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Abstract—The partial element equivalent circuit (PEEC) tech-
nique is a formulation which transforms an electric field integral
equation (EFIE) into a full-wave equivalent circuit solution. In
this paper, improvements are made to the PEEC model through
the development of a refined method of computing both the
partial inductances as well as the coefficients of potential. The
method does not increase the number of unknowns. In addition,
damping is added to the PEEC model in order to further
reduce nonphysical resonances which may occur above the useful
frequency range. The observations and solutions presented in
this paper are especially important for time domain solvers. The
effectiveness of the method is illustrated with several examples.

Index Terms—Circuit analysis, integral equations, radiation,
partial elements, scattering.

I. INTRODUCTION

T HE demand for electromagnetic (EM) modeling has
increased considerably in the last few years. For example,

the modeling of electronic systems for electromagnetic com-
patibility (EMC) [1] and electrical interconnect and packages
(EIP) require efficient solution techniques for large problems
which can accommodate a wide range of geometries. These
modeling tools should be applicable to both radiation as
well as scattering problems. An example of a scattering or
incident field problem for electronic systems is the radiated
electromagnetic susceptibility to radio and television signals.
These mixed EM and circuits problems are very challenging
for electromagnetic formulations both in terms of problem size
and complexity.

The partial element equivalent circuit (PEEC) approach
[2] is particularly useful for the modeling of electromagnetic
problems, which include very large scale integration (VLSI)
circuits or circuit elements. Also, more insight can be gained
into the solution details using this approach. In the work
presented in this paper, we introduce several improvements
of the PEEC model, which increase both the accuracy and the
stability for time-domain applications. The PEEC method is
based on a circuit interpretation of an electric field integral
equation (EFIE) full-wave formulation. Results similar to
a method of moments (MoM) formulation [3], [4] can be
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obtained using a circuit-solver program. The basic PEEC
formulation has recently been extended to include incident
fields or scattering [5], dielectrics [6], lossy dielectrics [7],
and the use of the modified nodal analysis (MNA) as well as
the modified loop analysis (MLA) formulation in [8].

The applicability of the PEEC model to both time- and
frequency-domain problems is very useful. Very often, addi-
tional insight can be gained from the analysis of a problem
in both domains. Simple PEEC models which do not involve
delays can be applied to both domains using a conventional
circuit solver like Spice [9] or ASTAP [10]. In this paper,
we are restricting ourselves to the frequency-domain analysis.
However, we are using the frequency results for the time-
domain stability analysis, which, to date, has not been solved
for general problems. Instabilities for the time-domain integral
equation formulations for EM problems have been observed
by many authors where some of the earlier work is given
in [11]–[14]. Many different techniques have been suggested
to overcome these instabilities. In particular, [15] uses a
conjugate gradient method, [16] uses a filtering technique,
and [17] uses the matrix pencil technique to eliminate late
time instabilities. While all of these techniques help eliminate
some of stability problems for specific cases, some sources of
instabilities remain.

In this work, we are using a different approach. In a recent
paper on stability [18], it was observed that the discretization
of the continuous time EFIE leads to an unstable discrete
system since the model may have poles in the right half
plane. We know from circuit theory that the PEEC models
withoutdelays are passive and stable. Hence, it is evident that
the instabilities are caused by the delays between the partial
inductances and the coefficients of potential. Many test have
shown that well implemented MoM and PEEC formulations
with delays do give very simular frequency responses in the
region of interest where the cells are chosen to be sufficiently
small such that the cell size is at least 20 cells/. Note that
impedance computations, like the ones we consider in this
paper, do require more cells for an accurate solution than do
radiation problems. Throughout this paper, we call the lower
frequency range corresponding up to wavelength where all
cells are of a size 20 cells/ theactivefrequency range. Also,
we call the upper bound of the active region . Higher
frequencies correspond to a much smaller number of cells
than 20 cells/. We call this frequency range theextended
frequency range with an upper bound. The motivation
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for computations in the extended frequency range is the
fact that we observed a complex resonance behavior of the
models in this range. This may be totally irrelevant for a
straightforward frequency analysis, but is extremely important
for other applications like the time-domain analysis and for
model reduction techniques.

