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On the Locally Continuous Formulation
of Surface Doublets

Branko M. Kolundžija, Member, IEEE

Abstract—Exact (locally continuous) formulation of doublets
and particularly rooftop basis functions based on unitary vector
concept are presented. Basic properties of such a formulation
are examined showing many advantages when compared with
classical (approximate) formulation. In particular, in the case of
rooftop basis functions based on exact formulation, the shape
quality factor is defined and optimal shapes of quadrilateral
patches are determined. If such quadrilaterals are used for
modeling of general structures, the number of unknowns needed
in the analysis is almost halved when compared with modeling
by triangular doublets.

Index Terms—Basis functions, boundary integral methods,
integral equations.

I. INTRODUCTION

STARTING from the equivalence theorem, any composite
metallic and dielectric structure can be analyzed by using

the surface integral equation (SIE). Such integral equations
are usually solved by the method of moments (MoM) [1]. The
MoM is applied in two principal steps: geometrical modeling
and modeling of currents.

Geometrical modeling of surfaces is usually performed by
flat quadrilaterals and triangles [2]–[10]. Having in mind that
flat quadrilateral cannot be defined by four arbitrary points in
the space, it is obvious that such elements are not suitable for
modeling of curved surfaces. It is shown that flat quadrilaterals
are very suitable for modeling of polygonal plates [6], [7],
while triangles are recommended for modeling of curved
surfaces [5], [8], [9].

Currents are usually approximated by subdomain basis
functions in the form of doublets [2]–[10]. Doublets are
basis functions defined over two neighboring patches in the
following way: 1) continuity equation across the junction of
these patches is automatically satisfied and 2) current compo-
nent normal to other edges is equal to zero. In the case of
triangular doublets, the continuity equation is exactly satisfied
in all points along the junction [5]. However, in the case of
general quadrilaterals, the continuity equation is not satisfied
exactly (i.e., in a local way), but only approximately (i.e., in
a global way) [3], [6], [7]. Namely, total current flowing out
from one doublet arm is equal to the total current flowing
into another doublet arm. (In what follows such formulation
of doublets will be termed as “approximate.”) As a result,
line charge exists along the junction of these patches. These
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fictious charges obviously decrease approximating potentials
of doublets. Only in the case of rectangular doublets is the
continuity equation satisfied in a local way [2], [4]. That is
the reason, among others, why it is desirable that as many as
possible doublets are rectangular [6]. Hence, some methods
combine rectangular and triangular doublets [10].

Flexibility of basis functions can be significantly improved
if the so-called bilinear surfaces are used instead of flat
quadrilaterals and entire-domain approximation is used instead
of subdomain approximation [11], [12]. For the lowest order of
approximation, these entire-domain basis functions degenerate
into doublets that exactly satisfy the continuity equation at
junctions. (In what follows, such formulation of doublets will
be termed as “exact.”)

The purpose of this paper is twofold. First, it is intended
to present alternative expressions of doublets and rooftop
basis functions that exactly satisfy continuity equation at the
junctions, particularly convenient for subdomain modeling.
Second, it is intended to investigate basic properties of such
doublets and to compare them with other types of doublets.

II. DESIRED PROPERTIES OFDOUBLETS

In the general case, doublet basis functions can be written as

(1)

where and are current densities and and are unit
vectors defined over two neighboring isoparametric surfaces

and . Parametric equations of these surfaces can be
written in the general form as

(2)

where and are local parametric coordinates, as shown
in Fig. 1(a). Note that two patches are interconnected along
common -coordinate line .

It is desirable that doublets have the same good properties as
rectangular doublets. Current density vector over a rectangular
doublet arm can be written as

(3)

where is the width of a doublet along the-coordinate
line and is an arbitrary smooth function. The above
current density vector is normalized in such a manner that the
total current flowing through the interconnection is equal to
unity. Such basis functions satisfy the continuity equation at
the junction not only in the global, but also in the local way.
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(a) (b)

Fig. 1. Doublet composed of (a) isoparametric surfaces and (b) flat quadri-
laterals.

