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Application of Discrete Periodic Wavelets
to Measured Equation of Invariance
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Abstract—Recently, the wavelet expansions have been applied 1 2 3
in field computations. In the frequency domain, the application
is focused on the thinning of matrices arising from the method
of moment (MoM) [1]-[4]. The thinning of matrices can best be
done by the measured equation of invariance (MEI) [5], which
provides sparsity almost without sacrificing accuracy [6] in that
the boundary equation it entails is convertible to that of the
MoM. The real power of the wavelet expansions is to give high
resolution in convolution integrals. High resolution is also needed
in the process of finding the MEI coefficients, which are obtained
via an integration process almost identical to that of the MoM.
In this paper, it is shown that when the fast discrete periodic 1 2 3
wavelets (FDPW) are used as metron currents in the MEI method, —_— —
the resolutions of the MEI coefficients are improved at high-
frequency computations or at geometric extremities. The level of
sparsity of the MEI is much more favorable than that achievable
by the thinning of MoM matrix using the wavelet expansions.
The role of FDPW in the MEI happens to be more fitting than (b)
its place in the MoM.

Fig. 1. (a) Six-node subsection mesh for circular cylinder. (b) Four-node
Index Terms—Measured equations of invariance, wavelets, ~ Subsection mesh for rectangular cylinder.

elements. Thus, the wavelet expansions can play a role fitting
| INTRODUCTION its ability in the MEI method.

ECENTLY, wavelets have been used as base functionsin this paper, the fast discrete periodic wavelets (FDPW)

in the boundary integral equations, the objective is ttere used as metron currents in the MEI method. The effect
thinning of the method of moments (MoM) matrices [1]-[4]is improved resolution of the MEI coefficients, which has
For the scattering problem of a perfect conduct circular cylinlirect impact on the accuracy of the calculated results. The
der with its diameterd = 9A, the most favorable level of improvement is most visible at high frequencies or at geo-
thinning so obtained is a sparsity of 11.5%, and it is dormetric extremities where some fine details of the results may
by a substantial sacrifice on the accuracy of the solution [He blurred due to insufficient resolution when the sinusoidal
That level of thinning is still far behind the level of sparsitynetron currents are used. However, for a cylinder of small
achievable by the measured equation of invariance (MEkpdius or regular geometric scatterer, the FDPW metrons give
which, for a simple problem of the same circular cylindemlmost same the results as the sinusoidal metrons.
the sparsity of the MEI is 2.3%. For a much larger cylinder
of diameterd = 4,000}, it has been demonstrated [8] that Il. THE MElI METHOD
the number of matrix element in the MEI is only 0.015% of For the purpose of present discussion, we shall briefly

a i?]rrespolnding fullfmﬁ\trix. | . is in the i describe the MEI procedures in the followings. The MEI is
e real power of the wavelet expansions Is In the Moy o 5 mesh boundary to find the terminating equations,

proving of the resolution of the convolution integrals. So, it§uch as shown in Fig. 1. Instead of deriving the equation, the
ability could be better utilized in the area of improving the | i iantsa’s of '

accuracy of calculation rather than thinning the matrix. The )
MEI method is one where the matrix is already very sparse, = —0
but there is plenty of room to improve resolution of the matrix Z aip; =

1)
i=0
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Fig. 2. Daubechies periodic wavelets on a discrete circle with néden?

filter length 20. Fig. 3. TE surface current comparison for a circular cylinder of diameter
d = 9.

wherec is the surface of the target” is the surface electric or

magnetic currents of the target. The currents in (2) are callggh _ Sngn € Z,=1{0,1,2,--,27 — 1}, with f* = 0, {04

