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Accuracy and Stability Improvements of
Integral Equation Models Using the Partial
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Abstract—The partial element equivalent circuit (PEEC) tech- obtained using a circuit-solver program. The basic PEEC
nique is a formulation which transforms an electric field integral  formulation has recently been extended to include incident
equation (EFIE) into a full-wave equivalent circuit solution. In fields or scattering [5], dielectrics [6], lossy dielectrics [7],

this paper, improvements are made to the PEEC model through o .
the development of a refined method of computing both the and the use of the modified nodal analysis (MNA) as well as

partial inductances as well as the coefficients of potential. The the modified loop analysis (MLA) formulation in [8].

method does not increase the number of unknowns. In addition, ~ The applicability of the PEEC model to both time- and
damping is added to the PEEC model in order to further frequency-domain problems is very useful. Very often, addi-
reduce nonphysical resonances which may occur above the Usefmtional insight can be gained from the analysis of a problem

frequency range. The observations and solutions presented in . . . ; .
this paper are especially important for time domain solvers. The in both domains. Simple PEEC models which do not involve

effectiveness of the method is illustrated with several examples. delays can be applied to both domains using a conventional
circuit solver like Spice [9] or ASTAP [10]. In this paper,
we are restricting ourselves to the frequency-domain analysis.
However, we are using the frequency results for the time-
domain stability analysis, which, to date, has not been solved
. INTRODUCTION for general problems. Instabilities for the time-domain integral

HE demand for electromagnetic (EM) modeling hagquation formulations for EM problems have been observed

increased considerably in the last few years. For examphy, many authors where some of the earlier work is given
the modeling of electronic systems for electromagnetic corit [11]-[14]. Many different techniques have been suggested
patibility (EMC) [1] and electrical interconnect and packagel® overcome these instabilities. In particular, [15] uses a
(EIP) require efficient solution techniques for large probleng9njugate gradient method, [16] uses a filtering technique,
which can accommodate a wide range of geometries. Thé4i$l [17] uses the matrix pencil technique to eliminate late
modeling tools should be applicable to both radiation &4ne instabilities. While all of these techniques help eliminate
well as scattering problems. An example of a scattering 8@me of stability problems for specific cases, some sources of
incident field problem for electronic systems is the radiatd@stabilities remain.
electromagnetic susceptibility to radio and television signals. In this work, we are using a different approach. In a recent
These mixed EM and circuits problems are very challengif@per on stability [18], it was observed that the discretization
for electromagnetic formulations both in terms of problem siZf the continuous time EFIE leads to an unstable discrete
and complexity. system since the model may have poles in the right half

The partial element equivalent circuit (PEEC) approadiane. We know from circuit theory that the PEEC models

[2] is particularly useful for the modeling of electromagnetigvithoutdelays are passive and stable. Hence, it is evident that
problems, which include very large scale integration (VLSE€e instabilities are caused by the delays between the partial
circuits or circuit elements. Also, more insight can be gaindgductances and the coefficients of potential. Many test have
into the solution details using this approach. In the workhown that well implemented MoM and PEEC formulations
presented in this paper, we introduce several improvemeltéh delays do give very simular frequency responses in the
of the PEEC model, which increase both the accuracy and figgion of interest where the cells are chosen to be sufficiently
stability for time-domain applications. The PEEC method &mall such that the cell size is at least 20 calldlote that
based on a circuit interpretation of an electric field integrénpedance computations, like the ones we consider in this
equation (EFIE) full-wave formulation. Results similar tdgPaper, do require more cells for an accurate solution than do