TABLE I
LIST OF DESIRED PROPERTIES OFDOUBLETS

In addition, the current component normal to the junction is
constant.

Current and charge distributions over each rectangle are
modeled by one or more overlapping doublets. For sufficiently
small doublets these distributions should be approximately
constant. Such distributions can be successfully modeled by
doublets known as rooftop basis functions or sinusoidal dou-
blets. These doublets are obtained if function is
adopted in the following forms, respectively:

(4)

where is the length of the -coordinate line. Good properties
of a rectangular doublet, which are also desirable in the case
of any other doublet type, are summarized in Table I.

III. A PPROXIMATE AND EXACT FORMULATION

The expression for current distribution of a flat quadrilateral
doublet can be written in the same form as in the case
of rectangular doublet, except that is function of the -
coordinate and is function of the -coordinate [6], [7]. The
current component normal to the interconnection is

(5)

where is angle between - and -coordinate lines.
Since such a formulation of doublet does not satisfy property
P2 (local continuity equation), it is referred to as approximate
formulation.

In order to satisfy property P1, normalization constant
is introduced in (3) (e.g., by posing that total current of
unit magnitude flows through the interconnection). Finally, by

expressing and in terms of unitary vectors
and , current distribution over one doublet arm,
and corresponding charge distribution can be written in the
form

(6)

It is obvious that such basis functions satisfy only the first of
five desired properties.

In order to satisfy property P2 (local continuity equation),
above approximate formulation should be slightly modified as

(7)

By expressing , , and in terms of unitary vectors,
current distribution over one doublet arm, and corresponding
charge distribution can be written as

(8)

It is obvious that such doublet satisfies not only property
P2 (local continuity equation), but also properties P1 (global
continuity equation) and P3 (constant junction current). By
proper adoption of function , it is possible to satisfy
properties P4 and P5. Hence, such a formulation of the doublet
is termed as exact formulation.

Note that (6) and (8) are valid not only for flat quadrilateral
doublets but also for doublets defined over isoparametric
surfaces given by (2). Starting from these general expressions,
various types of doublets can be obtained. For example, well-
known triangular rooftop basis function is a special case of
the general doublet described by (8). In what follows, exact
formulation of flat quadrilateral rooftop basis functions will
be considered.

IV. ROOFTOP BASIS FUNCTIONS

Let us consider a doublet made of flat quadrilaterals, as
shown in Fig. 1(b). Parametric equation of each doublet arm
(2) can be written in the form

(9)

where vectors , , , and can be easily determined
starting from position vectors of quadrilateral vertices. (Note
that above equation can also define the so-called bilinear
surface if the position vectors do not belong to a plane [11],
[12].) Let us define the position vector according to the free
edge as

(10)

Combining (4), (6), (8), and (10), approximate and exact
formulation of rooftop basis functions are obtained as

(11)
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In order to examine if exact formulation satisfies properties
P4 (constant current distribution) and P5 (constant charge
distribution), let us transform- and -parametric coordinates
to - and -parametric coordinates as and

. In this case, the parametric equation of bilinear
surface (9) retains the same form except that all small letters
and should be replaced by large lettersand . Further, in
the case of flat bilinear surfaces, vector can be expressed
as a linear combination of vectors and in the form

(12)

Having in mind that

(13)

where is the surface area of a flat quadrilateral, current, and
charge distribution over one doublet arm can be written as

(14)

Let us consider the current distribution over a flat quadri-
lateral shared by four overlapping doublets. [Two of them (
doublets) enable the approximation of the-current compo-
nent, and another two (doublets) enable the approximation
of the -current component.] Current distributions equivalent
to the pair of the doublet and to the pair of the
doublets can be written in the form

(15)

where , , , and are arbitrary coefficients. If
they satisfy

(16)

the total current over the bilinear surface is obtained as

(17)
It is seen that above distribution does not depend on local
and coordinates. It means that rooftop basis functions (exact
formulation) satisfy property P4 (constant current distribution).

