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Hybrid Finite-Element Analysis of
Electromagnetic Plane Wave Scattering
from Axially Periodic Cylindrical Structures
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Abstract—n many antenna systems the primary feed or the
subreflector will most often be supported by struts which obstruct
the aperture and therefore cause a reduction in the directivity
and an increase in sidelobe levels. So as to be able to design
new structures which avoid these drawbacks, the problem of
plane wave scattering from an infinite axially periodic cylinder
of arbitrary geometric and material parameters is analyzed in
this paper by a hybrid finite element/boundary element method.
Covariant-projection edge elements are employed in the inhomo-
geneous region of the unit cell and the scattered field is expanded
in terms of cylindrical Floquet harmonics. The resulting prac-
tical numerical procedure has been tested to ensure that power
conservation rules are obeyed and checked satisfactorily against
both analytical results and measurements on periodically loaded Fig. 1. Geometry of the problem.
struts.
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In this paper, a hybrid technique which utilizes a finite
element/boundary element method (FEM-BEM) is presented
to analyze the scattering of an electromagnetic plane wave
obliquely incident upon an axially periodic cylinder of arbi-

. INTRODUCTION trary geometric and material parameters. This provides a useful

N antenna systems there are many situations where tﬁ@' for the study of new struts and masts. In particular, the

electromagnetic waves are obstructed by a mechani€@mplex periodic structure is analyzed by using a Galerkin
structure causing an increase in the sidelobes and a reductiowighted residual finite-element method (FEM) employing
gain. This problem arises especially when compact antenfiBgee-dimensional covariant-projection elements [12]: curvi-
are designed. linear bricks which impose only tangential field continuity

The mechanical structure often consists of one or more rodad work well even when sharp metal edges are present.
(i.e., feed support struts in axisymmetric reflector antennas b€ periodicity of the structure has been properly taken into
the framework of a space frame radome), that are shaped &ggount using periodic weight functions while the radiation
loaded in such a way that the blockage is minimized. condition has been imposed through expanding the field in

The blockage effect of simple uniform cylindrical struts anéhe free space surrounding the structure in terms of cylindrical
masts of different cross sections has been widely analyZei@quet harmonics. Numerical results of different corrugated
[1]-[3]. However, in recent years new structures have beg&Huctures, for both TEand TM. polarized incident fields are
designed in order to minimize this negative effect. Thighown and validated as far as is possible.
has been done by appropiately shaping the structure and
by making it nonuniform in the axial direction in a way [l. FORMULATION

similar to that adopted to create artificially “hard” surfaces [4]. The geometry of an infinitely long cylinder having axis
The considerable improvements reported are very promisigrallel to thez-axis of the cylindrical coordinate system
[5]-{7]. . (p, ¢, z) and periodicity D, with respect to thez direction
_Due to the complexity of the problem, so far only a fews shown in Fig. 1. We assume that the surrounding medium
simple cases of a corrugated axially symmetric cylinder haye free space with permittivity:, and permeabilityyo. The

Index Terms—Boundary element method, cylinder, electromag-
netic scattering by periodic structure, finite-element method.

been studied [8]-[11]. direction of the incident plane wave makes an arfijlevith
the positivez-axis and is parallel to thez-plane. A harmonic
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3 x 5 while ko = w./éopo IS the propagation constant of free space.
Region 1 ‘+ B iy, Furthermore,
& } - ]
P - Prn(@, 2) = exp (jme) exp (jk=, 2) (6)
and
D == ! i H(Q) k for k2> k2
: Region 2 Byn(p) = 4 1 (Fonp) TR = 0 @)
S, ; Km(|k/7n P); for k(% < kgn

whereH,(,f) and KX,,, are the Hankel function and the modified
Bessel function of the second kind, respectively, @d,(p)

Fig. 2. Unit periodic cell indicates the derivative of these functions with respect to

atr?g argumentk, p. The choice of two different forms for
e R...(p) function corresponds to the physics of the wave

harmonics, either propagating or evanescent, and allows an

. . . . easier and more efficient numerical evaluation of the solution.
regions (Fig. 2). Region 1 extends to envelope the periodi

structure and is delimited by a circular cylindrical surfac In Region 1, we need to solve the wave equation subject
. -d Dy I cylind fo appropriate boundary conditions. In particular these are the
S. of radius p. concentric with thez-axis. Region 2 con-

