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Abstract—The finite-difference (FD) method is a basic tech-
nique for solving differential equation. The disadvantage of it
for electromagnetic (EM) problems of an open region is that the
mesh needs to be terminated with the application of a proper
boundary condition. In this paper, a novel exact two-point field
equation (2PFE) is derived from rigorous analysis of the radiation
field and it is proposed to be used as the termination boundary
condition (BC) for solving EM scattering problems in the open
region by the iterative FD method. This 2PFE-BC approaches its
exact solution through the iteration process and, at the same time,
the scattered field and the induced current density approach their
exact solutions. The novel 2PFE is simple in concept and easy to
apply. The validity of the 2PFE and the iterative FD method has
been tested. Several two-dimensional (2-D) scattering problems
have been successfully solved. The results agree very well with
those obtained by method of moments (MoM) or measured
equation of invariance (MEI).

Index Terms—Boundary condition, finite-difference methods,
mesh termination.

I. INTRODUCTION

T HE NUMERICAL simulation of electromagnetic (EM)
scattering and radiation from a two- or three-dimensional

(2-D or 3-D) object has been established [1]–[10] and it has
been playing an increasingly important role in EM field theory
and applications. Most of the numerical methods are based
on mathematical model of differential equations or integral
equations. To solve these equations, the space is mapped onto
a grid, and the solution is sampled at the grid points. Then a
numerical solution is found that represents the exact solution
as accurately as possible.

Finite difference (FD) and finite element (FE) are two basic
methods in the analysis of EM wave propagation problems.
By FD or FE, the unbounded spatial domain needs to be
terminated by an artificial boundary in order to make the
computational domain finite; and boundary conditions are
required for the termination points. In [11], an exact boundary
condition at the outermost boundary is developed that imposed
the radiation condition in a rigorous manner. But this boundary
condition is a nonlocal integral representation that relates the
field variables at each point on the object’s surface to those
at the every other point on the same surface. Therefore, it
generates a full matrix, which spoils the sparsity of the FE
matrix and, hence, increases the computational cost. In [12],
absorbing boundary conditions (ABC’s) were proposed. Lo-
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calized partial differential boundary operators were employed
to keep the sparsity of the matrix equation. However, unlike
the global boundary condition of [11], the distance between
the object’s surface and the absorbing boundary must be large
enough to reduce the spurious reflection of the propagating
wave. This requirement results in an increase of the compu-
tational domain. A number of different forms of ABC’s and
numerical implementation were shown in [12]–[14]. In [15],
numerical ABC’s (NABC’s) are analytically discussed.

Another mostly notable and widely used method for
mesh termination is measured equation of invariance (MEI)
[16]–[18]. The basic form of the MEI is the FD [19]. The MEI
was introduced by Meiet al. in 1992, as a mesh termination
boundary condition for the FD method. In this method,
many metrons (reasonable sources) are used to find the MEI
coefficients. These MEI coefficients fix the field relation of an
exterior layer point with the fields of its neighboring points. In
[20]–[24], some progress on the MEI and discussions about the
MEI in solving scattering or radiation problems are reported.

It is desirable to find a boundary condition simple in concept
and easy to use to terminate the mesh in order to reduce the
size of computational domain. Recently, Sarkaret al. [24]–[26]
proposed an exact method for simulating boundary condition
for mesh termination in FD techniques. Much effort has been
made in their research. The main idea of this method, as
expressed in [24], is as follows. At the beginning of the
iteration, the potential is assumed to be zero on the termination
mesh. Then, using this potential as a boundary condition, the
potential at interior mesh points can be solved. The charge
density distribution can be computed from the potential of
interior mesh point. And this charge density distribution is
used to evaluate the new potential on the termination mesh
and now the iterative process continues. This method seems
to be very desirable. But actually it cannot always work well.
Although the potential on the termination mesh being used
as the termination boundary conditions are generated from
the Green’s function, which is used to enforce the radiation
condition, the iteration process can’t be forced to converge to
the exact solution in many cases.

In this paper, a novel and exact two-point field equation
(2PFE) is derived and proposed to be used as termination
boundary condition for FD mesh. We first start in Section II
with the rigorous analysis of a radiation problem to define
the 2PFE for two arbitrary points in space using a coefficient
which we called 2PFE coefficient. The fields are obtained
by the integration of the source over the radiator’s surface,
using the property of Green’s function. In general, the 2PFE
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is exact for arbitrary two points in space and it sets up for these
two points, a simple and clear relation between: 1) the source
distribution; 2) the geometrical information of the radiator; and
3) the radiation fields. Second, the 2PFE is proposed to be used
as the boundary condition to terminate the FD mesh in an exact
manner when solving a scattering problem. For a scattering
problem, the induced current density and the scattered field are
unknown. So is the 2PFE coefficient. But actually, the induced
current density, the scattered field and the 2PFE coefficient can
be obtained by an iterative process simultaneously. Section III
demonstrates the iterative process and the FD analysis of two-
dimensional (2-D) scattering problems with the use of the
2PFE as the mesh-termination boundary condition. An initial
source value needs to be set for the first iteration and the results
are used as a new trial value. This process is repeated until
the result reaches the required accuracy. Through the iterative
process, the 2PFE boundary condition approaches to its exact
solution and, simultaneously, the induced current density and
the scattered field of the scattering problem approach their
exact solutions.