The charge distribution over the above flat quadrilateral is
the same for all four doublets, given by the second of (14).
It is seen that property P5 (constant charge distribution) is
satisfied only for rectangles and rhomboids, i.e., for .
In the case when , undesirable variations of charge
distribution are obtained. Since the shapes that produce greater
deviation of charge distribution are less desirable, the shape-
quality factor can be defined as a ratio of minimal and maximal
charge density

(18)

TABLE II
VARIOUS TYPES OF DOUBLETS AND THEIR PROPERTIES

(a) (b) (c)

Fig. 2. Strip scatterer modeled by flat quadrilaterals that have three different
shape quality factors. (a)Q = 1. (b) Q = 1=2. (c) Q = 1=10.

V. COMPARISON OFVARIOUS TYPES OFDOUBLETS

Various types of doublets and their properties are listed in
Table II. (“ ” means that property is satisfied, “” means that
property is not satisfied. In the case when the fulfillment of
some property depends on the choice of function, “–”
is used.) It is seen that

1) exact formulation of doublets is superior to the approx-
imate formulation;

2) quadrilateral doublets (exact formulation) show the same
good properties as triangular doublets, except that they
cannot provide constant charge distribution (P5).

In order to examine the influence of the property P5 to the
overall solution, let us consider current and charge distribution
of half wavelength strip scatterer, shown in Fig. 2. (The length
and the width of the scatterer are and .
The scatterer is excited normally by an incident plane wave,
which is polarized along a scatterer length.) The scatterer
is subdivided into patches, in such a manner that
the shape quality factor is 1) ; 2) ; and
3) . Fig. 3(a)–(c) shows three-dimensional (3-D)
graphs of current distributions along the scatterers shown in
Fig. 2(a)–(c), respectively. All these results are obtained by
using quadrilateral rooftop basis functions (exact formulation).
Fig. 3(d) shows the same results as Fig. 3(c) except that
order of current approximation along each patch coordinate
is increased by one, i.e., the higher order approximation is
used. Fig. 4 shows 3-D graphs of charge distribution that cor-
respond to the currents shown in Fig. 3. It is seen that current
distribution does not depend much on the quadrilateral shape.
On the other side, corresponding charge distributions can show
large variations, as expected according to the second of (14).
Finally, undesirable local variations of charge distribution can
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(a) (b)

(c) (d)

Fig. 3. Current distribution over strip scatterer shown in Fig. 2 (the scatterer
length and width arel = �=2 and w = l=10. The scatterer is excited
normally by an incident plane wave, which is polarized along a scatterer
length). Rooftop basis functions are applied in the cases (a)Q = 1, (b)
Q = 1=2, and (c)Q = 10. Higher order approximation is applied in the
case (d)Q = 1=10.

(a) (b)

(c) (d)

Fig. 4. Charge distributions that correspond to current distributions given in
Fig. 3.

be avoided by using higher orders of approximation.
Let us consider radar cross section (RCS) of the same

scatterer except that its width is . Fig. 5 shows
bistatic RCS (normalized by maximum value) in a plane

versus . Fig. 5(a) shows the results obtained by using
rooftop quadrilateral basis functions (exact formulation) for

and for different number of patches .
(Almost the same results are obtained for .) Fig. 5(b)
shows the same results as Fig. 5(a) except that approximate
formulation is used. Fig. 5(c) shows the same results as
Fig. 5(a), except that . Having this and many other
examples in mind, it can be concluded that acceptable results
can be obtained even by using quadrilaterals of very low,
e.g., . However, the number of unknowns needed
for accurate analysis increases for higher, especially if
approximate formulation is used instead of exact one. In the
case when exact formulation is used, the optimal geometrical
model should contain patches for which .