S . S ontinuity of the tangential components of the electric and
sists just of free space surrounding the periodic structure.ﬁp y g b

. ) X agnetic field on surfacé. and the periodicity of the field
Region 1 we solve the electromagnetic problem applylngasong the z direction. To solve the wave equation, a finite-

GaIerkln_we|ght§d r§3|dual finite element fprmulanop, basee ement procedure is applied which uses weighted residuals.
on covariant-projection vector elements, while in Region 2 t

field is represented in terms of a double series of cylindric Pr the specific cor_1f|gurat|on, the weak form of the wave
. gquatlon can be written as [14]
Floquet harmonics.
Since the medium that surrounds the corrugated cylinder is
homogeneous, we can express the fields in terms of transverse / {(V

is necessary to determine the scattered field only in a b
period —D./2 < 2z < D_/2.
In particular, we can partition each basic period into tw

X

- 1 ., - _,
W) - <—v X E) — kW - e,,E} dv
LL,

electric and transverse magnetic potentials. Each of these two . 71 .

potentials must satisfy the Helmholtz equation, in scalar form, - / <W X —V X E) - 2dS

subject to the periodic boundary conditions. This equation Su piw

can easily be solved using the standard method of separation +/ <Vf/ > iv X E) .3dS

of variables with application of the periodicity conditions as St o

similarly described in [13]. Taking into account the different + jwpio W (ﬁ x p)dS =0 )

form of the separated differential equations for propagating s
and evanescent modes, the components of the scattered field

tangential to the cylindrical surfacg. can be expressed as whereW is the vector weighting function while, as shown in
Fig. 2, Sy and S, are the upper and the lower plane surfaces

o

2 _ Z Z Bpon(h, 2) of Region 1, respectively, gnfzr_ is the volume enclosed by
E? M 0 T o0 these surfaces and the cylindrical surféte
jwpo ., —mk,_ B The Floquet theorem can be used as a constraint applied
Tk mn(P) k2 mn(p) [anln] to the boundaries of a single periodic unit cell, which can
" oT™ thus be employed to provide the complete solution of the
0 R (p) " infinite periodic structure. The vector weighting functigh is
(1) chosen from the same field interpolation polynomials as used
H; G to represent the field vectdt. Without loss of generality}V
H* - Z Z Lonn(,2) may be assumed to be periodic with a constant phase term
# mTTeen=Tee . equal to the conjugate of Floguet's constant phase term [15]
e Rnl) 2R ()] [alE
pink?, Mk, " l ;ﬁ] W(z+ D.) = W(z)exp (—jkoD. cos 6"). (9)
ann(p) 0 arnn

@) The advantage of choosing a weighting function of such form
is that the integrals on the surfac8s and S, required from
where «TE and ¢ are unknown transverse electric and8) over any pair of periodic boundaries cancel each other

mn mn

magnetic constants, respectively, and out. Thus, only the periodic boundary condition needs to be
imposed in the final matrix equation in order to completely
. 2nm . L .
k., =kocost" + N (3) take into account the contribution of surface integrals along
) ) ) # periodic boundaries [16].
k., =Ikg = k2, (4) The continuity of transverse field components through the

e =sign (k3 — k2 ) (5) surface S. now has to be imposed. We can express the

477.
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boundary integral on the cylindrical surfasg which appears E. = 0) incident plane wave, of amplitudg,, we have
in (8) in terms of scattering and incident magnetic fields as

) o o R IE:,, :‘jEOZWpchjm']r/n(kpopc)6n0 (20)
Is, :jwuo/SCW-(pr)dS I =0 1)

where.J!, is the derivative of the Bessel function of first kind

‘ ‘ with respect to this argument.

where H and H; express the transverse components of the Now, using (12) and (13) in (11), we can express the
incident magnetic field on the cylindrical surfagg. By using boundary integral on the cylindrical surfade as

(2) we can also rewrite the integral (10) in terms of the

unknown coefficients:*Z and o™ as ) jw
mn mn ISC :jw//LO( IVI/’J') _ IVV;') + Jwho

