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A Novel Exact Two-Point Field Equation (2PFE)
for Solving Electromagnetic Scattering Problems

Yong-Lun Luo, Kwai-Man Luk,Senior Member, IEEEand Siu-Ming Shum

_Abstract—The finite-difference (FD) method is a basic tech- calized partial differential boundary operators were employed
nique for solving differential equation. The disadvantage of it to keep the sparsity of the matrix equation. However, unlike
for electromagnetic (EM) problems of an open region is that the the global boundary condition of [11], the distance between

mesh needs to be terminated with the application of a proper L -
boundary condition. In this paper, a novel exact two-point field 1€ Object’s surface and the absorbing boundary must be large

equation (2PFE) is derived from rigorous analysis of the radiation €nough to reduce the spurious reflection of the propagating
field and it is proposed to be used as the termination boundary wave. This requirement results in an increase of the compu-

condition (BC) for SOlVing EM Scattering problems in the open tational domain. A number of different forms of ABC’s and

region by the iterative FD method. This 2PFE-BC approaches its ,, arical implementation were shown in [12]-[14]. In [15]
exact solution through the iteration process and, at the same time, ) !

the scattered field and the induced current density approach their numerical ABC's (NABC's) are analytically discussed.

exact solutions. The novel 2PFE is simple in concept and easy to Another mostly notable and widely used method for
apply. The validity of the 2PFE and the iterative FD method has mesh termination is measured equation of invariance (MEI)
T e o e lon (21) scatierng proer (16}-{18). The basio orm of the VEL s the FD [19]. The ME
those obtained by m?a/thod of moments (MC?IVI) or r¥1easured was introduced _by Meet al. in 1992, as a mesh tgrmlnatlon
equation of invariance (MEI). boundary condition for the FD method. In this method,
many metrons (reasonable sources) are used to find the MEI
coefficients. These MEI coefficients fix the field relation of an
exterior layer point with the fields of its neighboring points. In
[20]-[24], some progress on the MEI and discussions about the
I. INTRODUCTION MEI in solving scattering or radiation problems are reported.

HE NUMERICAL simulation of electromagnetic (EM) Itis desirable to find a boundary condition simple in concept
scattering and radiation from a two- or three-dimensionand easy to use to terminate the mesh in order to reduce the
(2-D or 3-D) object has been established [1]-[10] and it h&&ze of computational domain. Recently, Sar&eal. [24]-[26]
been playing an increasingly important role in EM field theorproposed an exact method for simulating boundary condition
and applications. Most of the numerical methods are bas&f mesh termination in FD techniques. Much effort has been
on mathematical model of differential equations or integréhade in their research. The main idea of this method, as
equations. To solve these equations, the space is mapped éx@essed in [24], is as follows. At the beginning of the
a grid, and the solution is sampled at the grid points. Theritgration, the potential is assumed to be zero on the termination
numerical solution is found that represents the exact solutigtesh. Then, using this potential as a boundary condition, the
as accurately as possible. potential at interior mesh points can be solved. The charge
Finite difference (FD) and finite element (FE) are two basidensity distribution can be computed from the potential of
methods in the analysis of EM wave propagation problemigterior mesh point. And this charge density distribution is
By FD or FE, the unbounded spatial domain needs to biéed to evaluate the new potential on the termination mesh
terminated by an artificial boundary in order to make thend now the iterative process continues. This method seems
computational domain finite; and boundary conditions ate be very desirable. But actually it cannot always work well.
required for the termination points. In [11], an exact boundaAdthough the potential on the termination mesh being used
condition at the outermost boundary is developed that imposasl the termination boundary conditions are generated from
the radiation condition in a rigorous manner. But this boundatige Green’s function, which is used to enforce the radiation
condition is a nonlocal integral representation that relates tbendition, the iteration process can't be forced to converge to
field variables at each point on the object’s surface to thoee exact solution in many cases.
at the every other point on the same surface. Therefore, itin this paper, a novel and exact two-point field equation
generates a full matrix, which spoils the sparsity of the FEPFE) is derived and proposed to be used as termination
matrix and, hence, increases the computational cost. In [1Bhundary condition for FD mesh. We first start in Section Il
absorbing boundary conditions (ABC’s) were proposed. Levith the rigorous analysis of a radiation problem to define
the 2PFE for two arbitrary points in space using a coefficient

Index Terms—Boundary condition, finite-difference methods,
mesh termination.
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is exact for arbitrary two points in space and it sets up for these
two points, a simple and clear relation between: 1) the source
distribution; 2) the geometrical information of the radiator; and

