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A Recursive Green’s Function Method for Boundary
Integral Analysis of Inhomogeneous Domains
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Abstract—The recursive Green'’s function method (RGFM) for y
computation of fields scattered by two-dimensional (2-D) inhomo-
geneous dielectric bodies is presented. The algorithm efficiently
constructs the Green’s function for the inhomogeneous region [ 1 [~~~
by recursively combining known Green'’s functions from smaller e * * |p=N
subdomains. The fields on the scatterer surface are then computed
using a boundary integral formulation. Proper implementation

1 1 '
of the RGFM results in computational and storage complexities : Q .
which scale asN'-® and N, respectively, where N is the total ¢ £ (1) ¢
number of discrete cells in a domain. Comparisons of results
obtained using the RGFM with those computed from moment
method and exact solutions show the efficiency and accuracy of c v
the technique. p=1 | p=2 X

Index Terms—Boundary integral equations, dielectric scat-

terer, integral equations, scattering. Fig. 1. Two-dimensional domain divided int¥ unit sections.

Recently, a new approach known as the recursive Green’s

function method (RGFM) has been introduced for analysis

ETERMINING the behavior of electromagnetic fieldsof one-dimensional (1-D) inhomogeneous domains [11]-[13].

in and near inhomogeneous dielectric domains findshis method is similar to NEPAL for the volume integral
significant practical application in such areas as inverse scetiuation and the nested dissection approach for finite-element
tering and imaging [1], [2], target identification, waveguidanalysis [14]. However, the RGFM is unique in that it con-
analysis, biomedical research [3]-[6], and antenna design [Z{fucts the Green’s function for the inhomogeneous domain
[8]. Consequently, considerable research concerning efficiaising an efficient recursive procedure. Boundary integral tech-
computational methods for modeling inhomogeneous obstactegues can then be used to determine the field behavior
has appeared in the literature. The majority of these methateund the obstacle for different illumination configurations.
are based upon either the finite-difference technique, the finietis 1-D RGFM has been applied to quasi two-dimensional
element algorithm, or the method of moments (MoM), witli2-D) optical waveguide structures [15], but the rigorous
each technique offering a different set of advantages agéneralization of the technigue to 2-D geometries has not yet
disadvantages. appeared.

When applying these techniques to large inhomogeneousn this paper, we extend the RGFM to allow solution of
domains, the computational and storage costs of the algbe scalar wave equation for 2-D inhomogeneous domains.
rithm become key considerations. This is particularly tru€he approach is found to have computational and storage
for integral equation solutions via the MoM, which, f&f complexities ofO(N!-3) and O(V), respectively, represent-
unknowns, typically have computational and storage complerg a considerable savings over traditional volume MoM
ities of O(N?) and O(N?), respectively. Several methodssolutions. Additionally, because the method produces the ob-
have been developed that significantly reduce these costscle Green'’s function, it can be used to conveniently couple
For example, the conjugate gradient fast Fourier transfoimhomogeneous domains to radiators and other scatterers.
(CG-FFT) algorithm [5] and the stacked spectral iterativ€omputational examples are presented which demonstrate that
technique (SIT) [6] exploit the convolutional properties ofor some geometries the RGFM offers improved accuracy over
the volume integral equation to achieve an efficient solutidhe volume MoM. Additional examples illustrate the flexibility
for single-source configurations. For simulations requiringnd computational efficiency of the approach.
multiple source configurations, recursive techniques such as
the nested equivalence principle algorithm (NEPAL) [9], [10] [I. THEORY
are highly effective.

I. INTRODUCTION

Consider a 2-D space that contains an inhomogeneous
region ' bounded by the contoud2’ and surrounded by

Manuscript received June 5, 1996; revised May 2, 1997. a_homogeneous regioft’, as shown in Fig. 1. The space
The authors are with the Department of Electrical and Computer Engineer- . . s

ing, Brigham Young University, Provo, UT 84602 USA. Is characterized by the complex relative permittivity(r),
Publisher Item Identifier S 0018-926X(98)09688-4. wheree,.(r) = ¢, is constant forr € 2°. Given this domain
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description, we seek to determine the solutifr), r € £2°, y
to the scalar wave equation given as

[V2 + ke ()](r) = 0 1) B
b,=b, Q, Q,

where k, is the free-space wavenumber. Solution of (1)
for a given incident field is often achieved using a MoM - n .
discretization of the volume integral equation [16]. The dif- ay ay
ficulty with this approach is that for very large dOmainsl-fig. 2. Two adjacent unit sections to be combined into a single composite
the required computational and storage resources can beceamesin.
overly intensive for modern computational platforms.