—ono [ {Wa(H: +HE) = W(H] + H)}dS (10
Se

‘ ‘ 2mp.D.
Is, ijuo/ (WygH. — W_H})dS 00 00
5 oo oo ’ Z Z {(AmnIEf, - anIEi)IW’qr,
. TE M=—00 N=—00
+Jwho Z Z a"mR"m(pc) - (anIEﬁ) + OmnIFji)IVV;}
mk. JWNO
. 1% (I)rnn - WZ(I)rnn as +
/sc < B ok, ) 2mpeDs
— — ag}g N Arnn-[ ; _Brnn-[ I o
55 % B L3 (Gt =B
m=—oon=—oc ' Fn
- (BrnnIEqr, + CrnnIE;)IVV;} (22)
. / W@, dS. (11)
S.
where
Furthermore, considering the orthogonality of the functions
D, (0, 2), we can express the unknown transverse electric I, = / Wy dS (23)
and magnetic coefficients in terms of the unknown transverse “ S.
electric field on the surfacé,. as ;
. . IW;,‘, = Wy H. dS (24)
TE — __jkpn ann(pc) Se
mn 27TpCDZWLL0 IVV: == / qu)rnn ds (25)
mk,, Se
e, —Igi )+ 8 e, —1g:)| (12) 4
“ Pelip, Iy = / W.H; dS (26)
1 _ Bon(pe S.
g = &(I r. —Ig:) (13)
2mp.D.. =
and
where L (00)
.7771, P, an,n pc
App =—j— "2 27
IE@, = / E¢(1>;kn,n as (14) / J WNOR;nn(pc) ( )
S
‘ . mk’/ ann(pc)
4 B, =+1 Zn 28
Ip = / EL®7,, dS (15) + witopekp, Rln(pe) (28)
¢ S. 9
. Weg R (pc) < mkz ) ann(pc)
= _®* Crnn =-J di - - . (29)
IE; /S(‘ E4¢’nln dS (16) nﬂ/k/?n R'rn'n,(pc) kopckpn R'/rn'n(p(’)
I = /S By ds. (17) It is worth noting that for TM polarization the term appearing
- in (22)
If we consider a TM (i.e., H. = 0) incident plane wave,
of amplitude E,, the integrals (15) and (17) can be solved (AmnIEf,) — Bunlp) =0 (30)

analytically by employing a well-known addition theorem for

Bessel functions, giving tor each value ofn andn

o 2mrDy Substituting (22) into the weak form of the wave equation
Tr; = —Eocost ipo 37" Ik pe)omo (18) (8) we can solve for the total electric field within Region 1.
I = Eosin02mp.D.5™ T (K py pe) o (19) Furthermore, it is sufficient to substitute the electric field on
- the surfaceS, thus determined into (12) and (13) to evaluate

whereé;; is the Kroneker delta function ang,, is the Bessel the coefficients:,” anda!M and then, through (1) and (2),

function of the first kind of ordem. Similarly, for a TE. (i.e., the scattered field.
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lll. NUMERICAL IMPLEMENTATION AND RESULTS rely on limited number of test cases in order to validate this

In order to apply the finite-element formulation in théVork. o ,
inhomogeous region (i.e., Region 1), we have implemente_dThe first validation attempt relied upon a power conserva-

a computer program which employs three-dimensional otion test. In this way, we have verified that when the materials
node, isoparametric, Crowley—Silvester covariant-projectidfivlved are lossless, the net power flow from the unit cell

elements of mixed order as described in [14]. This choidg Z€0:

prevents spurious modes and allows a better modeling of! '€ power dissipated in the basic cell can be derived
singularities due to sharp metallic edges. Furthermore, sifé@M the knowledge of the scattering coefficients and of the

only tangential continuity is enforced, there is no difficuly?MPlitude of the incident plane wavg,, supposed to be real,
caused by the discontinuity of the normal component of tf&

electric field at dielectric interfaces. 1 S ey a
To take into account the radiation condition by the boundary?2 %{j’i (Ex H")- pdS}
integral on the cylindrical surfacé., for each intersection C_ —P,, — P,; = total power dissipated (34)

of a covariant-projection volume element with the surface
S., we have defined an eight-node, isoparametric, covariamthere

projection surface element of mixed order. Each surface ele- o0 00

ment has a local coordinate systémw) that is not necessarily p,, =2D. Z Z %(wuomfﬁl 2+ weolaM)?)
orthogonal, but nevertheless can be used to define unitary vec- M=—00 n=n, >0—o00 ' Pn

torsd,, d,, at each point [17]. After calcglating the covariant >0 (35a)
components,,, £, one can get the vectdr, tangential to the Ey &