a method of moments (MoM) formulation [3], [4] can beadiation problems. Throughout this paper, we call the lower
frequency range corresponding up to wavelength where all
Manuscript received October 15, 1996; revised October 16, 1997. cells are of a size-20 cellsh theaCtlvef_requen_cy range_. Also,
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for computations in the extended frequency range is tliee study of the PEEC model for frequencies up@g .. or
fact that we observed a complex resonance behavior of th@00 GHz. Some of the frequencies of oscillation in the time
models in this range. This may be totally irrelevant for domain are clearly not related by the above time step relation.
straightforward frequency analysis, but is extremely importaithe examples in the results show that the spurious resonance
for other applications like the time-domain analysis and f@an occur at rather arbitrary frequencies which are a strong
model reduction techniques. function of the discretization. Fundamentally, it is possible to
In this paper, we try to understand and to eliminate the ualiminate the spurious resonances by increasing the number of
desirable resonance behavior in #a¢endedrequency range. cells. However, this is a very undesirable approach since the
We start to formulate our approach with two observations. number of unknowns and solution time increases drastically
Observation 1: The discretized models exhibit seeminglyvith the number of cells. The stabilization technique should
random resonances in the extended frequency range, whigh increase the number of unknowns. Further, to stabilize
may correspond to frequencies that considerably exceed thell2® time-domain solution, the same technique must be appli-
cells/\ limit. These resonances or poles are a strong functi6able to the time-domain as well as to the frequency-domain
of the cell divisions of the discretization. The input portormulations.

impedance may exhibit a negative real part at these resonance$he usual retarded or delayed PEEC model with losses is
denoted as anfL,,, P, R, 7) PEEC model. However, since we

_This behavior can lead to very poor frequency responsggq|ysively consider models with delay, we simply call them
since some of these resonances or poles have a very 135g8-c_Also, for notational convenience, we call a model with
amplitudes or residues. This may lead to problems for modgl stapilization a-PEEC or a R-PEEC model. In Section I,
reduction based techniques like [19] and [17] and also f@fe derive the PEEC models for both partial inductance and
above mentioned late time instability problem. for coefficients of potential beginning with the EFIE. Then,

One of the issues we had to resolve was how we coyld section IIl, we derive the PEEC model improvements

observe these "bad” or false resonances. The analytical g0¢bgEC) and (R-PEEC). In Section IV, results are presented.
numerical eigenvalue computation method in the recent paper

[18] can only be applied to very small problems. Attempts are
in progress to compute the eigenvalues for larger problems
[20]. Here, we resort to another approach for the observationAgain, we are only interested in PEEC models which
of the unstable behavior of the model. We know from circuitivolve retardation or delays between the elements. The
theory that given a passive circuit, the input impedance mustrpose of this section is to briefly introduce an appropriate
be positive real, where a positive real function is defined integral equation formulation for such a PEEC model. Then,
[21] as follows. we define both the partial inductance and the coefficient of
Definition 1: A function F'(s) of the complex variables potential terms that are important for the PEEC improvements
is said to be positive real i#"(s) is real whens is real, in the next section.
Re[F(s)] = 0 when Re[s] = 0, and Re[F'(s)] > 0 when
Re[s] > 0. A. Integral Equation Formulation
We monitor the real part of th? mputblmpedance ofa P_EEC The electric field in free-space at a conductor can be written
modelRe[Z(s)] > 0 for frequenciess = jw > 0 to observe if ) the nondielectric case as
the terminal impedance violates this condition. Also, this is a

Il. SHORT DERIVATION OF THE PEEC MODEL

relatively simplg test_to perfor_m and we found that it giv_es us J(7) —l—jwu/ G, 7)J(7) dv’

very useful insights into stability problem as will be evident o

from the results section. One of our aims is to maintain the v NN gt B

real part of the input impedance to be positive up to as high a + 0 o G(m,m)q(r) dv’ = E(7) (1)

frequency as possible. Instabilities at very high frequencies are

much easier to contain by using an implicit time integratiowhere.J is the current density in the conductaris the charge

method, which has numerical damping like the backward Eulégnsity, and is the free-space Green’s function

method [22]. This was also confirmed by an experimental time _j8R

domain solver [23]. G(r,7) = ¢ 2
Observation 2: Rynne [12] observed that the periodof AR

the frequency of the undesirable oscillation in time-domaiphere R is given by R = |7 — 7.

