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On the Locally Continuous Formulation
of Surface Doublets

Branko M. Kolundija, Member, IEEE

Abstract—Exact (locally continuous) formulation of doublets fictious charges obviously decrease approximating potentials
and particularly rooftop basis functions based on unitary vector of doublets. Only in the case of rectangular doublets is the
concept are presented. Basic properties of such a formulation continuity equation satisfied in a local way [2], [4]. That is

are examined showing many advantages when compared with th th hv it is desirable that
classical (approximate) formulation. In particular, in the case of € reason, among others, why 1L1S desirable that as many as

rooftop basis functions based on exact formulation, the shape POssible doublets are rectangular [6]. Hence, some methods
quality factor is defined and optimal shapes of quadrilateral combine rectangular and triangular doublets [10].

patches are determined. If such quadrilaterals are used for  Flexibility of basis functions can be significantly improved

modeling of general structures, the number of unknowns needed if the so-called bilinear surfaces are used instead of flat

in the analysis is almost halved when compared with modeling . . . . . .

by triangular doublets. quadnlatera]s and en.tlre—QOmaln approximation is used instead
of subdomain approximation [11], [12]. For the lowest order of

approximation, these entire-domain basis functions degenerate

into doublets that exactly satisfy the continuity equation at

junctions. (In what follows, such formulation of doublets will

I. INTRODUCTION be termed as “exact.”)

TARTING from the equivalence theorem, any composite The purpose of this paper is' twofold. First, it is intended
Smetallic and dielectric structure can be analyzed by usifig Present alternative expressions of doublets and rooftop
the surface integral equation (SIE). Such integral equatiofiéSis functions that exactly satisfy continuity equation at the
are usually solved by the method of moments (MoM) [1]. Thisnctions, particularly convenient for subdomain modeling.

MoM is applied in two principal steps: geometrical modelinéecond' it is intended to investigate basic properties of such
and modeling of currents. doublets and to compare them with other types of doublets.

Geometrical modeling of surfaces is usually performed by
flat quadrilaterals and triangles [2]-[10]. Having in mind that [l. DESIRED PROPERTIES OFDOUBLETS
flat quadrilateral cannot be defined by four arbitrary points in |n the general case, doublet basis functions can be written as
the space, it is obvious that such elements are not suitable for .
modeling of curved surfaces. It is shown that flat quadrilaterals J.(r) = { Jer(ug, V)i, 7€ 51 } @
are very suitable for modeling of polygonal plates [6], [7], — Jo2(ug, v)iw2, TE S

while triangles are recommended for modeling of Curve\ﬁherejﬂ and.J,, are current densities atigy, andi,,, are unit
surfaces [3], [8], [9] vectors defined over two neighboring isoparametric surfaces

Currents are usually approximated by subdomain basis ang ,. Parametric equations of these surfaces can be
functions in the form of doublets [2]-[10]. Doublets argitten in the general form as

basis functions defined over two neighboring patches in the

following way: 1) continuity equation across the junction of r =r(u, v) 0<u<l1 0<wv<1 (2)
these patches is automatically satisfied and 2) current compo- ) )

nent normal to other edges is equal to zero. In the Caseygj?ereu and v are local parametric coordinates, as shown

triangular doublets, the continuity equation is exactly satisfidy Fi9- 1(@). Note that two patches are interconnected along

in all points along the junction [5]. However, in the case O@om_monv_-coordmate lineu, = uy = 1. )
general quadrilaterals, the continuity equation is not satisfied!t IS desirable that doublets have the same good properties as

exactly (i.e., in a local way), but only approximately (i.e ir{ectangular doublets. Current density vector over a rectangular

a global way) [3], [6], [7]. Namely, total current flowing outdouPlet arm can be written as
from one doublet arm is equal to the total current flowing _ flu,v). _ _
into another doublet arm. (In what follows such formulation Tolw, v) = L, 10, v)=0 HLv)=1 @)

(.)f doublets Wi." be termed as “approximate.”) As a resul%lvhere l,, is the width of a doublet along the-coordinate
line charge exists along the junction of these patches. Thcﬁ%% and f(u, v) is an arbitrary smooth function. The above

current density vector is normalized in such a manner that the

Index Terms—Basis functions, boundary integral methods,
integral equations.
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expressing, andz, in terms of unitary vectora, = dr/du

and a, = dr/dv, current distribution over one doublet arm,
and corresponding charge distribution can be written in the
form

(]

St vy L)

B la.||a|

p(u,v)=—3 2 {f<u, >M} 6)

wla, X a,| ou |a.||a|

It is obvious that such basis functions satisfy only the first of
(b) five desired properties.
In order to satisfy property P2 (local continuity equation),