The 2PFE can be applied to arbitrary two points in space
so it can terminate the mesh at a position very close to the
object’s surface. This advantage results in the reduction of
unknown numbers. In Section III, several scattering problems
have been solved in order to test the validity of the 2PFE and
the iterative FD method. Corresponding results by method of
moment (MoM) [3] or the measured equation of invariance
(MEI) are given for comparison. Very good agreement can be
observed from these results.

II. THE TWO-POINT FIELD EQUATION

Let’s consider the boundary value problem of a vector EM
field in open space domain bounded by .
Let be an operator, and the mathematical model for this
problem can be expressed as

(1a)

.
(1b)

is the object boundary contour, is the exterior boundary
contour. is also an operator and is the source or
excitation term. Equation (1b) is the boundary condition which
may also be a differential equation such as Dirichlet, Neumann,
or radiation condition. For the case of EM radiation (or
scattering) problem, is the field radiated by a current
source on the object. Equation (1a) can usually be
rewritten as

(2)

Here we consider only the basic case of scalar field. Let
and be the scalar fields at two arbitrary pointsand
in space , respectively, as shown in Fig. 1. These two scalar
fields can be expressed with the source as

(3a)

Fig. 1. Geometry of EM scattering problem and conformal FD mesh.

and

(3b)

is the Green function. And a scalar coefficient
is used to specify the field relation of these two

points as

(4a)

or

if

(4b)

Equation (4) is designated as the 2PFE. In general, the
coefficient depends on: 1) the observation points;
2) the geometry of the scatterer; and 3) the excitation source.
From (3) and (4), it can seen that is exact if

and are exact.
When solving a scattering problem, the 2PFE is used to

express the relation of scattered field at the exterior layer
points with its immediate inner neighboring points. Therefore,
it can be used to terminate the FD mesh. The coefficient

can be obtained by an iterative process. In the
next section, the 2PFE is applied to solve 2-D scattering
problems. The convergence of coefficient is also
studied.

III. A PPLICATION IN FD SOLUTION OF 2-D PROBLEMS

The scattering and radiation problems are two of the most
interesting problems in EM field theory and applications.
When an incident wave strikes on a metallic object, it causes
an induced current to flow on the object’s surface and, in turn,
this current radiates a scattered wave. The induced current
density and the scattered wave are the unknowns to be solved.
In this section, the 2PFE is applied to solve the scattering
problems of some 2-D metallic bodies.
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A. The Field Formulation

s consider the scalar problem of computing the induced
current density on the perimeter of a 2-D perfectly conducting
-directed cylinder which is illuminated by an uniform plane

wave travelling in the direction of in free-space. Two cases
of TM and TE incident waves are considered here

TM wave
TE wave

(5)

where the time factor is suppressed.
is wave number vector ,

is a point in space, , are the two unit vectors, and
is the angle between the traveling directionof incident

wave and the axis. Each of these two incident waves will
induce a current distribution on the surface of the cylinder. For
convenience, we use to express the unknown-directed
scattered field for these two incident wave cases as

TM wave

TE wave
(6)

where is the intrinsic impedance of free space.
The superscript “ ” stands for scattering field. is the
induced electric current density on the surface of the cylinder
for TM incident wave case, whereas is the induced
magnetic current density on the surface of the cylinder for TE
incident wave case. The integration is taken over the contour

of the cylinder which is the cross-sectional boundary of
the cylinder. is the arc length of the current filament on

. The Green’s function for the 2-D radiation problems in
free-space is

(7)

where is the Hankel’s function of second kind and of
order zero. must satisfy (1) or (2). That is

(8a)

when (8b)

(8c)

where is the transverse Laplace
operator. Equation (8b) is the Sommerfeld radiation condition
for scattered field at the infinity ( ). Equation (8c) is
the boundary condition on the surface of the cylinder. Let
and represent the total electric and magnetic field intensity,
respectively. Therefore,

TM wave

TE wave.
(9)

With the total and in space domain , the induced current
densities on the object surface are therefore expressed as

TM wave

TE wave.

(10)
Here is the unit vector tangential to the surface of the
cylinder.