An alternative approach to solving (1) involves first dete
mining the Green’s functioi(r, ') for r, ¥’ € Q¢, which
satisfies

can be obtained by interchangingandy, =’ andy’, anda,
and b, in these expressions.

The Green’s functior7,, possesses an interesting property

[V2 + k26, (0)]Gi(r, 1) = —6(r — 1) (2) Which will be used to advantage in the RGFM formulation.
‘ A simple development using (2) can be performed to show

where 6(-) represents the Dirac delta function. On€g is that [17]
known, then coupled boundary integral equations for the fields 9
on 99 can be formulated and solved using a surface MoM. lim | —G,(rt, r') — —G,(r7, ¢')| = =6y —v') (6)
Such a technique offers the advantage of significantly reduced " L9¥ O
computational and storage costs for the field solution, buherer* = (2’ ++, ). The expression in (6) is also valid if
suffers from the fact that the Green’s function constructiofpe interchange the roles afandy as well asz’ andy/’. This
is generally difficult and costly to perform. In the following,condition is particularly interesting if we apply it to a scenario
we illustrate the use of the RGFM to efficiently solve (2) andihere the source point is on a boundary such ag at 0. In

subsequently find(r) in (1). this case, we must take the limit a — 0 andy — 0 and
apply the homogeneous Neumann boundary conditiodpn

A. Unit Section Green’s Function for the term where the observation point reaches the boundary
before the source point does. This procedure results in the

The first step in the construction 6f involves subdividing
the region2’ into N smaller rectangular regiong,, 1 <
p < N, referred to as unit sections, as implied in Fig. 1. It is .0 , ,
assumed that within each subdomain, the permittivity remains L, o Gplr, 1) o —8u—u)- ()
constant at its local average value o

following:

For the case where’ = q,, this condition becomes

0
€p = — e.(r)dr (3) 9
P A g, lim a—Gp(r, r') =+6(y — ). (8)
a}—)ap x x,:ap
where A, is the area of(},. This piecewise constant ap-
proximation of the permittivitye,.(r) is reasonably accuratep, Composite Green’s Function
provided that the unit cell dimensions remain small and that . . . . ,
. . L ) . Consider now the region in Fig. 2 where the Green'’s
abrupt changes in permittivity coincide with the cell mterface; . ; .
. . e - . _functions G; and GG are known on two adjacent domains
Using this permittivity description, the unit cell Green

. ; . 1 and 22 where B = ©; N Q- is the interface between
;uennce“r%? Cg“rf;’ ;o)uﬁgagrz; gg: dit;ie(z)ncofr;;)ut(e;g g?zalygg?‘”ybemthe two sections. To fornd¥(r, r') for the composite domain
’ p P — 1 1
chosen, although use of homogeneous Neumann bound%ry_ 2 U 02, we first definec,, such that
conditions simplifies the RGFM development as well as the Gpy(r, r') = G(r, r') re, req, (9)
later formulation of the boundary integral equations. If we - ) )
assume that the domafh, has local coordinate, 4) where wherep, ¢ € [1, 2]. Clearly,G,,, satisfies the same differential

0<z<a,and0 <y < b, thenG, can be expressed as equation ag4,, but obeys different conditions oB. There-
- o r fore, ther dependence af,,, must differ from that oi,, only

, 2 X cos(kmx) cos[km(z’ — ap)] by an additive homogeneous solution of (2) which satisfies the
Gp(r, 1) = — b > am K sin(kmay) Neumann boundary condition on all sides except the interface

P m=0 , v B. Similarly, G,, p # ¢ must be a homogeneous solution

. COS <m7ry> oS <m7ry ) (4) of (2). Proper construction of these solutions is facilitated by

by by making two key observations.
ko, :\/kgep — (mx/by)? (5) 1) Equation (4) is a homogeneous solution to the wave
equation and it must be combined with the form for
for z < z/. The coefficientoy = 1/2, while «,,, = 1 for z > 2’ in order to become a particular solution.

m > 0. If z > 2/, then the positions of andz’ must simply 2) In light of (7) and (8), (4) does not satisfy the Neumann
be reversed in (4). Additionally, an equivalent form fGt, condition onB if the source point is also of.
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These observations allow us to write matrix of elements for whiclr, r’ € B and g, represent the