solutions is in some cases related to the time Atepf = 5. The unknown quantitieg andg are assumed constant over a
We can assume that the time-integration method createsell. The geometry is discretized into small enough cells so that

very high frequency noise at this frequency. As an examplettds assumption is valid. The cell size restriction dueftg.

time step ofh, = 0.005 ns is typical for the type of problems ofalready leads to a basic discretization. A further refinement

interest. This corresponds to a frequency of 100 GHz accordiafjthe cells may be necessary where conductors are closely

to the observation. We found that the frequency of oscillati@paced. In the PEEC formulation, battand J are unknowns

may be spread over a wide range of frequencies into sevesatl are related by the continuity equati®n. J + jwg = 0.

hundred GHz for a model which may have the usual ZDhe continuity equation is enforced in the circuit solution at

cells/x at a frequency off,,.x = 20 GHz! This led us to each node in the form of Kirchoff's current law.
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X J is constant over each cell arfd = J.ac.n, whereacey is
the cross-sectional area of a cell, (3) becomes
W W
7 J ”I / G(r,7") dvy + JG:I G(r,7")dvg. (5)
; | Vgt
Y v \ /8 e 5 Now, by applying (4), the vector potential terms in (5) become
//1 2/'/ % qu / / (7,7) dve, dva
Ay v Ju
[ [
L lwﬂ / / G(r,7") dvs dugr. (6)
a B aﬁao& vgr J Ve
Fig. 1. Two-cell conductor example. From [24], the partial inductance between cellsand g is
defined as
The vector quantities are discretized into orthogonal coor- no 1 dls - dl,
dinates as/ = J, &+ J,§+ J.2. Substituting this relationship ~ LPas = 7~ o / / / /l dao dag.  (7)
a a

into (1) will result in a set of three equations that are identical

in form but differ in spatial directions, y, z. As an example, Using this definition and (2) for the Green’s function, (6) can

consider the current for the conductor shown in Fig. 1 thae rewritten as

has been discretized into two volume celland 3 and three )

surface cellsy, §,¢. jwLpaala + jwLpaglse P Res 8)
Substitution of thez component of the current into the

integral equation for a perfect electric conductor results in where the first term is the partial self _mduct_ance of t_he aell
and the second term represents the inductive coupling to cell

. . N T o « from a current in celf3 in Fig. 1. The delay between cells
0=nx <qu/b G, 7)J(7) dva andg are given by the phase terar’?fes where R, is the
center-to-center distance between celland 5. In general,

Vs

+jwu/ G(7,7)J(7) dug given n cells, the inductive coupling term is
vt n
10 . . i8R
— (7, ™)q(r') Sy jwlpili+ Y jwLpilje 9785, (9)
¢o 0% J=Lii
1 a — . .. .
5 G(7, 7 )q(r'") dSss In a similar manner, the coefficient of potential terms can
0 ~ 55/

be derived from the last three terms in (3). With the charge
10 is constant over each (3) becomes

€0 9z

G )d5<,>

on PEC v 0 s 9 = .
3) w0 07 /s G( ) dSy + = 0z Js, G(7,7)dSs

The basis and testing functions are selected corresponding L% 9 8 /

to the two types of unknowns: the current densitgnd charge o Oz s

g. Each unknown is expanded into a series of pulse-basis

functions with an unknown amplitude. Pulse functions are al®¥W. by applying (4), we get

selected for the testing functions for the Galerkin formulation

utilized in PEEC. The cell-to-cell coupling is defined with —/

respect to cell in Fig. 1 by integrating each term of the

integral equation (3) over the volume, of conductor cellx + _/

in the following manner: 9z Js,,

a

i G dv_—/ /f )dadl (4) / 7/5 ') dSc dva. (11)

where v, is the volume of the conductor cedt, a, is the The surface integral can be redefined dt(z) =

G(f, F/) dS{/ . (20)

¢!

