frequency for
a plane wave impinging at an angle�i = 60� for both TMz and TEz
polarizations: FEM solution (solid line), measurements shown in [20] (dotted
line).

the results of our analysis (solid line),1 for both TM and
TE polarizations, are compared with the measurements
(dotted line) shown in [20].

It is worth noting that in the TE case, a discontinuity is
present close to 10 GHz in both the experimental and the
numerical results. This frequency coincides with the cutoff
frequency of the TE mode of a metallic circular waveguide
filled with the same dielectric as the strip-loaded cylinder. This
behavior is more evident in Fig. 6, which shows the real part of
the equivalent blockage width for a case where the plane wave
impinges orthogonally on the structure of Fig. 4. In particular,
the three discontinuities present in the curve at about 7.8,
9.6, and 10.8 GHz can be related to the cutoff frequency of
the mode TE GHz), TE GHz),
TE GHz), respectively. On the other hand,
no form of discontinuity has been observed for the TMcase
even where TM modes can propagate in the equivalent metallic
circular waveguide in the frequency range analyzed in Figs. 5
and 6. The TE-plane wave incident orthogonally upon the
“cage structure” circular waveguide of Fig. 4 has a-directed
magnetic field which evidently couples to the longitudinal-

1Note that in Figs. 5, 6, 8, and 9, dots are added to the lines representing
finite-element solutions purely for clarity in distinguishing the latter from the
experimental measurements. The frequency step employed was 0.1 GHz (and
where necessary, even smaller).
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Fig. 6. Real part of the equivalent blockage width versus frequency for
a plane wave impinging at an angle�i = 90

� for both TMz and TEz
polarizations: FEM solution (solid line), measurements (dotted line).

Fig. 7. Geometry of the structure analyzed in Figs. 8 and 9.

component of the magnetic field existing inside the waveguide
at the walls for TE waveguide modes, particularly at the cutoff
frequencies. However, the orthogonally incident TM-plane
wave substitutes instead a-directed electric field whereas the
corresponding -directed electric fields for the TM waveguide
modes of course vanish at the waveguide walls, so in this
instance there is minimal coupling. Thus discontinuities in
the TM blockage width curve at the equivalent circular
waveguide TM cutoff frequencies are not expected.

In Fig. 7, a more complex strut which can be used for dual
polarization is shown. In particular, it consists of a dielectric
cylinder periodically loaded with metallic strips
across the strut. The strips cover the front and the back sides of
the outer dielectric coating, but do not cover the apertures of
the parallel-plate waveguide constituted by the interior metallic
sheets.

Figs. 8 and 9 show the real part of the equivalent block-
age width versus frequency for incident plane waves having
TE and TM polarization, respectively. The plane wave
is supposed propagating along the negative direction of the

-axis and impinging orthogonally on the shorter side of
the rectangular cross-section cylinder. For both cases, the
equivalent blockage width obtained with the proposed FE
method (solid line) is compared with the measured data
reported in [7] (dotted line) and an approximate solution also
reported in [7] (dashed line).

Fig. 8. Real part of the equivalent blockage width versus frequency for an
orthogonally incident plane wave having TEz polarization: FEM solution
(solid line), measurements (dotted line) [7], approximate solution (dashed
line) [7].

Fig. 9. Real part of the equivalent blockage width versus frequency for an
orthogonally incident plane wave having TMz polarization: FEM solution
(solid line), measurements (dotted line) [7], approximate solution (dashed
line) [7].

Although some discrepancies between calculated and mea-
sured equivalent blockage width can be observed, mainly due
to the tolerances in the manufacturing of the strut as stated in
[7], it is worth noting that the two discontinuities appearing
in the measurements for the TEpolarization (Fig. 8), close
to 11 and 13.2 GHz, can be reproduced by the proposed
method, even if with a little frequency shift. Accordingly, these
discontinuities are not measurement errors but can be related
to modes TE GHz) and TE GHz)
in the rectangular waveguides, of dimensions 425 mm,
each formed by the metallic strips and one of the two parallel
plates.

To confirm that these discontinuities relate to a guidance
effect we have further analyzed a structure similar to Fig. 7
but now with the space contained by each metallic strip and the
sheet of copper filled with a perfect electric conductor. Thus,
this new structure prevents any longitudinal propagation of
the field in the two lateral parts. Fig. 10 shows the real part of
the simulated equivalent blockage width versus frequency for
a TE polarized plane wave orthogonally incident upon the
new strut geometry (solid line) compared with the previous
results for the geometry of Fig. 7 (dashed line). It may be
noted that for the actual geometry the discontinuities disappear,
as expected, and for the remaining frequencies only a slight
difference between the two curves can be observed.
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Fig. 10. Real part of the equivalent blockage width versus frequency for an
orthogonally incident plane wave having TEz polarization: FEM solution for
the same structure as Fig. 7 but having the space contained by each metallic
strip and the sheet of copper filled with perfect electric conductor (solid line),
FEM solution for the strut of Fig. 7 (dashed line).

IV. CONCLUSIONS

A finite element/boundary element formulation has been
worked out to apply to the scattering of a plane wave incident
generally upon an arbitrary strut which is spatially periodic in
the longitudinal direction. The inhomogeneous region consti-
tuting the strut and its immediate surroundings is modeled
by applying the finite-element method to a circular cylin-
drical unit cell discretized into Crowley–Silvester curvilinear
hexahedral covariant projection vector finite elements. The
surface integrals to be associated with such a formulation
cancel over the two periodic ends of the cell, while the
corresponding integral over the curved side-boundary is made
compatible with an infinite series of cylindrical harmonics
representing the incident plane wave and the resulting scattered
Floquet harmonics. Requiring the tangential components of
both electric and magnetic field to be continuous through the
circular cylindrical cell boundary results in the amplitudes of
the Floquet harmonics to be determined.

The hybrid finite element/boundary element code resulting
from this formulation has been verified in a number of different
ways. A procedure testing that the incident wave and the
set of scattered waves are together consistent with the rules
of power conservation has been applied and found useful
during program development. However, it should be noted that
the confirmation of power conservation relating to any given
numerical simulation is only a necessary, but not sufficient,
condition that the solution should accurately represent the
physical situation being modeled. For instance, with a grossly
coarse discretization or an inadeqate convergence of the con-
jugate gradient solver, the power conservation test may still
record an apparently satisfactory result. At the next level, it
was verified that the code reproduced known analytical results
for the scattering of waves from axially uniform, layered
cylindrical cylinders and from a circular conducting cylinder
periodically loaded with infinitely thin annular rings. For the
axially uniform rod this was done on the basis that such a rod
may be considered to repeat with arbitrary spatial “periodicity”
and analyzed as such.

For further verification of the code it was necessary to check
against experimental results carried out and published by other
workers. This was done satisfactorily for a corrugated circular

conducting cylinder and for a dielectric rod periodically loaded
with metallic bands. Finally, a much more complex structure
of rectangular cross section was analyzed. This was essentially
a dielectric-spaced strip line but with the strip conductors
coated on the outside with the same dielectric, that coating
further being periodically loaded with metallic strips without
short-circuiting the transmission line. In this case, bearing
in mind the difficulties both in accurately fabricating such
a structure and in carrying out the scattering measurements,
the agreement obtained between the computed and practical
results was considered to be acceptable.
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