) ) . Y matrix of elements for whichr ¢ B andr’ € 9€,. Then
Gpp(r, r') = Gp(r, 1) +/BGp(1“a r")Eyp(r”, v) dy” (10)  solution of (15) results in

Gpy(r, v') = G,(r, vF, (", ¥') dy’ p#q (11 fop = _(gp +§q)_1§p = -Tgp. (21)
Pa 5P Pa

Insertingf,,,, into discrete forms of (10) and (11) results in the

where the functiond’,, are unknown and” € B. : .
matrix expressions

To determine the unknown functions,,, we must apply

continuity of G and its normal derivative aB. Mathemati- gop =8p — £ T8, (22)
cally, these continuity conditions assume the form U i
Epq :nggq (23)
Gpp(rp, ¥') =G,p(rp, 1’ 12
9 w(rs, ) w(rs; T') (12) where ¢t denotes a transpose. The relations (22) and (23)
%Gpp(rB, r)= %qu(rB, r') (13) allow construction of the composite Green’s function for any

source and observation point from knowledge of the Green’s

wherep # ¢ andrp € B. Now, substituting (10) and (11) functions of the two contributing domains.
into (13) and using the homogeneous Neumann condition for

the term outside the integrals results in the relation C. Two-Dimensional Recursion

lim / 9 G, y; ') Epp(t”, v') dyf’ The above Qevelopment ipdicates how to form a composite
wpy—ap [p Ox Green’s function by combining two unit section Green’s

. 7] o 0N functions horizontally, as implied in Fig. 2. Naturally, the

_a;qh—I}}cB /,; %G(I(xq’ y; o) Egp(r”, 1) dy” (14) procedure can be duplicated to combine Green’s functions

vertically, with results similar to those in (22) and (23).
With this in mind, a recursive procedure can be used to
systematically construct the Green’s function for an arbitrary
domain. This procedure consists of dividing the unit sec-
Q,(rp, r') tions in the domain into adjacent pairs which are combined
horizontally using (22) and (23) as depicted in Fig. 3(a).
= —/ [Gp(rs, ©") + Gy(rp, v)]Fpp(r”, r')dy”. (15) The resulting regions are then paired and combined with
B adjacent domains in the vertical direction, as implied in
The important feature of (15) is that all of the terms arBig. 3(b). This horizontal/vertical combining is then repeatedly
known except the functioi},, appearing in the integrand. Toperformed with the newly constructed Green’s functions until
solve for this unknown, we project theandr’ dependence the composite Green’s function for the entire domain has been
of G, and GG, and ther’ dependence of},, onto basis sets computed.
complete on eithed(2,, or 9§2, and ther” dependence af},,
onto a basis complete oB. As discussed in the Appendix,
it is computationally beneficial to use basis functions that
are Of Compact Support_ |n our case, piecewise constant 0F0||0Wing Constl’uction Of the Green's fUnCtion for the re-
“pulse” functions will be used. This choice provides the addedion, the fields scattered by the obstacle for a given source can
advantage that the basis representatiodBas a subset of the be determined by proper implementation of surface integral
representation 0f2,. Such an expansion can be written aséguations [16]. For the domain in Fig. 1 we can write

Gp(r, r') = Z Gp. mnPm (T)Pn (1) (16) %(j)(r) =¢'"(r) + PV / _
I
9G°(r, r')
an’

where z;, approaches:g from the side off2,. Now using
(7) for G2 and (8) forG; in (14) reveals tha¥,,(rg, r') =

—F,,(rg, r'). Finally, placing this result into (10)—(12) gives

I1l. FIELD EVALUATION

Fplvn, ©) = Y IopistiCen)is)  (@47) o) 2

- Go(r7 I‘/) an’

} dr' (24)

where the series coefficients can be written in matrix form &er the fields in2?, whered/dn’ denotes the outward normal
. . derivative, 90" is the domain perimeter, and the integral
g =5"G,S (18)  should be given a principal value interpretation. Additionally

(Gl = / P (B) G (e, T () dr i’ (19)
o9, Joa,

(e, o) = —TH@ (b /e —v))  (25)
[Slinn = P ()P (1) dr. (20) is the unbounded-space Green's function. For the fields in

8%, . . e
', we use the fact that”* satisfies homogeneous Neumann
Explicit forms for [G,].. are provided in the Appendix. boundary conditions to write
Given this representation, it is clearly advantageous to use