B. The FD Matrix Equation

To use FD method to solve the scattered field problem, the
space around the scatterer is discretized as FD mesh, as shown
in Fig. 1. For the points between the cylinder surface and the
exterior layer, (8a) is employed and is sampled into a standard
five-point FD equation. For points on the object’s surface,
the boundary condition (8c) is applied. And (4) is applied for
exterior points on the termination mesh layer. Letbe a point
on the exterior mesh layer and is its immediate inner mesh
point. The 2PFE for these two points is

(11)

Finally, using the FD equations, boundary conditions on
the surface of the cylinder, and (11) for the exterior layer
points, the unknown scattered fields at every mesh point can
be summarized into a complex linear sparse matrix equation as

(12)

In (12), the vector is the unknown scattered field term,
which represents fields for TM case or field for
TE case, respectively. The vector contains the source
terms of excitation, whose elements are usually zero except
for points on the object’s surface. The constructed matrix,
related to the whole EM problem, is a very sparse matrix.
Most of the elements in are zero elements. The nonzero
elements are mainly concentrated in the diagonal band.

If the 2PFE coefficient at each exterior point
is known, the unknown scattered field for each point could
be obtained only by solving (12). But in fact, same as
the scattered field and the induced current density

, the coefficient for the termination layer
is still unknown up to now. Next, we will discuss how to
obtain the exact solution of , and
simultaneously by an iterative process.

C. The Iteration Process

To find the solutions of , , and
of a scattering problem, an iterative process is used. This
process starts with setting a trial value for the induced current
density for the first iteration. Let be the value
of the current density obtained after iteration, then the
corresponding 2PFE coefficient is calculated



1836 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 12, DECEMBER 1998

(a)

(b)

Fig. 2. Convergence ofA(~r1; ~r2; ~J ) and ~J obtained by 2PFE and iteration method. The scatterer is a conducting rectangular cylinder with dimensions
1�� 2� and ' = 180�. (a) FD mesh. (b) Real part ofA(~r1; ~r2; ~J ).

from (4) as

(13)

which is used as a new boundary condition for the exterior
layer points to determine the field value in the th
iteration as

(14)

Then the FD matrix equation (12) can be set up for the th
iteration process. Solving this FD equation, a new value of

scattered field is obtained. Consequently, a new value
can be obtained from (10). Using as a

new trial current and repeating the above process iteratively,
a steady solution can finally be obtained. The termination of
the iterative process depends on the required accuracy.

Unlike [24]–[26], the termination boundary condition in-
volves two points and the coefficient in (4) is
expressed as a ratio of the fields at these two points so that it
makes the field relation rigorously, not merely directly using
the field value calculated by integration on the termination
mesh layer as a termination boundary condition. This ratio
of fields filters out the ill-manner effects due to amplitude or
phase of the trial source.

It is helpful to explain more about the 2PFE boundary
condition and the iterative FD method. , and
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(c)

(d)

Fig. 2. (Continued.) Convergence ofA(~r1; ~r2; ~J ) and ~J obtained by 2PFE and iteration method. The scatterer is a conducting rectangular cylinder with
dimensions 1�� 2� and' = 180�. (c) Imaginary part ofA(~r1; ~r2; ~J ). (d) The induced current density~J .

are actually the three related parameters of a
scattering problem. From (4), it can be seen that the 2PFE
coefficient is related to the source or
the field . So for a scattering problem solved by the
iterative FD method, approaching of the exact solution of

or is equivalent to approaching the exact solution
of . From above it can be seen that in every
iteration: 1) the information of the scatterer’s geometry and
the boundary condition is transferred to by (12); 2) the
information of incident wave and is transferred to
by (10); and 3) the information of and the scatterer’s
geometry is also transferred to by (3) and (4).
The Green’s function is applied in the integration for fields
to enforce the radiation condition. Therefore, , ,
and are adjusted toward their exact solutions
through the iterative process by repeatedly using the incident
wave, the boundary condition on the object’s surface and the
current integration. One may observe that the calculation of

of and from (4b) may be impossible
for points in space where one (or both) of the fields because
zero. This problem can be solved by adjusting the locations
of the grid points.

As an example, Fig. 2 shows the convergence behavior
when the 2PFE boundary condition and the iterative FD
method are applied to solve a scattering problem. The scatterer
is a rectangular perfectly-conducting cylinder with dimension
of 1 2 . The TM incident wave comes from normal
direction. Fig. 2(a) shows the mesh of the cylinder. This FD
mesh has three conformal layers with node step size of 0.05.
The initial value of current density for the first iteration is
taken as one everywhere. Fig. 2(b) and (c) shows the real part
and the imaginary part of the 2PFE coefficient
in each iteration. Fig. 2(d) shows the induced current density
resulted from the iterative process. The corresponding MoM
solutions are also obtained for comparison. From Fig. 2(b)–(d),
it can be seen that after four iterations, the 2PFE coefficient
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Fig. 3. Induced electric current distributions on a 2-D conducting circular cylinder (radius=1�; normal incidence' = 180
�).