3) the radiation fields. Second, the 2PFE is proposed to be use
as the boundary condition to terminate the FD mesh in an exa

manner when solving a scattering problem. For a scattering
problem, the induced current density and the scattered field are
unknown. So is the 2PFE coefficient. But actually, the induced
current density, the scattered field and the 2PFE coefficient can
be obtained by an iterative process simultaneously. Section |l
demonstrates the iterative process and the FD analysis of two-
dimensional (2-D) scattering problems with the use of the
2PFE as the mesh-termination boundary condition. An initia
source value needs to be set for the first iteration and the resu
are used as a new trial value. This process is repeated until

the result reaches the required accuracy. Through the itera@is

!% 1. Geometry of EM scattering problem and conformal FD mesh.
S

process, the 2PFE boundary condition approaches to its exact '

solution and, simultaneously, the induced current density and () = / J(7)G (7, 7)dl'. (3b)
the scattered field of the scattering problem approach their ¢

exact solutions. G(7, ) is the Green function. And a scalar coefficient

The 2PFE can be applied to arbitrary two points in spacg(,, 7%, .J) is used to specify the field relation of these two
so it can terminate the mesh at a position very close to tpeints as
object’s surface. This advantage results in the reduction of .
unknown numbers. In Section IlI, several scattering problems () + A7, 72, J)P(72) = 0 (4a)
have been solved in order to test the validity of the 2PFE and
the iterative FD method. Corresponding results by method 9f

moment (MoM) [3] or the measured equation of invariance | - D7)
(MEI) are given for comparison. Very good agreement can &7 72, J) = = ()
observed from these results.
/J(*')G(w, 7 dl
[l. THE TwO-POINT FIELD EQUATION = - /CJ(W)G( B (if ©(7%) #0).
Let's consider the boundary value problem of a vector EM c 0
field ¢(7") in open space domai® bounded by(S, + S.). (4b)
Let £ be an operator, and the mathematical model for this ) )
problem can be expressed as Equation (4) is designated as the 2PFE. In general, the
coefficientA(7, 7%, .J ) depends on: 1) the observation points;
[,(é(;)) =0 FeD (1a) 2) the geometry of the scatterer; and 3) theﬂexcitation source.
o From (3) and (4), it can seen that(7, 7>, J) is exact if
B(é(;)) _ { F) T e S (1b) ®(71) and &(7%) are exact.
0 7 — 00, Se. When solving a scattering problem, the 2PFE is used to

S, is the object boundary contous, is the exterior boundary €XPress the relation of scattered field at the exterior layer
cSntour.B is also an operator aeng!(?’) is the source or Points with its immediate inner neighboring points. Therefore,
excitation term. Equation (1b) is the boundary condition whict €&n be used to terminate the FD mesh. The coefficient

may also be a differential equation such as Dirichlet, Neumanfi{1- 72, /) can be obtained by an iterative process. In the

or radiation condition. For the case of EM radiation (oP€Xt section, the 2PFE is applied to solve 2-D scattering

e

scattering) problem@(7) is the field radiated by a currentProblems. The convergence of coefficiet(t™s, %, /) is also
source.J(7) on the object. Equation (1a) can usually b&tudied.
rewritten as

s oz . [ll. APPLICATION IN FD SOLUTION OF 2-D PROBLEMS
(V-+E5)e@EF)=0 7eD. (2) . o
The scattering and radiation problems are two of the most

Here we consider only the basic case of scalar fielddigt) interesting problems in EM field theory and applications.
and®(#,) be the scalar fields at two arbitrary poirisand, When an incident wave strikes on a metallic object, it causes

in spaceD, respectively, as shown in Fig. 1. These two scal@n induced current to flow on the object’s surface and, in turn,

fields can be expressed with the souttfe’) as this current radiates a scattered wave. The induced current
density and the scattered wave are the unknowns to be solved.
(7)) = /J(;/)G(;b ) dll (3a) In this section, the 2PFE is applied to solve the scattering
c problems of some 2-D metallic bodies.
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A. The Field Formulation With the totalE and H in space domaif®, the induced current

s consider the scalar problem of computing the inducdgnsities on the object surface are therefore expressed as
current density on the perimeter of a 2-D perfectly conducting .