. : : ; I¢(r')
orthogonal basis sets (such as pulse functions) in order to P(r) = Gi(r, r') dr'. (26)
simplify computation ofS—*. We now letg, represent the a0 on’
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[ 1
[ ]
[
]
]
]
]
]

¢ e I Zzw :/ _wm(r)(/)mc(r) dr. (34)
12194

-~ The functionw,,(r) represents a weighting function which
in this work is the point-matching operator. Solution of (29)
] and (30) results in solution for the fields on the boundary.
T T Subsequent integration of these fields using (24) (with the
half factor and principal value interpretation removed) allows
determination of the scattered fields at any desired location

* ® [ ® within €Q°.
® [ ] [ ] [ ]
-
® * ® * IV. COMPUTATIONAL COMPLEXITY
® . ¢ . The computational requirements of the RGFM can be cal-
—e—o—o —eo—»—+ culated as follows. Consider a square domain discretized into
@ N points, such that the number of points in each dimension is

V/N. The cost of computing all of the unit cells (N).

* * Now, consider the cost of combining four cells, witlf

. it points in each dimension, as implied in Fig. 3. This will
involve two matrix inversions for th&8 matrices—one of size
K x K and one of siz&K x 2K—uwith a total cost ofo K>

L] operations assuming &i(»?) inversion routine. Additionally,

I the computations performed to evaluate (22) and (23) for

horizontal and vertical combining are dominated by the matrix
products, at an estimated cost28R2K > operations. Since there

¢ ’ are N/K? cells in the domain, a total aV/4K? inversions
and combinations are required. Also, the combining process
must be repeatetbg, VN times. The cost of inverting the

! ? final matrix is SN'5. Summing over each recursive step in
'3 . the algorithm as well as the final matrix solution results in the

ST e cost C' given by
(b)
Fig. 3. (@) Horizontal and (b) vertical combining of domains to make a single log, VN—1
composite domain using the RGFM equations. C ~8NL3 +9211— Z ot (35)
4 i=0
The coupled solution of (24) and (26) can be accomplished ~8N1? 4 53N (\/N — 1) ~ GLNIS (36)

using a simple MoM discretization. To perform this, we use

the basis function decompositions where we have used thaf = 2¢ at each step. The algorithm

$(r) = Z untfn(r)  r €O (27) Storage requirements are dominated by théN x 8VN
- matrix required in the surface MoM implementation, resulting
d¢(r) . in a storage cost 064XV .
5 = > ontha(r) T eI (28) It is noteworthy that the RGFM can also be implemented

to allow computation of field values internal to the inhomo-

wheret,(r) should be the same form as used in (16). The§&neous domain. While the detail_s _of this pro_cedure have
representations along with the matigt obtained from the NOt been demonstrated here, a similar analysis shows that

RGFM can be used to construct the coupled matrix equatidﬁe asymptotic computational cost involved with recursively
updating Green’s functions with observation points internal

(3L-g)i+g"d =" (29) to the domain increases tG(/N?). Additionally, the storage
i —g'Sy=0 (30) requirements for this procedure beco®en™®).

where S is defined in (20) and
V. RESULTS

(8" mn = / _ / W (1) (£)G(r, ¥)drdr’  (31)  Inthis section, we illustrate the performance of the RGFM in
oo Josy computing the fields scattered from various homogeneous and

0 /
[&"lmn = / / wnl(r)wn(r’)% drdr’ (32) inhomogeneous dielectric cylinders. Comparisons are made
o0 J oy " with results from the surface MoM, volume MoM, and closed-
(L = / Wi (T)th (T) dr (33) form expressions. Numerical investigations have shown that
a0 use of a five-point Gaussian quadrature integration for all
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Fig. 4. Bistatic scattering width for the square homogeneous cylinder witlig. 6. Bistatic scattering width for the two-layer circular cylinder shown
a = A\/2 ande, = 2.56 computed using the surface MoM (SMOM), volumecomputed using the eigenfunction expansion, volume MoM, and RGFM.

MoM (VMOM), and RGFM. The cylinder permittivity ise, = 1.5 for p < 0.2\ ande, = 3.0 for
0.2A < p < 0.4

20

volume integral equation solutions have been noted in the
literature [18].