In this paper, we try to understand and to eliminate the un-
desirable resonance behavior in theextendedfrequency range.
We start to formulate our approach with two observations.

Observation 1: The discretized models exhibit seemingly
random resonances in the extended frequency range, which
may correspond to frequencies that considerably exceed the 20
cells/ limit. These resonances or poles are a strong function
of the cell divisions of the discretization. The input port
impedance may exhibit a negative real part at these resonances.

This behavior can lead to very poor frequency responses
since some of these resonances or poles have a very large
amplitudes or residues. This may lead to problems for model
reduction based techniques like [19] and [17] and also for
above mentioned late time instability problem.

One of the issues we had to resolve was how we could
observe these “bad” or false resonances. The analytical and
numerical eigenvalue computation method in the recent paper
[18] can only be applied to very small problems. Attempts are
in progress to compute the eigenvalues for larger problems
[20]. Here, we resort to another approach for the observation
of the unstable behavior of the model. We know from circuit
theory that given a passive circuit, the input impedance must
be positive real, where a positive real function is defined in
[21] as follows.

Definition 1: A function of the complex variable
is said to be positive real if is real when is real,

when , and when
.

We monitor the real part of the input impedance of a PEEC
model for frequencies to observe if
the terminal impedance violates this condition. Also, this is a
relatively simple test to perform and we found that it gives us
very useful insights into stability problem as will be evident
from the results section. One of our aims is to maintain the
real part of the input impedance to be positive up to as high a
frequency as possible. Instabilities at very high frequencies are
much easier to contain by using an implicit time integration
method, which has numerical damping like the backward Euler
method [22]. This was also confirmed by an experimental time
domain solver [23].

Observation 2: Rynne [12] observed that the periodof
the frequency of the undesirable oscillation in time-domain
solutions is in some cases related to the time stepas .

We can assume that the time-integration method creates a
very high frequency noise at this frequency. As an example, a
time step of ns is typical for the type of problems of
interest. This corresponds to a frequency of 100 GHz according
to the observation. We found that the frequency of oscillation
may be spread over a wide range of frequencies into several
hundred GHz for a model which may have the usual 20
cells/ at a frequency of GHz! This led us to

the study of the PEEC model for frequencies up to or
1000 GHz. Some of the frequencies of oscillation in the time
domain are clearly not related by the above time step relation.
The examples in the results show that the spurious resonance
can occur at rather arbitrary frequencies which are a strong
function of the discretization. Fundamentally, it is possible to
eliminate the spurious resonances by increasing the number of
cells. However, this is a very undesirable approach since the
number of unknowns and solution time increases drastically
with the number of cells. The stabilization technique should
not increase the number of unknowns. Further, to stabilize
the time-domain solution, the same technique must be appli-
cable to the time-domain as well as to the frequency-domain
formulations.

The usual retarded or delayed PEEC model with losses is
denoted as and PEEC model. However, since we
exclusively consider models with delay, we simply call them
PEEC. Also, for notational convenience, we call a model with
the stabilization a PEEC or a R PEEC model. In Section II,
we derive the PEEC models for both partial inductance and
for coefficients of potential beginning with the EFIE. Then,
in Section III, we derive the PEEC model improvements
( PEEC) and (R PEEC). In Section IV, results are presented.

II. SHORT DERIVATION OF THE PEEC MODEL

Again, we are only interested in PEEC models which
involve retardation or delays between the elements. The
purpose of this section is to briefly introduce an appropriate
integral equation formulation for such a PEEC model. Then,
we define both the partial inductance and the coefficient of
potential terms that are important for the PEEC improvements
in the next section.