. : N . ) . OE(¥
z-directed cylinder which is |IIumlnated by an uniform plane — ka” 8(7 )
wave travelling in the direction of in free-space. Two cases J OWO&Z P
of TM_ and TE, incident waves are considered here f( =<4 = ~hom 0 [E7 (7)) + ¢(7)], TM,. wave
ine _ i = . rd
{.@ =a.Ey eXp{—Lbk_’- 7 }, TM. wave (5) &tH( ;:/) = Hénc(;:/) + ¢(7 ) 7 TE. wave.
He = a,Hy exp{—ik -7}, TE, wave 70

(10)
where the time factoe’* is suppressed?: ko (G cos @+ He_re a; is the unit vector tangential to the surface of the
&, sin @) is wave number vectok, = 27 /), 7 = d,x + a4,y cylinder.
is a point in space(a,, d,) are the two unit vectors, and
¢ is the angle between the traveling directibrof incident B. The FD Matrix Equation
wave and ther axis. Each of these two incident waves will To use FD method to solve the scattered field problem, the
induce a current diStribution on the Surface Of the Cylinder. ngace around the scatterer is discretized as FD mesh, as shown
convenience, we usg(i”) to express the unknowsrdirected jn Fig. 1. For the points between the cylinder surface and the

scattered field for these two incident wave cases as exterior layer, (8a) is employed and is sampled into a standard
E5(7) five-point FD equation. For points on the object’s surface,
P(r) = {77 ;ISC(F) } the boundary condition (8c) is applied. And (4) is applied for

exterior points on the termination mesh layer. Egbe a point

j{‘]s(;/)a(ﬂ #)d¢', TM. wave on the exterior mesh layer and is its immediate inner mesh
e (6) point. The 2PFE for these two points is
M,(#G(F|7)d¢, TE, wave -

wheren, = /1i,/¢, is the intrinsic impedance of free space. Finally, using the FD equations, boundary conditions on
The superscript 4" stands for scattering fieldJ; is the the surface of the cylinder, and (11) for the exterior layer
induced electric current density on the surface of the cyllndﬁbims' the unknown scattered fields at every mesh point can

for TM. incident wave case, wheread, is the induced he symmarized into a complex linear sparse matrix equation as
magnetic current density on the surface of the cylinder foy TE

incident wave case. The integration is taken over the contour [M][®>] = [s]. (12)
C of the cylinder which is the cross-sectional boundary of

the cylinder.d?’ is the arc length of the current filament onn (12), the vectof®*] is the unknown scattered field term,
C. The Green’s function for the 2-D radiation problems igyhich represents** fields for TM. case ory, H** field for

free-space is TE. case, respectively. The vectds] contains the source
I terms of excitation, whose elements are usually zero except
GF|7) = OTUO HéQ)(kOW— 7|) (7) for points on the object’s surface. The constructed méuel¥,

related to the whole EM problem, is a very sparse matrix.

whereHéQ)(a:) is the Hankel's function of second kind and of1OSt of the elements ifM] are zero elements. The nonzero

S ; . elements are mainly concentrated in the diagonal band.
order zero.)() must satisty (1) or (2). That is If the 2PFE coefficientd(7, 7%, .J ) at each exterior point
(Vi + E)(7) =0 (8a) is knowr_1, the unknown scgttered field for. each point could
AH(7) be obtained only by solving (12). But in fact, same as
7+jk</)(77) =0 when+ — oo (8b) the scattered field®*¢] and the induced current density

J(#), the coefficientA(7,, 7%, J) for the termination layer
is still unknown up to now. Next, we will discuss how to

. ' i ), (@ A7, 7oy T
where V, = 92/9z* 4+ §%/9y? is the transverse Laplaceo.btaln the exact solut.|on qﬁ(7 ), [27] and A(71, 72, J)
simultaneously by an iterative process.

operator. Equation (8b) is the Sommerfeld radiation condition
for scattered field at the infinityr(— oo). Equation (8c) is )
the boundary condition on the surface of the cylinder. Eet C. The lteration Process

and H represent the total electric and magnetic field intensity, To find the solutions of/(#), [®*], and A(7y, 7%, J)

E’tan(;:/) :E’znc(;»/) + E’sc (7/) -0 (8C)

tan tan

respectively. Therefore, of a scattering problem, an iterative process is used. This
o . process starts with setting a trial value for the induced current
E=E()+6(7), TM; wave density J%(#) for the first iteration. Let/?(7) be the value
H = H"(7) + ‘7)(7’)’ TE. wave. (9  of the current density obtained after iteration, then the

Mo corresponding 2PFE coefficiemt?(7, 7, J ) is calculated
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Fig. 2. Convergence ofi(7, 72, f,) and J obtained by 2PFE and iteration method. The scatterer is a conducting rectangular cylinder with dimensions

1Ax 2\ and ¢ = 180°. (a) FD mesh. (b) Real part ofi(7, 7, f).
from (4) as
- er(ir)
AP 7 T = —
(717727 ) <I>P(7_’2)