B. Two-Layer Circular Cylinder

o (dB)

The discrepancies observed in Fig. 5 raise questions con
cerning the accuracy of the surface and volume formulations.
To further investigate this issue, we examine scattering from
a circular cylinder with two layers in the radial direction, as
. ‘ . indicated in the inset of Fig. 6. The cylinder permittivity is
0 90 180 270 360 e, = 1.5 for p < 0.2) ande, = 3.0 for 0.2\ < p < 0.4),

o) wherep is the cylinder radial coordinate. The curves in Fig. 6

Fig. 5. Bistatic scattering width for the square homogeneous cylinder Wi&ompare th_e bISFatIC Scatter,mg Wld_th from the eigenfunction
a = 1x ande, = 2.56 computed using the surface MoM, volume MoM, S€ries solution with that obtained using the RGFM and volume
and RGFM. MoM. In the latter two cases, the cylinder is modeled using
16 x 16 cells with a stair-stepped approximation of the

required integrals provides relatively good accuracy. Pulseylindrical interfaces. For this particular geometry, the RGFM
basis functions with point matching are used in both thresults agree favorably with the exact solution, while the

surface and volume MoM solutions. volume MoM solution shows some error. This improvement
in accuracy offered by the RGFM is an important feature. The
A. Homogeneous Square Cylinder error in the RGFM in the forward and backscattered directions

To test the accuracy of the RGFM, we first apply it tés most likely due to the block discretization of the cylindrical

compute the scattering from a homogeneous dielectric cylindtace:
with a square cross section. The geometry is illustrated in the
inset of Fig. 4. The cylinder has sides of length= /2, C. Arm Model
where is the free-space wavelength, and relative permittivity One currently important application of electromagnetic scat-
€. = 2.56. The spatial discretization uses anx88 grid of tering from inhomogeneous objects involves microwave imag-
cells in order to provide ten cells per wavelength resolutiomg of biological tissue. In light of this, consider applying the
The curves in Fig. 4 compare the far-zone bistatic scatteri®§sFM to the simple model of the human arm shown in Fig. 7.
width computed using the RGFM, the surface MoM, and tHe this diagram, all dimensions are given in wavelengths at
volume MoM for an incident plane wave as shown. Excelleft frequency of 1.2 GHz. The model consists of a circular
agreement between the three results can be observed, witlinder withe,. = 45 representing the muscle and two smaller
the best correlation existing between the RGFM and surfacglinders with ¢, = 8 representing the bone. The RGFM
MoM results. This simple test shows that the RGFM faithfullgrid uses 32x 32 cells in order to accurately model the
constructs the Green'’s function for this domain. fields in the high permittivity muscle. Fig. 8 illustrates the
Fig. 5 illustrates a similar result for the square cylinder witbistatic scattering width obtained for this computation. To test
side lengtha = 1\ and permittivitye,, = 2.56. In this case, a the accuracy of the RGFM in simulating this structure, the
16 x 16 grid is used to maintain the ten cells per waveleng#igorithm is also applied to the simple concentric cylinder
resolution. Here, the surface MoM and RGFM results agredown in the inset of Fig. 6 witl,. = 0.8 for p < 0.05\ and
very well, but they differ from those obtained using the volume. = 45 for 0.05\ < p < 0.15A. The comparison of this result
MoM. Such differences between the results of surface amdth that obtained from the exact solution in Fig. 8 shows
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’y As a result, the timing numbers could be improved using more
30° | elaborate linear system solution techniques, particularly for
the volume MoM algorithm. However, the plot does illustrate
that: 1) the RGFM requires significantly less computation
time as compared to the volume MoM and 2) the RGFM
computational complexity scales @§'->. Also noteworthy
is the fact that the volume MoM has a lower computational
complexity for small numbers of unit cells since, in this case,
it has fewer unknowns than the RGFM. Finally, th&N)
storage requirement of the RGFM allows solution of larger
domains than the volume MoM which requir@$N ?) storage.

Fig. 7. Simple model of the arm used in the RGFM computation. AIAS a result, the curve for the volume MoM in Fig. 9 stops at
dimensions are in wavelengths at a frequency of 1.2 GHz. N = 1024 due to the memory constraints of the computational
platform used.