“metrons,” and a linearly independent set of them should gi\ﬂgnotesy the zero vector itr*(Z;)}, and w™ = 0, {Om

a linearly independent se_t pf measurin_g functiof. — 1) _ denotes the zero vector #°(Z,,)} form € {k+1,---,p—1}

or more metrons are sufficient to provide enough equatioggy perform the following inverse discrete wavelet transform:

to solve for the MEI coefficients,;. The question arises as

to what functions are most appropriate to be metrons. In Pphoap =LyLy ;- ZHH;Hw’“ 4)

principle, any continuous function af which resembles an

induced current density can be used as a metron. Without aMyere the filter sequencés;] and [Hy], & = {1,2,---,p},
further guidance, sinusoidal functions denote the adjoints of low-pass filtf;] and high-pass filter

[Hi].
J*(1)=1, cos 27”[, and sin 2nrl Fig. 2 shows an example of the periodic discrete wavelets
produced by Daubechies filters of length 20 and base level
seven with shift zero.
have been used as metrons, whéres the length alonge It should be noticed that there exits a length matching
measured from an arbitrarily chosen reference point, AndProblem between the wavelet support lengthe®d the target
is the total length of the circumference of the target. Tho§@ntour lengthn. It requiresn = 27 for A/h = 20, which
are convenient functions for metrons, but they may not be tife@ ratio of the incident wave wavelengthto the discrete
best. When the target is small the metrons of (3) serve quiiep sizeh.
well. But, when the size of the target increases, for example, a
circular cylinder of diameted = 9, the details of the induced IV. NUMERICAL RESULTS
current densit.ies gt the shadow side of the cyIindgr fpr the TEThe induced current densities on the surface of a conducting
case, ShOW.” in F_|g. 3, are blurred. One suggest_mn s that %Wcular cylinder of diameterd = 9X with A\/h = 18
inaccuracy is a disproof of the postulate of invariance [9] ar? is discrete step size), mesh layer 2, and the MEI

(712172,3,---) (3)

another is that it is merely a lack of resolution of the equatio Sibsection nodeV — 6. are recalculated using the FDPW
th&.lt produces the MEI.coefﬂmenFs [10]. If the wavelets are abvﬁth Daubechies filters of length 20 as metrons and the results
to improve the resolution of the integral of (2), they should bgf an @ incident TE plane wave are also shown in Fig. 3 with

better candidates than the sinusoidal metrons of (3). comparison to analytical result and sinusoidal MEI's result. It
is clear that the details of the oscillation of the current at the
IIl. FAST DISCRETE PERIODIC WAVELETS back side of the cylinder is now accurately calculated.

There are many ways to generate wavelets [11]. For conve-Another case we have tested is the scattering of an 0
nience, we have chosen the FDPW algorithm of Getz [12] aimtident TE plane wave by a thin metal plate with 12léngth
Vetterli [13] to generate orthogonal discrete periodic waveletsd 0.05 width. It is shown that when the sinusoidal metrons
over the surface of a target for the MEI coefficients. In thare used, there are significant amount of errors, and when
following, we shall briefly describe the filter bank algorithmshe FDPW with Daubechies filters of length 20 are used as
to create a set of the orthogonal and periodic wavelets.  metrons the improved resolution of the MEI equations almost

To construct a levelk, shift ¢ wavelets [/*27] (level eliminate all the errors, Fig. 4. The CPU time of the wavelet
ranges from0 to p — 1, shift ranges from 0 to2* — 1), MEI in a SunSparc workstation is 12 s, which is identical
n € Z, = {0,1,2,---,27 — 1}, at base levelp one sets to the CPU time of the sinusoidal MEI. The reason is only
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to be generated. So, comparing to total CPU time for SOIVirﬂlgeory and numerical computational methods (time-domain finite-difference,

whole problem, the time for generating five wavelets is almoftite element, integral equation methods, etc.) to solve electromagnetic

negligible. However. the CPU time of the MoM to solve th@roblems such as scattering, antennas, microwave circuits, very large-scale
' . . . integration (VLSI) interconnects, and multichip module packagings.

same problem needs 82 s which is about seven times more

than the wavelet MEI.
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Fig. 4. TE surface current comparison for a thin plate.
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