7
o S/G( )dSy du,,

G(7,7) dSs dvg,

cross section of the celi:¢y direction) and., is the length ¢ [ G(7,7) dS. With this, each term in (11) can be rewritten

direction) andf(7) is the integrand. in terms of theF(z)

B. Partial Inductances and Coefficients of Potential Kal o Fo (%) dvg + g5 / o Fs(2) dvg
Starting with the integral equation (3), the first two terms (or €0 Ju, 92 5 vo 0

vector potential terms) will be shown to correspond to partial + . Fe(2) dvg. (12)

inductances [1], [24]. Keeping in mind that the current density €0 Ju, 07
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Each volume integral can be broken into two integrals LP 4o |_pﬁB
/U 5 F(z)dv= /a L 5, F(z)dzda. (13) : w :
The inner integral can be evaluated using a central dif'ference+ ley + le, + leg
approximation and the outer integral can be evaluated u, u, u,
a Dz Dz ) ¥ .
/ F(z)dv:/ Flzv 22— F(2-22) ) da * * *
» 0% @ 2 2 v, ch Vc3 ==
_ + _ 1| L 1 1
= [F(z+) - F(7)] | I"" - _ lpss
wherezT = z + % and similarlyz~ = » — %. With this = = =
result, (10) becomes Fig. 2. PEEC model for conductor example.
q A+ = — . - . .
f / G, 7)dSy —/ G(r 77’/)d5w'] inductance and coefficient of potential terms for both the time
O LIS Sy and the frequency domain, which improves the PEEC model
; for higher frequencies.
+ 2 / G(7t,7) dSs —/ G(7,7) dSs g q
€0 |J S, Ser
A. Improvement Techniques
+ % / G(r,7)dS, —/ G(TW')dSC]- (15)  The partial inductance and coefficient of potential terms
0L s Ser have been derived from the PEEC interpretation of the EFIE.

The definition of normalized coefficient of potential is givedNext, we develop an enhanced model which we ¢dEEC

in [2] with the Galerkin matching as for notational convenience.
1 1 1 A potential stabilization scheme for the time domain was
PPay = —— / / — dS, dSy (16) proposed in [18] using PEEC. In [18], each inductive self cell
Gaty dreo Js, M R was subdivided into two series inductances and a delay

where the total charge on cellis given byQ., = ¢,a., where Was introduced between these two inductances. It was shown

a., is the surface area of cefl. With this relationship and the analytically for a small model how the roots of the system
coefficient of potential definition in (16), each term in (15) cafPuld be moved from the right-half plane to the left-half plane

be rewritten. The delay between the general capacitivecellPY the proper assignment of. In this scheme, the delays were
and cellsy, §, and¢ are given by the phase terms adjusted to obtain a stable model. We originally intended to

prove that this split cell model also worked for larger problems.

Q- [ppA,J’e_j'@Riv — PPy However, we found instead, that for more complex problems,
+,—48RI, . — —jAR, this stabilization scheme was insufficient.
+ Qs [pp§ ¢ S pps ¢ ) 7] Both the MNA method and the loop or mesh-based MLA
+ QclppcTe P e — ppe e P Rad] (17) method can be used as a circuit formulations. Here, we use
the MLA method. The PEEC model for the two-cell conductor
example of Fig. 1 is shown in Fig. 2. It was shown in [8]
that for this application, the MLA method is the most efficient
¥rﬁplementation for PEEC in the frequency domain. It also can
be related to the MoM impedance matrix for simple cases.
Again, we choose 20 cells/at fi.x at the maximum
frequency of interestf,,... Assume that we would like to
PEEC models are implemented using partial inductanceave a clean frequency response up tg,5Q. This would