E inc

—— Cylinder: Exact
------ Cylinder: RGFM

_____ VI. CONCLUSIONS

We have presented a novel numerical technique for solving
the scalar wave equation in 2-D inhomogeneous dielectric
5t N domains. The methodology constructs the Green’s function of
- the region by recursively combining known Green'’s functions
from smaller subdomains. Boundary integral techniques are
100 %0 150 770 360 then used to determine the fields at the domain boundary for

o) a given excitation. Numerical results show that the RGFM

Fig. 8. Bistatic scattering width for a two-layer cylindet,. (= 8 for faithfl’!"y ConStrUCtS_ the Gfreen,s function for inhomOgeneOl_JS
p < 0.05) ande, = 45 for 0.05A < p < 0.15)) computed using the domains and provides highly accurate results for scattering
exact and RGFM solutions. Also shown is the RGFM solution for the arfrom various cylindrical structures. Comparison with closed-
model of Fig. 7. form solutions for canonical dielectric cylinders has revealed
that the RGFM provides improved accuracy when compared

c(dB)

10 with the volume MoM. Additionally, it allows simulation of
W | S oRoM domains for multiple source configurations with an asymp-
ob——a VMOM . . . 1.5
, totic computational complexity ofO(N+°) and a storage
& 10 requirement ofD(N). This allows solution of larger problems
TS with less computational time as compared to traditional MoM
g " solutions. Work is currently under way to allow computation of
fields internal to the dielectric domain and to simulate three-
10" dimensional geometries using the RGFM. Reports of these
107 activities will appear in future communications.
10° 10' 10° 10° 10 10°

# of unit cells

Fig. 9. CPU time versus number of unit cel\s for the RGFM and volume
MoM. APPENDIX

INTEGRATED GREEN’'S FUNCTIONS

that the RGFM provides a reasonably accurate solution. This! "€ choice of basis functions to use in (16) is important

fact provides some confidence concerning the accuracy of fBC€ it can significantly impact the convergence properties
RGFM result for the simple arm model. of (4) when used in (19). For example, if sinusoidal basis

functions with global support are used, the resulting series
) ) obtained using term-by-term integration in (19) is divergent for
D. Computational Complexity points wherer = r’ and slowly convergent for other points.
Fig. 9 illustrates the computational time required versus tlitowever, if simple piecewise constant or “pulse” functions are
number of cellsV for the RGFM and volume MoM. It should used having compact support, then the series resulting from
be emphasized thaV represents the number of unit cells in(19) converges rapidly for all points except wher= =’ and
either method, so that in the RGFM, the actual number of gride boundary integrations occur inandz’ (i.e., v, ¥’ = 0,
points is4v/N and the number of unknowns &/N (since or by). In this case, it is most convenient to use the form
there are two unknowns for each surface grid point). The comliscussed immediately following (4) where the rolescadind
puter platform used was an HP735 workstation with 128 MB are interchanged. With this in mind, consider that the pulse
of memory. In this comparison, a simple LU Decompositiofunctions have width&lx or Ay depending on whether they
with back substitution is used to perform the matrix solutionspan the coordinate or . In this case, if we let = r; and
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r’ = r;, the integrated series assumes the form [12] K. B. Kahen, “Analysis of distributed-feedback lasers using a recursive
Green'’s functional approach|EEE J. Quantum Electronyol. 29, pp.
2 = cos(k. x.) coslk. (x. — a 368-373, Feb. 1993.
Gplij = — — Z m (Ko i) _ LAC vl [13] J.D. Freeze, M. A. Jensen, and R. H. Selfridge, “A unified Green’s func-
g J— km Sln(krnap) tion analysis of complicated DFB lasersPEE J. Quantum Electron.,

vol. 33, pp. 1253-1259, Aug. 1997.
mny; mmy; S “ : : .
. cOS < %) cos < yJ>BanB¥n (37) [14] A. George, “Nested dissection of a regular finite element meSHAM

b b J. Numer. Anal.yol. 10, pp. 345-363, Apr. 1973.

P P [15] K. B. Kahen, “Recursive-Green’s-function analysis of wave propagation
where in two-dimensional nonhomogeneous mediltiysical Rev. Eyol. 47,
pp. 2927-2933, Apr. 1993.
Sin(knle/2) . [16] W. C. Chew,Waves and Fields in Inhomogeneous Medialew York:
Ar—r———", if 4; ;j =00rb, Van Nostrand Reinhold, 1990.
BYJ — . kmAa:/2 (38) [17] J. Mathews and R. L. WalkeMathematical Methods of PhysicsNew
m sin(mmwAy/2b,) York: Benjamin, 1970, pp. 272-273.

mr A /2b , df Ti,j = 0 or Qp- [18] T. K. Sarkar, E. Arvas, and S. Ponnapalli, “Electromagnetic scattering
Y/ <0p from dielectric bodies,1EEE Trans. Antennas Propagatpl. 37, pp.

673-676, May 1989.
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