In order to compare the efficiency of rooftop basis functions

(exact formulation) and triangle doublets, two complex exam-
ples are given. As a first example, let us consider the square
plate scatterer of size 3 3 with two triangular holes, as
shown in the inset of Fig. 6. The scatterer is situated in
plane with axis along the longest hole edge. Incident electric
field has only component. Fig. 6 shows monostatic RCS in
the plane versus angle . Results obtained by rooftop
basis (980 unknowns) are compared with the measured and
the theoretical results (1848 unknowns) from [13]. It is seen
that the results obtained by quadrilateral modeling are closer to
the experimental results than the results obtained by triangular
modeling. As a second example, let us consider the scatterer in
the form of spherical radome. Inner and outer radii of random,
dielectric constant, and operating frequency are m,

m, , and GHz. The scatterer is centered
at the origin and is illuminated by an polarized, traveling
plane wave. Geometrical model of the shell is given in the
inset of Fig. 7. (A quarter of the model is omitted in order that
inner surface can be inspected.) Fig. 7 shows bistatic RCS in
the plane versus angle . Results obtained by rooftop
basis (768 unknowns) are compared with the exact and the
theoretical results (1848 unknowns) from [14]. It can be seen
that the results obtained by quadrilateral modeling are closer
to the exact results than the results obtained by triangular
modeling. Having this and some other examples in mind, it can
be concluded that triangular modeling requires almost twice
more unknowns than quadrilateral modeling based on exact
formulation.

VI. CONCLUSIONS

The exact formulation of doublets and particularly rooftop
basis functions, suitable for subdomain modeling is presented.
When compared with classical (approximate) formulation, the
exact formulation has the following advantages:

1) it satisfies continuity equation locally, i.e., at each point
of the interconnection;

2) current component normal to the interconnection is
constant.

In the particular case of rooftop basis functions, this for-
mulation has an additional advantage: it enables modeling of
constant current distribution.

Hence, in the general case, exact formulation of doublets
enables higher accuracy and faster convergency of the results
than approximate formulation.

This formulation does not enable modeling of the constant
charge distribution. Moreover, local variations of charge distri-
bution depends only on quadrilateral shape. Hence, the shape
quality factor is defined as a ratio of minimal and maximal
charge density over the quadrilateral. It is shown by numerical
experiment that acceptable overall solution can be obtained
by using quadrilaterals of very low (e.g., ).
However, in order to minimize the number of unknowns
needed in the analysis quadrilaterals of relatively high
should be used (e.g., ). If such quadrilaterals are used
for modeling of general structures, the number of unknowns
is almost halved when compared with modeling by triangular
doublets.
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(a) (b) (c)

Fig. 5. Bistatic RCS of strip scatterer (normalized with maximum value) in the plane' = 0
� versus angle�. (A long scatterer edge of lengthl = 3�=2

coincides withz axis and a short scatterer edge of lengthw = l=50 coincides withy axis. The scatterer is excited normally by an incident plane wave,
which is polarized along a scatterer length.) Results are shown for different number of patchesn for both formulations and for two shape quality factors:
(a) exact formulationQ = 1=2; (b) approximate formulationQ = 1=2; and (c) exact formulationQ = 1=10.

Fig. 6. Monostatic RCS of scatterer shown in the inset (normalized by
wavelength squared) in the plane' = 90

� versus angle�. (The square plate
scatterer of size 3�� 3� with two triangular holes is situated inxOy plane
with y axis along the longest hole edge. Incident electric field has only�
component.) Results obtained by proposed basis functions are compared with
measured and theoretical results taken from [13].

Fig. 7. Bistatic RCS of the radome shown in the inset in the plane' = 0
�

versus angle�. (Inner and outer radii of random, dielectric constant, and
operating frequency area = 0:5 m, b = 0:6 m, "r = 4, andf = 0:3 GHz.)
The scatterer is centered at the origin and is illuminated by anx-polarized
z-traveling plane wave. Results obtained by proposed basis functions are
compared with exact and theoretical results taken from [14].
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