and coefficients of potential in [2], [24] and in the aboveequire that we decrease the cell size by about a factor 50
derivation by (7) and (16). Here, both integrals are evaluated all directions. Such an increased range would comes at
by analytically integrating the}—i dependence of the Green'sthe high price of an extremely large number of unknowns
function over the appropriate cells. The allowable approachasd impossibly slow compute times. For clarity, we chose
are limited by the fact that we want to be able to use thg... = 20 GHz in all our examples and we tried to obtain a
technique in both the time as well as the frequency domariean model for the extended frequency range upfto=
We cannot include the phase term of the Green’s functid®00 GHz. In the +PEEC formulation we try to obtain a
under the integrals since we also need to be able to evalusidficiently clean frequency response without increasing the
them in the time domain. Hence, the integration of the phasamber of unknowns. For this, we implement three changes
term is approximated by the evaluation at the centroid of the PEEC which we are applying simultaneously to obtain
each cell. This has shown to provide very good answerstime +PEEC model. Two improvement involve the partial
the active range of the frequency domain in comparison withductances and coefficients of potential. Along with these
other integral equation based methods. It is the purpose mbdel improvements, we made another change in the model
this section to derive a new way of calculating the partighrough the introduction of damping resistors. This combined

- miOR, ]

where Rt = |7t — 7| and R, = |7, — |. In addition,
pp, T is defined as in (16) wher& = Rt = |7f — 7 |. The
above partial inductances and the potential coefficients pla
key role in the model improvement in the next section.

I1l. PEEC MODEL IMPROVEMENTS
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model with all three improvements is referred to asHEEC. In a similar manner, the coefficient of potential cellsé,
In this section, we show how these concepts are implementeti( in Fig. 1 can be partitioned into subcells. In general, for
and results are given in Section IV, which show how thisach pair of cellg andj, the coefficient of potential calculation
stabilizes the PEEC models. with the delay term is replaced by
1) New Partial Inductance and Potential Coefficien@ur N N,
goal is to increase the accuracy of the phase behavior for Ni o 3Rk sk
Raetabat

the extended frequency range without introducing more un- ppt
knowns. If we look at the two-cell example of Figs. 1 and 2,

we can consider each cell at the detailed level. By subdividing / / / / dlyq dwy dlyy, dwy.  (20)
each of these cells into a finite number of partitions, we can wie ek Sy I gq

introduce a new way of computing the inductance term for
each cell at the macromodel level. By using the relatlonsh
in (9) for this two-cell equation we have

drey a;a

ere each partition has a widhand lengthl corresponding
the surface of each partition. Cellis partitioned into
Mz by N; sections and celf is partitioned intoM; by N;

jwLpii Iy + jwLpiolye P2 sections. The phase term is again outside of the integral, but
(18) s approximated by defining? as the distance between the

centroid of partitionk, k& and of partitiong, qq.
We can now subdivide each of these cells into a finite numberThis technique can be applied in both the frequency as well
of partitions given byA = ¢/nf. wherec is the speed of light as the time domain for both coefficient since the retardation
in free-spacep = 1,2,---, and f. is given by the upper end terms in (19) and (20) are directly translated into equivalent
of the extended frequency range. By choosingppropriately, time delays.
the smallest number of partitions for each geometry can be2) Damping Resistor:Realistic problems involve losses
selected such that the problem is stable and the computatiohalt can also be included in the PEEC model. As is evident
effort is minimized. Importantly, the unknown current for eacin the results section, we were able to further extend the
cell is not further subdivided resulting in the same numbeiseful frequency range, by the addition of a damping resistor
of unknowns! This partitioning of each cell results in eactvhich addresses stability at the upper portion of the extended
partial inductance term consisting of a summation over all tfieequency range. The PEEC method is powerful because

JwLpaals + jwLps Iye /P2,

partitions in each cell. For each cell, (7) becomes general circuit solutions can be easily be implemented to take
N M, N account losses.