Fig. 1. Doublet composed of (a) isoparametric surfaces and (b) flat quadri-

laterals. above approximate formulation should be slightly modified as
u, v .
TABLE | Js(u, v) = J{u: v) iu(v)
LiST oF DESIRED PROPERTIES OFDOUBLETS Z,U(u) Sin ocuy(u, U)
no. short name description f(O, U) =0 f( 1, U) =1. (7)
P1 Iobal continuit; th total rent flowi t the first arm i 1 . . . . .
plobal contimuity cauation {6 tho total current fowin nto the second arm By expressing., i,, andsin a,, in terms of unitary vectors,
P2 local continuity equation at cach point of the junction of two arms, the current d|Str|but|on over one doublet arm and Corr‘espond”’]g
normal current component flowing out the first . . . R !
arm is equal to the normal current component Charge dlStrlbuthn can be Wl’ltten as
flowing into the second arm
P3 constant junction component current component normal to the junction of U, U 7 a U, v
two doublet arms is constant at chgjunction Js (U/, U) = Mau s — 1 f( ’ ) . (8)
P4 constant. current distribution possibility of approximating constant current |a'u X a"U| w |au X a"U| aU/
density vector . . . g
Ps constant charge distribution p.ossi.bilit_y of approximating constant charge It IS ObVIOUS that SUCh dOUbIet Sat'SfleS not 0n|y property
distribufion P2 (local continuity equation), but also properties P1 (global

continuity equation) and P3 (constant junction current). By

In addition, the current component normal to the junction @roper adoption of functiory(u, v), it is possible to satisfy
constant. properties P4 and P5. Hence, such a formulation of the doublet
Current and charge distributions over each rectangle afetérmed as exact formulation. _

modeled by one or more overlapping doublets. For sufficiently Note that (6) and (8) are valid not only for flat quadrilateral
small doublets these distributions should be approximateélpublets but also for doublets defined over isoparametric
constant. Such distributions can be successfully modeled $y/faces given by (2). Starting from these general expressions,
doublets known as rooftop basis functions or sinusoidal dovarious types of doublets can be obtained. For example, well-
blets. These doublets are obtained if functigfu, v) is known triangular rooftop basis function is a special case of

adopted in the following forms, respectively: the general doublet described by (8). In what follows, exact
sin(Al,1) formulation of flat quadrilateral rooftop basis functions will
= == 4) be considered.
f(u7 U) U f(u7 U) Sln([}lu) ( )
wherel,, is the length of the:-coordinate line. Good properties IV. ROOFTOP BASIS FUNCTIONS
of a rectangular doublet, which are als_o de§|rable in the cas§ ot s consider a doublet made of flat quadrilaterals, as
of any other doublet type, are summarized in Table I. shown in Fig. 1(b). Parametric equation of each doublet arm

(2) can be written in the form
I1l. APPROXIMATE AND EXACT FORMULATION
. . . . . T\Uu, v) =7, + TuU + TyU + Ty UV
The expression for current distribution of a flat quadrilateral (u, )
doublet can be written in the same form as in the case 0<u=xl 0<wv=sl ()

of rectangulat‘ doublet, except thaI is function of thew- where Vectorg-c, Tus T and Tup Can be easily determined
coordinate and,, is function of thev-coordinate [6], [7]. The starting from position vectors of quadrilateral vertices. (Note
current component normal to the interconnection is that above equation can also define the so-called bilinear
] sin cy, (1, v) surface if the position vectors do not belong to a plane [11],
Ts(1, Dnorm = Jo(1, v) sin,(1, v) = 1,(1) () [12].) Let us define the position vector according to the free

. . . ) edgep as
where sin «,,,, is angle between:- and v-coordinate lines.

Since such a formulation of doublet does not satisfy property p = UGy = u(Ty + Tuut). (10)
P2 (local continuity equation), it is referred to as approximate Combining (4), (6), (8), and (10), approximate and exact

formulation. . L formulation of rooftop basis functions are obtained as
In order to satisfy property P1, normalization constént .
axal” (11)