A. Integral Equation Formulation

The electric field in free-space at a conductor can be written
for the nondielectric case as

(1)

where is the current density in the conductor,is the charge
density, and is the free-space Green’s function

(2)

where is given by .
The unknown quantities and are assumed constant over a

cell. The geometry is discretized into small enough cells so that
this assumption is valid. The cell size restriction due to
already leads to a basic discretization. A further refinement
of the cells may be necessary where conductors are closely
spaced. In the PEEC formulation, bothand are unknowns
and are related by the continuity equation .
The continuity equation is enforced in the circuit solution at
each node in the form of Kirchoff’s current law.
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Fig. 1. Two-cell conductor example.

The vector quantities are discretized into orthogonal coor-
dinates as . Substituting this relationship
into (1) will result in a set of three equations that are identical
in form but differ in spatial directions . As an example,
consider the current for the conductor shown in Fig. 1 that
has been discretized into two volume cellsand and three
surface cells .

Substitution of the component of the current into the
integral equation for a perfect electric conductor results in

(3)

The basis and testing functions are selected corresponding
to the two types of unknowns: the current densityand charge
. Each unknown is expanded into a series of pulse-basis

functions with an unknown amplitude. Pulse functions are also
selected for the testing functions for the Galerkin formulation
utilized in PEEC. The cell-to-cell coupling is defined with
respect to cell in Fig. 1 by integrating each term of the
integral equation (3) over the volume of conductor cell
in the following manner:

(4)

where is the volume of the conductor cell is the
cross section of the cell (- direction) and is the length (
direction) and is the integrand.

B. Partial Inductances and Coefficients of Potential

Starting with the integral equation (3), the first two terms (or
vector potential terms) will be shown to correspond to partial
inductances [1], [24]. Keeping in mind that the current density

is constant over each cell and , where is
the cross-sectional area of a cell, (3) becomes

(5)

Now, by applying (4), the vector potential terms in (5) become

(6)

From [24], the partial inductance between cellsand is
defined as

(7)

Using this definition and (2) for the Green’s function, (6) can
be rewritten as

(8)

where the first term is the partial self inductance of the cell
and the second term represents the inductive coupling to cell

from a current in cell in Fig. 1. The delay between cells
and are given by the phase term where is the
center-to-center distance between cellsand . In general,
given cells, the inductive coupling term is

(9)

In a similar manner, the coefficient of potential terms can
be derived from the last three terms in (3). With the charge
is constant over each (3) becomes

(10)

Now, by applying (4), we get

(11)

The surface integral can be redefined at
. With this, each term in (11) can be rewritten

in terms of the

(12)
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Each volume integral can be broken into two integrals

(13)

The inner integral can be evaluated using a central difference
approximation and the outer integral can be evaluated

(14)

where and similarly . With this
result, (10) becomes

(15)

The definition of normalized coefficient of potential is given
in [2] with the Galerkin matching as

(16)

where the total charge on cellis given by where
is the surface area of cell. With this relationship and the

coefficient of potential definition in (16), each term in (15) can
be rewritten. The delay between the general capacitive cell
and cells , and are given by the phase terms

(17)

where and . In addition,
is defined as in (16) where . The

above partial inductances and the potential coefficients play a
key role in the model improvement in the next section.

III. PEEC MODEL IMPROVEMENTS

PEEC models are implemented using partial inductances
and coefficients of potential in [2], [24] and in the above
derivation by (7) and (16). Here, both integrals are evaluated
by analytically integrating the dependence of the Green’s
function over the appropriate cells. The allowable approaches
are limited by the fact that we want to be able to use the
technique in both the time as well as the frequency domain.
We cannot include the phase term of the Green’s function
under the integrals since we also need to be able to evaluate
them in the time domain. Hence, the integration of the phase
term is approximated by the evaluation at the centroid of
each cell. This has shown to provide very good answers in
the active range of the frequency domain in comparison with
other integral equation based methods. It is the purpose of
this section to derive a new way of calculating the partial

Fig. 2. PEEC model for conductor example.

inductance and coefficient of potential terms for both the time
and the frequency domain, which improves the PEEC model
for higher frequencies.