Lpt = o IBRI kg0 ' We added a damplng reglstor in parallel to the partial

Pij 47raa Z Z Z Z inductances as shown in Fig. 4. Since each loop current

J k=1kk=1 1 1 . . . .
= through the partial inductance is an unknown, by adding the

X / / / / Al - dlyg dlyq dag dlyy, dag, parallel resistor we added one additional loop current for each
Lk R existing unknown. The challenge is to implement this parallel
(19) resistance without changing the size of the matrix, i.e., the
number of unknowns. The unknown loop current in cell
is given by/,. This loop current can be written in terms of
the currents through the inductor and resistor in leo@ms
Reo +1rp.... The parallel impedance is given by

where celli is partitioned intoM; by N; sections and cell
J is partitioned intoM; by IV; sections. Celk consists of a
total of M; N; partitions and cellz consists of a total of; NV;
partitions. The phase term is taken outside of the mtegral ard
is approximated by defining? as the distance between the sLpoaRaa
centroid of partitionk, kk and of partitiong, qq. $Lpaa + R’
Each partition now is treated the same as each cell. For
example, where there was previously one calculation forBy using this parallel impedance, we do not introduce an
partial self inductance for cell now there are four sum overadditional unknown into the MLA matrix. In general, the
all M;N; partitions contained within cell. For the mutual Matrix stampis of the following form for a given currenty,,
terms, the calculation is similar in that there are four sumg0ing through the:ith partial inductance
where two sums are over the partitions due to ¢elhd two

(21)

" . . Row I RHS
sums are over the partitions due to cgks is shown in (19). Lk
The computation of the partial self- and partial mutual- I 0 Lpins 0 0
inductance terms has increased to the extentMaYy; oper- 5+‘” b )

ations are required for each partial inductance term. Howev&he stampfor the coupling of the current;,, into each of the
due to the small subcell size, the analytical integration égher partial inductance terms is
computed only for the self-cell terms. For all mutual terms,

the integral can be approximated %/usmg the centroid to Row Trn RHS
centroid distance of each partition within each cell. Although N o
the computation of the partial inductance terms has changeéC o 5+akLpnk3@ ok 0
considerably with this scheme, the unknowns are the same as

where n = e anday = £
before. Lp,, Lpix
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Fig. 3. Antenna geometries. )
Fig. 5. MOM and+PEEC for a patch antenna.

R R
oo Bp o1 FPEEC(Real
- TPEEG(mag)
o FEECIRSaD
= | PEEGUmag)
L —0.1
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& oz
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u
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- - - Frequency
+ + + )
v v v Fig. 6. PEEC andt-PEEC for a patch antenna.
1 1 ) 1 3 1
. Pyq - P22 - P33

PEEC
|+PEECn-3

Fig. 4. PEEC model for conductor example with damping resistor.

The actual value of the damping resistor is calculated for”™
each cell using the following:

Rii :kwmaXLpii (22) "o 100 200 300 I?Peoqueﬁg)?(Gaoz? 700 800 900 1000

. Fig. 7. Real inputZ of PEEC PEEC fi tch antenna.
where wyae = 27 fuax, @andk = 10, --- 100, depending on 9 ealinpul= 0 and+ or & paich antenna
the problem. Using this equation fdk, £k may be adjusted
such thatR impacts the impedances at frequencies greater

. ; : ctive frequency range approximately hfs.. = 20 GHz
than f...x, With only a small impact at frequencies lower tharinol the extended frequency is chosen tofbe= 1000 GHz.

Fmax: We assume that the numerical integration method has enough
numerical damping abové¢. so that we do not need to be
IV. EXPERIMENTAL RESULTS concerned with frequencies aboye.

For our computer experiments, we used three differentOur first comparison is for thactivefrequency range for a
geometries, a patch antenna, and two folded dipole antenpasch antenna where we show that thBEEC model agrees
shown in Fig. 3. They are representative of different classeswary well with a carefully implemented MoM code [4]. The
problems since the patch antenna is capacitive and the folgedch antenna, which is shown in Fig. 3, is center fed and has a
dipole antennas are inductive at low frequencies. As was statedgth of 9 mm and a width of 4.5 mm. The real and imaginary
in Definition 1, a negative real part of the input impedanceput impedances are shown to be in close agreement in Fig. 5.
indicates that the time solution may be unstable. In thiurther, the PEEC and the PEEC models are compared for
section, we provide experimental evidence that implementitize active region for the same example in Fig. 6 and again
the partial inductance and coefficients of potential as outlinedcellent agreement is shown.
above results in an input impedance with a positive real partThe key issue of this paper is tlegtendedrequency range.
for a much larger frequency range. In addition, we were ablie order to show the impact of the model improvements, we
to further extend the useful frequency range by the additigive the input impedance up . Figs. 7 and 8 show the real
of the damping resistors. and the imaginary input impedances for the patch antenna.