AN 227 k V.
cylindrical surfaces, by using the reciprocal vectors*,@*  P.; =2D.-— > §R6{(—‘7) XW—LG%I

Ey, = B, "+ E,d". (31)
o | | HEpm- k) @)
The trial functions forE,,, F,, are mixed-order; that is, each
trial function for £, is a polynomial of order two in; but andy = 0 for TE. incidence ory = 1 for TM. incidence.
order one inu, and similarly of order one im and two inu It might be assumed that one can look at the numerically
for the other component. o . evaluated power dissipated in the lossless structure also in
Since we have chosen the vector weighting functioiio be o qer 1o estimate the error introduced by a less than optimum
selected from theﬂvector interpolation functions representifgasy or perhaps to investigate the tolerance set for the
the electric fieldZ, all the integrals (14), (16), (23)~(26)conjugate gradient solver. However, we have established that
involved in (22) are of the same form, namely, this quantity may nevertheless give us a very small net power
. dissipation even when an inappropriate choice of either mesh
/S Fi(¢, 2)h(¢,z)dS,  withi=¢,z (32)  or tolerance is made, making the latter difficult to identify.
° Now, the termP,,, appearing in (34), is related to only the
whereh(¢, z) can be eitheH’ or H), or ®,,,,, or ®},,, depend- components of the scattered field whil,; is the mutual
ing on integral under examinatign. E)ipressing the covariainteraction term of the incident and scattered field components.
components of the electric fieldf' = E,) or of the vector Furthermore, these two terms are related to the real part of the
weighting function(ﬁ = Wt), tangential to the cylindrical equivalent blockage widthV., [7] as
surface S., by means off,, f,, the integral (32) can be

rewritten as P,,=-P,; = Ko D | Eol*Re{Weq} (36)
Who
N o 2
/S [ful@" 1) + fu(@7 - D), 2)\/ 911922 — 912 du dv, and, therefore, they are also related to the real part of the

withi = ¢, 2 (33) indgced fieI(_JI ratio IFR [2]_being/Veq = —W - IFR, where
W is the width of the cylinder orthogonal to the plane of

where g;; = d; - @; are metrical coefficients. This allowsincidence.
us to carry out easily and efficiently the integration on each If the structure is lossless, for any numerical result, the two
surface element numerically, using a 25-pdifik 5)Gaussian termsP;; and P,; provide two different estimates of the same
guadrature method. guantity and their relative error can indicate the uncertainty in

A sparse-matrix conjugate gradient solver has been ethe evaluation of the equivalent blockage width.
ployed to solve the final finite-element matrix equation, which Although the power consevation test is very useful to check
is sparse, complex, and asymmetric. whether the program code works correctly or not, it is a

The same covariant-projection surface elements of mixedcessary but not sufficient test if we want to investigate
order have been employed to evaluate the coefficiefifs the suitability of the mesh or the accuracy of the conjugate
and oM after the electric field on the surface has been gradient solver solution [18].
found. The convergence of the method has been tested by analyzing

As previously mentioned, available measured or computseumple structures for which an analytical solution is known. In
data is rather scarce, and as a consequence we are forcepatticular, we have studied the scattering from cylinders which
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Fig. 4. Geometry of the structure relatives to the results in Figs. 5 and 6.
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Fig. 3. Co-polar (upper curves) and cross-polar (lower curves) scattering 50_3
width for a plane wave, with TM polarization, impinging at an angle - :
6" = 85° (a1 = 0.4Xo,az = 0.3X0,D. = 0.3Xo,d = 0.2X0). g 40
FEM solution (solid symbols), mode matching solution (continuous line), = ]
method-of-moment solution (dashed line). ”;)t 304
C.
. . . . . e 20_: \\ voR

are uniform in thez-direction and made up from concentric ]
dielectric layers of circular cross section. Such a cylinder can 103
be considered as a periodic structure with arbitrary pefd ]

In all the simulations the evaluated scattering coefficief}fs O AR LAY RALRS RARAN RAARN RARA