A. Improvement Techniques

The partial inductance and coefficient of potential terms
have been derived from the PEEC interpretation of the EFIE.
Next, we develop an enhanced model which we callPEEC
for notational convenience.

A potential stabilization scheme for the time domain was
proposed in [18] using PEEC. In [18], each inductive self cell
was subdivided into two series inductances and a delay
was introduced between these two inductances. It was shown
analytically for a small model how the roots of the system
could be moved from the right-half plane to the left-half plane
by the proper assignment of. In this scheme, the delays were
adjusted to obtain a stable model. We originally intended to
prove that this split cell model also worked for larger problems.
However, we found instead, that for more complex problems,
this stabilization scheme was insufficient.

Both the MNA method and the loop or mesh-based MLA
method can be used as a circuit formulations. Here, we use
the MLA method. The PEEC model for the two-cell conductor
example of Fig. 1 is shown in Fig. 2. It was shown in [8]
that for this application, the MLA method is the most efficient
implementation for PEEC in the frequency domain. It also can
be related to the MoM impedance matrix for simple cases.

Again, we choose 20 cells/ at at the maximum
frequency of interest . Assume that we would like to
have a clean frequency response up to 50. This would
require that we decrease the cell size by about a factor 50
in all directions. Such an increased range would comes at
the high price of an extremely large number of unknowns
and impossibly slow compute times. For clarity, we chose

GHz in all our examples and we tried to obtain a
clean model for the extended frequency range up to

GHz. In the PEEC formulation we try to obtain a
sufficiently clean frequency response without increasing the
number of unknowns. For this, we implement three changes
in the PEEC which we are applying simultaneously to obtain
the PEEC model. Two improvement involve the partial
inductances and coefficients of potential. Along with these
model improvements, we made another change in the model
through the introduction of damping resistors. This combined
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model with all three improvements is referred to as RPEEC.
In this section, we show how these concepts are implemented
and results are given in Section IV, which show how this
stabilizes the PEEC models.

1) New Partial Inductance and Potential Coefficients:Our
goal is to increase the accuracy of the phase behavior for
the extended frequency range without introducing more un-
knowns. If we look at the two-cell example of Figs. 1 and 2,
we can consider each cell at the detailed level. By subdividing
each of these cells into a finite number of partitions, we can
introduce a new way of computing the inductance term for
each cell at the macromodel level. By using the relationship
in (9) for this two-cell equation we have

(18)

We can now subdivide each of these cells into a finite number
of partitions given by where is the speed of light
in free-space, and is given by the upper end
of the extended frequency range. By choosingappropriately,
the smallest number of partitions for each geometry can be
selected such that the problem is stable and the computational
effort is minimized. Importantly, the unknown current for each
cell is not further subdivided resulting in the same number
of unknowns! This partitioning of each cell results in each
partial inductance term consisting of a summation over all the
partitions in each cell. For each cell, (7) becomes

(19)

where cell is partitioned into by sections and cell
is partitioned into by sections. Cell consists of a

total of partitions and cell consists of a total of
partitions. The phase term is taken outside of the integral and
is approximated by defining as the distance between the
centroid of partition and of partition .

Each partition now is treated the same as each cell. For
example, where there was previously one calculation for a
partial self inductance for cell, now there are four sum over
all partitions contained within cell. For the mutual
terms, the calculation is similar in that there are four sums,
where two sums are over the partitions due to celland two
sums are over the partitions due to cellas is shown in (19).

The computation of the partial self- and partial mutual-
inductance terms has increased to the extent that oper-
ations are required for each partial inductance term. However,
due to the small subcell size, the analytical integration is
computed only for the self-cell terms. For all mutual terms,
the integral can be approximated by using the centroid to
centroid distance of each partition within each cell. Although
the computation of the partial inductance terms has changed
considerably with this scheme, the unknowns are the same as
before.