is introduced in (3) (e.g., by posing that total current of Jo(u, v) = p Jy(u, v) =
unit magnitude flows through the interconnection). Finally, by la.||a.| la. X ay
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In order to examine if exact formulation satisfies properties TABLE I
P4 (constant current distribution) and P5 (constant charge VARIOUS TYPES OF DOUBLETS AND THEIR PROPERTIES
distribution), let us transform- andv-parametric coordinates type of doublet mathematical expression | P1]| P2 | P3 | P4 | P5
to /- and V-parametric coordinates @ = » — 0.5 and quadrilateral doublet Ty =Cftda, [xTolofo]o
V = — 0.5. In this case, the parametric equation of bilinear ~(feproximate formulation) S
. quadrilateral doublet Js(u, 7}) = #—m X | XX - -
surface (9) retains the same form except that all small letters  (exact formulation)
andwv should be replaced by large lettdrsand V. Further, in quadrilateral rooftop | Jo(u,0) = gfgge | X [0 0] 00
h f flat bilinear surfaces, vectr, can be expressed ~— CPpoimercrmiaon
t e Case 0 . . ’ C’t@Lf i p quadrilateral rooftop J (u U) mp X1 X{X{X{o0
as a linear combination of vectorg: andry in the form (exact formulation)
triangular rooftop Js(u,v) = ZLSP X[ X | X | XX
ryy = ary + fBry —-2<a, B<2 (12)
Having in mind that -
lav X av| =1+ BU +aV)|ry xry| S=lru Xrv ]
(13) ] ;
L /
whereS is the surface area of a flat quadrilateral, current, and — P
charge distribution over one doublet arm can be written as
J(U, V) = ! ! — -
1+ 30 +av 5P ] = ]
1 1
uv — 7 14
Pl V) =17 U +aV S (14) @ (®) ©

2. Strip scatterer modeled by flat quadrilaterals that have three different
Let us consider the current distribution over a flat quadrghape quality factors. (@) = 1. (b) Q@ = 1/2. (c) Q = 1/10.

lateral shared by four overlapping doublets. [Two of them (
doublets) enable the approximation of thecurrent compo-
nent, and another twaov(doublets) enable the approximation
of the v-current component.] Current distributions equivalent Various types of doublets and their properties are listed in
to the pair of thew doubletJ,;; and to the pair of they Table Il. (“X” means that property is satisfied)" means that
doublets.J, ;- can be written in the form property is not satisfied. In the case when the fulfillment of
(avo + av U)(ro +rovV) some property depends on the choice of functiff, v) “-”

V. COMPARISON OFVARIOUS TYPES OF DOUBLETS

Jo(U, V)= is used.) It is seen that

(1+8U+aV)s . : .

v U 1) exact formulation of doublets is superior to the approx-
Joy (U, V) = (avo+aviV)(ry +ruvl) (15) imate formulation;

(1+pU+aV)s 2) quadrilateral doublets (exact formulation) show the same
where ago, ay1, avo, anday, are arbitrary coefficients. If good properties as triangular doublets, except that they
they satisfy cannot provide constant charge distribution (P5).

In order to examine the influence of the property P5 to the
ay1 = ayof — ayvoa = —ayy (16)

overall solution, let us consider current and charge distribution
of half wavelength strip scatterer, shown in Fig. 2. (The length
AT - GroTy and the width of the scatterer afe= A\/2 andw = 1/5.
TUOTU T VOV - The scatterer is excited normally by an incident plane wave,
5 (17) which is polarized along a scatterer length.) The scatterer

It is seen that above distribution does not depend on lacaliS subdivided inton = 12 patches, in such a manner that
andv coordinates. It means that rooftop basis functions (exdf€ shape quality factor is 1 = 1; 2) @ = 1/2; and
formulation) satisfy property P4 (constant current distribution§) @ = 1/10. Fig. 3(a)—(c) shows three-dimensional (3-D)
The charge distribution over the above flat quadrilateral @aphs of current distributions along the scatterers shown in
the same for all four doublets, given by the second of (14)i9. 2(a)—(c), respectively. All these results are obtained by
It is seen that property P5 (constant charge distribution) ysing quadrilateral rooftop basis functions (exact formulation).
satisfied only for rectangles and rhomboids, i.e.,do = 0. Fig. 3(d) shows the same results as Fig. 3(c) except that
In the case wheny, 3 # 0, undesirable variations of chargeorder of current approximation along each patch coordinate
distribution are obtained. Since the shapes that produce greleincreased by one, i.e., the higher order approximation is
deviation of charge distribution are less desirable, the shapsed. Fig. 4 shows 3-D graphs of charge distribution that cor-

quality factor can be defined as a ratio of minimal and maximegspond to the currents shown in Fig. 3. It is seen that current
charge density distribution does not depend much on the quadrilateral shape.