=l

7

VG |7) de

g
o

(13)

7

VG(7y |7) de

scattered fielgp”*1(+) is obtained. Consequently, a new value
JPHL(7) can be obtained from (10). Using?+1(7) as a
new trial current and repeating the above process iteratively,
a steady solution can finally be obtained. The termination of
the iterative process depends on the required accuracy.
Unlike [24]-[26], the termination boundary condition in-
volves two points and the coefficient(r, 7>, f) in (4) is
expressed as a ratio of the fields at these two points so that it

which is used as a new boundary condition for the exterianakes the field relation rigorously, not merely directly using

layer points to determine the field valgé;”) in the (p 4 1)th
iteration as

PPFL()) + AP(7y, 7, J)BPHL() = 0. (14)

Then the FD matrix equation (12) can be set up for(ghe1)th

iteration process. Solving this FD equation, a new value obndition and the iterative FD method(7), J(

the field value calculated by integration on the termination
mesh layer as a termination boundary condition. This ratio
of fields filters out the ill-manner effects due to amplitude or
phase of the trial source.

It is helpful to explain more about the 2PFE boundary

7) and
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(d)

Fig. 2. (Continued) Convergence ofA(7, 7, f) and J obtained by 2PFE and iteration method. The scatterer is a conducting rectangular cylinder with
dimensions Ax 2\ andp = 180°. (c) Imaginary part ofA(#, 7>, J ). (d) The induced current density.

A(7, 7, f) are actually the three related parameters of A(7, 7%, f)of@(?l) and®(+%) from (4b) may be impossible
scattering problem. From (4), it can be seen that the 2P points in space where one (or both) of the fields because
coefficient A(7, 7, f) is related to the sourcd(7’') or zero. This problem can be solved by adjusting the locations
the field ¢(+). So for a scattering problem solved by thef the grid points.

iterative FD method, approaching of the exact solution of As an example, Fig. 2 shows the convergence behavior
J(#) or ¢(r) is equivalent to approaching the exact solutiowhen the 2PFE boundary condition and the iterative FD
of A(#, 7, f). From above it can be seen that in everyethod are applied to solve a scattering problem. The scatterer
iteration: 1) the information of the scatterer’'s geometry arid a rectangular perfectly-conducting cylinder with dimension
the boundary condition is transferred ¢¢') by (12); 2) the of 1Ax 2\. The TM, incident wave comes from normal
information of incident wave and(+) is transferred ta/(7') direction. Fig. 2(a) shows the mesh of the cylinder. This FD
by (10); and 3) the information of (#') and the scatterer's mesh has three conformal layers with node step size 0fX0.05
geometry is also transferred t&(7, 72, f) by (3) and (4). The initial value of current density for the first iteration is
The Green'’s function is applied in the integration for fieldsaken as one everywhere. Fig. 2(b) and (c) shows the real part
to enforce the radiation condition. Thereforg(7"), J(7/), and the imaginary part of the 2PFE coefficiebtr,, 7, J)

and A(7, 7, f) are adjusted toward their exact solutionn each iteration. Fig. 2(d) shows the induced current density
through the iterative process by repeatedly using the incideastulted from the iterative process. The corresponding MoM
wave, the boundary condition on the object’s surface and thelutions are also obtained for comparison. From Fig. 2(b)—(d),
current integration. One may observe that the calculation ibfcan be seen that after four iterations, the 2PFE coefficient
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Fig. 3. Induced electric current distributions on a 2-D conducting circular cylinder (raglus normal incidencep = 180°).
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Fig. 4. Induced electric current distributions on a 2-D conducting square cylinder (dimenslons33 normal incidencey = 180°).

Ay, 7, f), and the induced current densify 7') converge 2PFE as a mesh-termination boundary condition. The initial
to steady-state values which are almost the same as the Medue of the current density for the first iteration is taken as
solutions. one everywhere. Of course, other nonzero current density may

It should be pointed out that neither (4) or (14) is an artificidde used without affecting the final solution. Fig. 3 shows the
termination boundary condition for the termination FD mestalculated induced current densities on a circular conducting
layer; it is an exact field relation. No approximation has beaylinder with radiusr = 1A. L = 2x ) is the perimeter
made on deriving it. Next, we will examine the validity ofof the cylinder. Fig. 4 shows the calculated induced current
this 2PFE and the iterative FD method by solving some 2-fflensities on a square-conducting cylinder of dimensions 3
scattering problems. 3X. Normal incidence$ = 180°) is studied in this case. Fig. 5
shows the calculated induced current densities on a rectangular
conducting cylinder of dimensions\k 3. Oblique incidence