The +PEEC and the RPEEC improvements to the basicThe partitioning ¢PEEC) significantly reduces the spurious
PEEC model in Section Il are the result of extensive computegsonances throughout the extended region and, even more
experiments. In this section, we give experimental evidenceiofportant, the real part of the input impedance is positive for
the benefits of the model improvements. For all examples, ttiee entire extended frequency range.



1830 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 12, DECEMBER 1998

0.08

0.5
PEEC
0.4 +PEEC,n=3 0.06
03 0.04
0.2
0.02|]-
& 0.1 —
£ g of
c 0 o} : : :
< 2 gozf. ...
o 01 < : : : : :
03| L : ; : Fei 006 ] i e NG
ol o : . ~0.08
0 100 200 300 400 500 600 700 800 900 1000 -
100 2 4 7 1
Frequency (GHZ) 0 100 200 300 00F regggncyeoo 00 800 900 1000
Fig. 8. Imaginary inputZ of PEEC and+PEEC for a patch antenna. Fig. 10. Partitioningr for a patch antenna.
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Fig. 11. Resistance for a patch antenna.
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Fig. 9. Resonances using the PEEC model for a patch antenna.

The resonance behavior in the extended frequency response -o.os
is very unpredictable for both MoM and PEEC techniques, °’ v : [
depending on implementation details. Fig. 9 compares thereal ol . ]
part for two close discretizations. We subdivided the structure Frequeney (@R
with 20 cellsA and 25 cellsk at 20 GHz. This data showsFig. 12. PEEC and RPEEC for a loop antenna.
the surprisingly strong dependence of the resonance behavior
on the number of cells. These results clearly explain why the
model time instability is a strong function of the discretizatiowith a damping resistor show show that positive real part can
chosen. be obtained for entire extended frequency range f¢PEEC

Next we explore the effects of varying the subpartitioningshere n» = 3 and £ = 100! Referring back to Fig. 7, we
in +PEEC. Recall that we can vary the partitioning usinin  see the remarkable difference between the new results and the
A = ¢/nfe. All the above results are based on= 3. Fig. 10 original PEEC results without the stabilization scheme.
shows the variation in the real part of the input impedance forFig. 3 shows one of the folded dipole antenna examples,
n =1,2,3 wheren = 1 is the case without partitioning. Thiswhich is referred to as lbop. This geometry has an edge-to-
clearly illustrates the impact of this partitioning technique. Fardge length of 9.9 mm, and an edge-to-edge width of 5.4 mm.
n = 1, the real input impedance turns negative at 450 GHaJl the zero thickness conductors have a width of 0.9 mm.
for n = 2 it is positive up to 850 GHz, and for = 3 it The results for this geometry are shown in Fig. 12 for PEEC
is positive up to 1000 GHz! In addition, the negative spikend R + PEEC where we choose = 3 and k = 50. Again,
at 100-150 GHz are reduced by increasing the number thé stabilization scheme has eliminated the false resonances
partitions used. throughout the extended frequency range.

We show the impact of the damping resistor{lREEC) The second folded-dipole antenna example is referred to as
for the +PEEC model using» = 3 partitions. Results are a ribbon, which is also shown in Fig. 3. The zero thickness
given for the real part of the input impedance in Fig. 11. libbon has an edge-to-edge length of 9 mm and an edge-to-
is evident that theR helps to dampen the spike occurringgdge width of 4.5 mm. Each conductor has a width of 0.9
between 100-150 GHz for all selectédvalues. The results mm. The number of partitions in this example are selected
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