] On the other side, corresponding charge distributions can show
_ min{p,(U,V)} _ 2—of - |/3|. (18) large variations, as expected according to the second of (14).
max {p;(U,V)} 2+ |o| + 3] Finally, undesirable local variations of charge distribution can

the total current over the bilinear surface is obtained as

Js tot(U7 V) = JSU(U7 V)+J5V(U7 V) =
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(exact formulation) and triangle doublets, two complex exam-
ples are given. As a first example, let us consider the square
plate scatterer of sizeAXk 3\ with two triangular holes, as
shown in the inset of Fig. 6. The scatterer is situateddny
plane withy axis along the longest hole edge. Incident electric
field has only® component. Fig. 6 shows monostatic RCS in
the planep = 90° versus angl®@. Results obtained by rooftop
basis (980 unknowns) are compared with the measured and
the theoretical results (1848 unknowns) from [13]. It is seen
that the results obtained by quadrilateral modeling are closer to
the experimental results than the results obtained by triangular
modeling. As a second example, let us consider the scatterer in
the form of spherical radome. Inner and outer radii of random,
dielectric constant, and operating frequency are=- 0.5 m,

© O b=0.6m,es,. =4, andf = 0.3 GHz. The scatterer is centered
Fig. 3. Current distribution over strip scatterer shown in Fig. 2 (the scattergt the origin and is illuminated by an polarized,z traveling
lr?(;]r?rtgllingy\l\ggﬂi]ngrcjdeznt_pl/\a/nze 6\1/\r/]:vg, v_vhilc/hui)é -rl;glearisz(::lctitez;r:)rnés aexscclﬁir;elane Wa_ve' Geometrical model of th? She.” . _glven in the
length). Rooftop basis functions are applied in the casesXar 1, (b) inset of Fig. 7. (A quarter of the model is omitted in order that
@ =1/2, and ()@ = 10. Higher order approximation is applied in thejnner surface can be inspected.) Fig. 7 shows bistatic RCS in
case ()@ = 1/10. the planey = 0° versus angl@. Results obtained by rooftop
basis (768 unknowns) are compared with the exact and the
theoretical results (1848 unknowns) from [14]. It can be seen
that the results obtained by quadrilateral modeling are closer
to the exact results than the results obtained by triangular
modeling. Having this and some other examples in mind, it can
be concluded that triangular modeling requires almost twice
more unknowns than quadrilateral modeling based on exact
formulation.

VI. CONCLUSIONS

The exact formulation of doublets and particularly rooftop
basis functions, suitable for subdomain modeling is presented.
When compared with classical (approximate) formulation, the
exact formulation has the following advantages:

1) it satisfies continuity equation locally, i.e., at each point

Fig. 4. Charge distributions that correspond to current distributions given in of the interconnection;

Fig. 3. 2) current component normal to the interconnection is
constant.
be avoided by using higher orders of approximation. In the particular case of rooftop basis functions, this for-

Let us consider radar cross section (RCS) of the sammulation has an additional advantage: it enables modeling of
scatterer except that its width i® = [/50. Fig. 5 shows constant current distribution.
bistatic RCS (normalized by maximum value) in a plane Hence, in the general case, exact formulation of doublets
@ = 0° versush. Fig. 5(a) shows the results obtained by usingnables higher accuracy and faster convergency of the results
rooftop quadrilateral basis functions (exact formulation) fahan approximate formulation.
() = 1/2 and for different number of patches= 12, 24, 48. This formulation does not enable modeling of the constant
(Almost the same results are obtained &@r= 1.) Fig. 5(b) charge distribution. Moreover, local variations of charge distri-
shows the same results as Fig. 5(a) except that approximiatgion depends only on quadrilateral shape. Hence, the shape
formulation is used. Fig. 5(c) shows the same results geality factor® is defined as a ratio of minimal and maximal
Fig. 5(a), except thaf) = 1/10. Having this and many other charge density over the quadrilateral. It is shown by numerical
examples in mind, it can be concluded that acceptable resuigperiment that acceptable overall solution can be obtained
can be obtained even by using quadrilaterals of very {dw by using quadrilaterals of very low} (e.g., @ = 1/100).
e.g.,@ = 1/100. However, the number of unknowns needetiowever, in order to minimize the number of unknowns
for accurate analysis increases for highgr especially if needed in the analysis quadrilaterals of relatively high
approximate formulation is used instead of exact one. In tebould be used (e.g2 > 1/2). If such quadrilaterals are used
case when exact formulation is used, the optimal geometriéat modeling of general structures, the number of unknowns
model should contain patches for whi¢h> 1/2. is almost halved when compared with modeling by triangular

In order to compare the efficiency of rooftop basis functiorgoublets.
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which is polarized along a scatterer length.) Results are shown for different number of patéfreboth formulations and for two shape quality factors:

(a) exact formulation = 1/2; (b) approximate formulatio) = 1/2; and
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Fig. 6. Monostatic RCS of scatterer shown in the inset (normalized by

wavelength squared) in the plage= 90° versus anglé. (The square plate
scatterer of size 8Bx 3\ with two triangular holes is situated inOy plane
with y axis along the longest hole edge. Incident electric field has énly

(c) exact formulatio = 1/10.
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