7 8 9 10 11 12 13

TM H i
and a,,;, agreed with the analytical ones up to the fourth Frequency (GHz)

decimal digit when we have employed elements with largest

side smaller than one third of the wavelength in the materigip- 5. Real part of the equivalent blockage width versus frequency for
id d. Furth h | d infinitelv | adJlane wave impinging at an angé = 60° for both TM. and TE
considered. Furthermore, we have analyzed an infinitely OB arizations: FEM solution (solid line), measurements shown in [20] (dotted

cylinder of circular cross section periodically loaded with byne).
infinitely thin metallic annular rings. A good agreement for the

results of our finite-element solution and an analytical solutiQfe results of our analysis (solid link)for both TM. and
has been reported already for this somewhat idealized structytfe polarizations, are compared with the measurements
[11]. Results for more practical structures are now reporte(‘gotted line) shown in [20].
below. It is worth noting that in the TE case, a discontinuity is
Fig. 3 shows the co-polar (upper curves) and cross-polgfesent close to 10 GHz in both the experimental and the
(lower curves) scattering width (two-dimensional RCS) for aumerical results. This frequency coincides with the cutoff
plane wave, with TM polarization, impinging at an anglefrequency of the Tl mode of a metallic circular waveguide
§" = 85° on a circular conducting cylinder of radiug = filled with the same dielectric as the strip-loaded cylinder. This
0.4 loaded with conducting disks of radius = 0.5)g. behavior is more evident in Fig. 6, which shows the real part of
The periodicity of the structure B, = 0.3\, and the spacing the equivalent blockage width for a case where the plane wave
between discs ig = 0.2)¢. In the figure, the solution obtainedimpinges orthogonally on the structure of Fig. 4. In particular,
from our FEM code (solid symbols) is compared with thahe three discontinuities present in tii& . curve at about 7.8,
evaluated from a mode-matching method (continuous in8)6, and 10.8 GHz can be related to the cutoff frequency of
described in [10] and a method-of-moment solution (dash&te mode Tk (f. = 7.92 GHz), TEy: (f. = 9.94 GHz),
line) [19]. The agreement can also be considered good for thes1 (fe = 10.89 GHz), respectively. On the other hand,
cross-polar component because of the very low value of tA@ form of discontinuity has been observed for the -Téase
scattering width. even where TM modes can propagate in the equivalent metallic
Additionally, we have considered the scattering of a diele€ircular waveguide in the frequency range analyzed in Figs. 5
tric circular cylinder(c, = 2.1) of radiusa = 12.7 mm loaded 2Nd 6. The TE-plane wave incident orthogonally upon the
with metallic bands having width of 3 mm and a periodicityCage s?rutl:ture c[rcular_wavegwde of Fig. 4 has-d_wec'ted
D. = 8 mm, as sketched in Fig. 4. magnetic field which evidently couples to the longitudinal
Fig. 5 shows the real part of the equivalent blockagf_e.lNOte that in Figs. 5, 6, 8, and 9, dots are added to the lines representing
width in the range from 7 to 13 GHz when a plane wav nite-element solutions purely for clarity in distinguishing the latter from the

. . . . " perimental measurements. The frequency step employed was 0.1 GHz (and
impinges on the cylinder at an anglé = 60°. In particular, where necessary, even smaller).
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Fig. 6. Real part of the equivalent blockage width versus frequency for
a plane wave impinging at an angé = 90° for both TM, and TE
polarizations: FEM solution (solid line), measurements (dotted line).
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141 mm Fig. 9. Real part of the equivalent blockage width versus frequency for an
4 mm orthogonally incident plane wave having TMpolarization: FEM solution
(solid line), measurements (dotted line) [7], approximate solution (dashed
Fig. 7. Geometry of the structure analyzed in Figs. 8 and 9. line) [7].