In a similar manner, the coefficient of potential cells, ,
and in Fig. 1 can be partitioned into subcells. In general, for
each pair of cells and , the coefficient of potential calculation
with the delay term is replaced by

(20)

where each partition has a widthand length corresponding
to the surface of each partition. Cell is partitioned into

by sections and cell is partitioned into by
sections. The phase term is again outside of the integral, but
is approximated by defining as the distance between the
centroid of partition and of partition .

This technique can be applied in both the frequency as well
as the time domain for both coefficient since the retardation
terms in (19) and (20) are directly translated into equivalent
time delays.

2) Damping Resistor:Realistic problems involve losses
that can also be included in the PEEC model. As is evident
in the results section, we were able to further extend the
useful frequency range, by the addition of a damping resistor
which addresses stability at the upper portion of the extended
frequency range. The PEEC method is powerful because
general circuit solutions can be easily be implemented to take
account losses.

We added a damping resistor in parallel to the partial
inductances as shown in Fig. 4. Since each loop current
through the partial inductance is an unknown, by adding the
parallel resistor we added one additional loop current for each
existing unknown. The challenge is to implement this parallel
resistance without changing the size of the matrix, i.e., the
number of unknowns. The unknown loop current in cell
is given by . This loop current can be written in terms of
the currents through the inductor and resistor in loopas

. The parallel impedance is given by

(21)

By using this parallel impedance, we do not introduce an
additional unknown into the MLA matrix. In general, the
matrix stampis of the following form for a given current
going through the th partial inductance

Row RHS

Thestampfor the coupling of the current into each of the
other partial inductance terms is

Row

where and .
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Fig. 3. Antenna geometries.

Fig. 4. PEEC model for conductor example with damping resistor.

The actual value of the damping resistor is calculated for
each cell using the following:

(22)

where , and , depending on
the problem. Using this equation for, may be adjusted
such that impacts the impedances at frequencies greater
than , with only a small impact at frequencies lower than

.

IV. EXPERIMENTAL RESULTS

For our computer experiments, we used three different
geometries, a patch antenna, and two folded dipole antennas
shown in Fig. 3. They are representative of different classes of
problems since the patch antenna is capacitive and the folded
dipole antennas are inductive at low frequencies. As was stated
in Definition 1, a negative real part of the input impedance
indicates that the time solution may be unstable. In this
section, we provide experimental evidence that implementing
the partial inductance and coefficients of potential as outlined
above results in an input impedance with a positive real part
for a much larger frequency range. In addition, we were able
to further extend the useful frequency range by the addition
of the damping resistors.

The PEEC and the RPEEC improvements to the basic
PEEC model in Section III are the result of extensive computer
experiments. In this section, we give experimental evidence of
the benefits of the model improvements. For all examples, the

Fig. 5. MOM and+PEEC for a patch antenna.

Fig. 6. PEEC and+PEEC for a patch antenna.

Fig. 7. Real inputZ of PEEC and+PEEC for a patch antenna.

active frequency range approximately has GHz
and the extended frequency is chosen to be GHz.
We assume that the numerical integration method has enough
numerical damping above so that we do not need to be
concerned with frequencies above.

Our first comparison is for theactive frequency range for a
patch antenna where we show that thePEEC model agrees
very well with a carefully implemented MoM code [4]. The
patch antenna, which is shown in Fig. 3, is center fed and has a
length of 9 mm and a width of 4.5 mm. The real and imaginary
input impedances are shown to be in close agreement in Fig. 5.
Further, the PEEC and thePEEC models are compared for
the active region for the same example in Fig. 6 and again
excellent agreement is shown.