In this section, numerical results based on the 2PFE and {ge= 225°) is studied in this case. Fig. 6(a) and (b) shows,
iterative FD method are reported. We have tested this novekpectively, the calculated induced current density for the
method by applying it to solve a variety of scattering problemEM . and TE incident waves on a cavity-like conducting
involving 2-D perfectly conducting scatterers. Both cases oflinder with dimensions: = 4.4\, b = 2.4\, ¢ = 1.7,
TM. and TE wave incidence are taken into account. Thé = 1.2\, r1 = 0.2}, andr, = 0.5)\. Normal incidence
induced current densities on the surfaces of scatterers wigh= 180°) is studied in this case.
different cross-sectional shapes and different dimensions havd@o check the results obtained by the 2PFE and the iterative
been calculated by the iterative FD method with the use of tR® method, corresponding results by MoM and MEI are also

D. Numerical Results
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Induced electric current distributions on a 2-D cylinder scatterer with a cavity-like indentation (dimensienst.4X, b = 2.4\, ¢ = 1.7A,
1.2\, r1 = 0.2A, andry = 0.5X; normal incidence = 180°). (a) TM. wave case. (b) TE wave case.
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calculated for comparison. It can be seen that these resuly
agree very well. This indicates that the new method is valid

for solving 2-D scattering problems. All the results given in!*l
this paper are obtained under such a mesh step size ok 0.0f)
and three conformal mesh layers and are carried out on a
Pentium personal computer. [6]

E. Computation Time [7]

For MoM, the dominant part of computation time is of order
O(N?®) and it is spent mainly on calculating the inversion of(8
its full matrix. Here,N is the number of unknowns. For MEI,
the dominant part of computation time is on the integrationg]
process for measuring functions. The time spent on a single-
metron integration is of orde®(N?) [18]. But the total
time of integration should take the number of metrons into
account.
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R. F. Harrington Field Computation by Moment MethodsPiscataway,
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__, “The method of moments in electromagnetic3, Elect. Waves
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K. K. Mei and J. G. Van Bladel, “Scattering by perfectly-conducting
rectangular cylinders,IEEE Trans. Antennas Propagatvpl. AP-11,
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M. G. Andreasen, “Scattering from parallel metallic cylinders with
arbitrary cross sections|EEE Trans. Antennas Propagatiol. AP-12,
pp. 746-754, Nov. 1964.

D. R. Wilton and C. M. Butler, “Effective methods for solving integral
and integro-differential equationsElectromagn. vol. 1, pp. 289-308,
July-Sept. 1981.

T. K. Sarkar, “A note on the variational method (Rayleigh-Ritz),
Galerkin’'s method, and the method of least squarBstlio Sci. vol.
18, pp. 1207-1224, Nov./Dec. 1983.

S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering
by surfaces of arbitrary shapelEEE Trans. Antennas Propagauol.
AP-30, pp. 409-418, May 1982.

E. H. Newman, “An overview of the hybrid MM/Green’s function
method in electromagneticsProc. IEEE,vol. 76, pp. 270-282, Mar.
1988.

The proposed method has the advantage of producing Spé}éb X. Yuan, “Three-dimensional electromagnetic scattering from inhomo-

matrices. The dominant part of computation time is on the
integration process for determining the coefficiel{t;, 7). [12]
For each iteration, the major computation time is of order
O(N?). The total computation time for this new metho
should be the time for each iteration multiplies the number
of iteration required. It can be seen that the computation time
for this new method is of the same order of the computatidﬁ“]
time of MEL.

[15]

[VV. CONCLUSION [16]

The 2PFE is simple in concept and easy to use. It is an exact
field relation and can be used as the termination boundary
condition for solving scattering problems by iterative FQi7)
method. The virtue of the application of the 2PFE in solving
a scattering problem is that the mesh can be limited to th198]
vicinity of the scatterer in a simple and exact manner. So the
size of computational domain and the number of unknowmm]
can be reduced and, at the same time, the iteration process
could be converged easily. Furthermore, the whole problem['é%]
inferred to a sparse matrix equation, not a full matrix equation.
This results in saving in both computation time and computer
memory. 21]

The 2PFE is different from the theory in [24]-[26] because
it does not directly use any field value as the terminatida2]
boundary condition. The 2PFE is also different from the MEI
because it does not employ any postulates. Furthermore,
2PFE involves only two points, the corresponding FD matrix
is more sparse than that of MEI. The initial value of induced
current density for the first iteration can be any value other th
zero. The 2PFE has been used successfully for solving many
2-D scattering problems. Further study is on the extension to

three-dimensional problems. (25]
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