component of the magnetic field existing inside the waveguide
at the walls for TE waveguide modes, particularly at the cutoff Although some discrepancies between calculated and mea-
frequencies. However, the orthogonally incident JFMane sured equivalent blockage width can be observed, mainly due
wave substitutes insteadzadirected electric field whereas theto the tolerances in the manufacturing of the strut as stated in
corresponding-directed electric fields for the TM waveguide[7], it is worth noting that the two discontinuities appearing
modes of course vanish at the waveguide walls, so in thisthe measurements for the Tolarization (Fig. 8), close
instance there is minimal coupling. Thus discontinuities ito 11 and 13.2 GHz, can be reproduced by the proposed
the TM. blockage width curve at the equivalent circulamethod, even if with a little frequency shift. Accordingly, these
waveguide TM cutoff frequencies are not expected. discontinuities are not measurement errors but can be related
In Fig. 7, a more complex strut which can be used for dutd modes Tk, (f. = 11.2 GHz) and Tk (f. = 13.45 GHz)
polarization is shown. In particular, it consists of a dielectrim the rectangular waveguides, of dimensions ¥25 mm,
cylinder (¢, = 2.54) periodically loaded with metallic strips each formed by the metallic strips and one of the two parallel
across the strut. The strips cover the front and the back sideplaftes.
the outer dielectric coating, but do not cover the apertures ofTo confirm that these discontinuities relate to a guidance
the parallel-plate waveguide constituted by the interior metallfect we have further analyzed a structure similar to Fig. 7
sheets. but now with the space contained by each metallic strip and the
Figs. 8 and 9 show the real part of the equivalent blockheet of copper filled with a perfect electric conductor. Thus,
age width versus frequency for incident plane waves havitigis new structure prevents any longitudinal propagation of
TE. and TM, polarization, respectively. The plane wavehe field in the two lateral parts. Fig. 10 shows the real part of
is supposed propagating along the negative direction of tthe simulated equivalent blockage width versus frequency for
z-axis and impinging orthogonally on the shorter side & TE. polarized plane wave orthogonally incident upon the
the rectangular cross-section cylinder. For both cases, t@wv strut geometry (solid line) compared with the previous
equivalent blockage width obtained with the proposed HFesults for the geometry of Fig. 7 (dashed line). It may be
method (solid line) is compared with the measured dateted that for the actual geometry the discontinuities disappear,
reported in [7] (dotted line) and an approximate solution alss expected, and for the remaining frequencies only a slight
reported in [7] (dashed line). difference between the two curves can be observed.
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conducting cylinder and for a dielectric rod periodically loaded

1 with metallic bands. Finally, a much more complex structure
- of rectangular cross section was analyzed. This was essentially
a dielectric-spaced strip line but with the strip conductors
coated on the outside with the same dielectric, that coating
further being periodically loaded with metallic strips without
short-circuiting the transmission line. In this case, bearing
in mind the difficulties both in accurately fabricating such

a structure and in carrying out the scattering measurements,
the agreement obtained between the computed and practical
results was considered to be acceptable.

Fig. 10. Real part of the equivalent blockage width versus frequency for an
orthogonally incident plane wave having TBolarization: FEM solution for

the same structure as Fig. 7 but having the space contained by each metallic

strip and the sheet of copper filled with perfect electric conductor (solid line),
FEM solution for the strut of Fig. 7 (dashed line).
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IV. CONCLUSIONS

worked out to apply to the scattering of a plane wave incident
generally upon an arbitrary strut which is spatially periodic in
the longitudinal direction. The inhomogeneous region consti-
tuting the strut and its immediate surroundings is modeled
by applying the finite-element method to a circular cylin-[l]
drical unit cell discretized into Crowley—Silvester curvilinear [2]
hexahedral covariant projection vector finite elements. The
surface integrals to be associated with such a formulation
cancel over the two periodic ends of the cell, while thefs]
corresponding integral over the curved side-boundary is made
compatible with an infinite series of cylindrical harmonics
representing the incident plane wave and the resulting scattergd
Floguet harmonics. Requiring the tangential components g]
both electric and magnetic field to be continuous through th
circular cylindrical cell boundary results in the amplitudes of
the Floquet harmonics to be determined.

The hybrid finite element/boundary element code resulting
from this formulation has been verified in a number of different?]
ways. A procedure testing that the incident wave and the
set of scattered waves are together consistent with the rulesg
of power conservation has been applied and found useful
during program development. However, it should be noted thag,
the confirmation of power conservation relating to any given
numerical simulation is only a necessary, but not suﬁicier}tm]
condition that the solution should accurately represent the
physical situation being modeled. For instance, with a grossl
coarse discretization or an inadeqate convergence of the CB>T/]I-
jugate gradient solver, the power conservation test may still
record an apparently satisfactory result. At the next level, [#2]
was verified that the code reproduced known analytical results
for the scattering of waves from axially uniform, layered13]
cylindrical cylinders and from a circular conducting cylinder
periodically loaded with infinitely thin annular rings. For thei4
axially uniform rod this was done on the basis that such a rod
may be considered to repeat with arbitrary spatial “periodicitﬂ'w]
and analyzed as such. [16]

For further verification of the code it was necessary to check
against experimental results carried out and published by otl?p;r
workers. This was done satisfactorily for a corrugated circular
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