The key issue of this paper is theextendedfrequency range.
In order to show the impact of the model improvements, we
give the input impedance up to. Figs. 7 and 8 show the real
and the imaginary input impedances for the patch antenna.
The partitioning ( PEEC) significantly reduces the spurious
resonances throughout the extended region and, even more
important, the real part of the input impedance is positive for
the entire extended frequency range.
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Fig. 8. Imaginary inputZ of PEEC and+PEEC for a patch antenna.

Fig. 9. Resonances using the PEEC model for a patch antenna.

The resonance behavior in the extended frequency response
is very unpredictable for both MoM and PEEC techniques,
depending on implementation details. Fig. 9 compares the real
part for two close discretizations. We subdivided the structure
with 20 cells/ and 25 cells/ at 20 GHz. This data shows
the surprisingly strong dependence of the resonance behavior
on the number of cells. These results clearly explain why the
model time instability is a strong function of the discretization
chosen.

Next we explore the effects of varying the subpartitioning
in PEEC. Recall that we can vary the partitioning usingin

. All the above results are based on . Fig. 10
shows the variation in the real part of the input impedance for

where is the case without partitioning. This
clearly illustrates the impact of this partitioning technique. For

, the real input impedance turns negative at 450 GHz,
for it is positive up to 850 GHz, and for it
is positive up to 1000 GHz! In addition, the negative spike
at 100–150 GHz are reduced by increasing the number of
partitions used.

We show the impact of the damping resistor (RPEEC)
for the PEEC model using partitions. Results are
given for the real part of the input impedance in Fig. 11. It
is evident that the helps to dampen the spike occurring
between 100–150 GHz for all selectedvalues. The results

Fig. 10. Partitioningn for a patch antenna.

Fig. 11. Resistance for a patch antenna.

Fig. 12. PEEC and R+PEEC for a loop antenna.

with a damping resistor show show that positive real part can
be obtained for entire extended frequency range for RPEEC
where and ! Referring back to Fig. 7, we
see the remarkable difference between the new results and the
original PEEC results without the stabilization scheme.

Fig. 3 shows one of the folded dipole antenna examples,
which is referred to as aloop. This geometry has an edge-to-
edge length of 9.9 mm, and an edge-to-edge width of 5.4 mm.
All the zero thickness conductors have a width of 0.9 mm.
The results for this geometry are shown in Fig. 12 for PEEC
and PEEC where we choose and . Again,
the stabilization scheme has eliminated the false resonances
throughout the extended frequency range.

The second folded-dipole antenna example is referred to as
a ribbon, which is also shown in Fig. 3. The zero thickness
ribbon has an edge-to-edge length of 9 mm and an edge-to-
edge width of 4.5 mm. Each conductor has a width of 0.9
mm. The number of partitions in this example are selected
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Fig. 13. PEEC,+PEEC and R+PEEC for a ribbon antenna.

to be and is used for the parallel resistor
value. A comparison of PEEC,PEEC, and R PEEC for the
real part of the input impedance is shown in Fig. 13. The
results show that for this example the partitioning scheme
( PEEC) provides a stable solution, while the damping resis-
tor (R PEEC) provides additional smoothing for the extended
frequency range. The comparison between the loop and the
ribbon antenna results also shows that the small geometri-
cal change of turning the zero thickness conductor results
in a very large change in the extended frequency-domain
responses.

V. CONCLUSION

The false resonances observed in this paper are key for
the understanding of the the late-time instabilities that occur
for integral-equation-type models. The process of eliminating
these resonances is challenging. Our solution approach is
assisted by the fact that the PEEC techniques transform
the problem into the circuit domain. This allows the use
circuit theory techniques and to introduce damping resistors
into the circuit formulation without increasing the number of
unknowns. The techniques are generally applicable to arbitrary
geometries. We did not consider conductor series losses in this
paper. This was done on purpose since the lossless case is a
worst-case situation from a stability point of view. However, it
is very desirable to include the series resistance in the actual
model.
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