Fig. 4. Induced electric current distributions on a 2-D conducting square cylinder (dimensions: 3�� 3�; normal incidence,' = 180
�).

, and the induced current density converge
to steady-state values which are almost the same as the MoM
solutions.

It should be pointed out that neither (4) or (14) is an artificial
termination boundary condition for the termination FD mesh
layer; it is an exact field relation. No approximation has been
made on deriving it. Next, we will examine the validity of
this 2PFE and the iterative FD method by solving some 2-D
scattering problems.

D. Numerical Results

In this section, numerical results based on the 2PFE and the
iterative FD method are reported. We have tested this novel
method by applying it to solve a variety of scattering problems
involving 2-D perfectly conducting scatterers. Both cases of
TM and TE wave incidence are taken into account. The
induced current densities on the surfaces of scatterers with
different cross-sectional shapes and different dimensions have
been calculated by the iterative FD method with the use of the

2PFE as a mesh-termination boundary condition. The initial
value of the current density for the first iteration is taken as
one everywhere. Of course, other nonzero current density may
be used without affecting the final solution. Fig. 3 shows the
calculated induced current densities on a circular conducting
cylinder with radius . is the perimeter
of the cylinder. Fig. 4 shows the calculated induced current
densities on a square-conducting cylinder of dimensions 3
3 . Normal incidence ( ) is studied in this case. Fig. 5
shows the calculated induced current densities on a rectangular
conducting cylinder of dimensions 1 3 . Oblique incidence
( ) is studied in this case. Fig. 6(a) and (b) shows,
respectively, the calculated induced current density for the
TM and TE incident waves on a cavity-like conducting
cylinder with dimensions , , ,

, , and . Normal incidence
( ) is studied in this case.

To check the results obtained by the 2PFE and the iterative
FD method, corresponding results by MoM and MEI are also



LUO et al.: NOVEL EXACT 2PFE FOR SOLVING ELECTROMAGNETIC SCATTERING PROBLEMS 1839

Fig. 5. Induced electric current distributions on a 2-D conducting rectangular cylinder (dimensions: 3�� 1�; oblique incidence,' = 225�).

(a)

(b)

Fig. 6. Induced electric current distributions on a 2-D cylinder scatterer with a cavity-like indentation (dimensions:a = 4:4�, b = 2:4�, c = 1:7�,
d = 1:2�, r1 = 0:2�, and r2 = 0:5�; normal incidence,' = 180�). (a) TMz wave case. (b) TEz wave case.
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calculated for comparison. It can be seen that these results
agree very well. This indicates that the new method is valid
for solving 2-D scattering problems. All the results given in
this paper are obtained under such a mesh step size of 0.05
and three conformal mesh layers and are carried out on a
Pentium personal computer.

E. Computation Time

For MoM, the dominant part of computation time is of order
and it is spent mainly on calculating the inversion of

its full matrix. Here, is the number of unknowns. For MEI,
the dominant part of computation time is on the integration
process for measuring functions. The time spent on a single-
metron integration is of order [18]. But the total
time of integration should take the number of metrons into
account.

The proposed method has the advantage of producing sparse
matrices. The dominant part of computation time is on the
integration process for determining the coefficient .
For each iteration, the major computation time is of order

. The total computation time for this new method
should be the time for each iteration multiplies the number
of iteration required. It can be seen that the computation time
for this new method is of the same order of the computation
time of MEI.

IV. CONCLUSION

The 2PFE is simple in concept and easy to use. It is an exact
field relation and can be used as the termination boundary
condition for solving scattering problems by iterative FD
method. The virtue of the application of the 2PFE in solving
a scattering problem is that the mesh can be limited to the
vicinity of the scatterer in a simple and exact manner. So the
size of computational domain and the number of unknowns
can be reduced and, at the same time, the iteration process
could be converged easily. Furthermore, the whole problem is
inferred to a sparse matrix equation, not a full matrix equation.
This results in saving in both computation time and computer
memory.

The 2PFE is different from the theory in [24]–[26] because
it does not directly use any field value as the termination
boundary condition. The 2PFE is also different from the MEI
because it does not employ any postulates. Furthermore, the
2PFE involves only two points, the corresponding FD matrix
is more sparse than that of MEI. The initial value of induced
current density for the first iteration can be any value other than
zero. The 2PFE has been used successfully for solving many
2-D scattering problems. Further study is on the extension to
three-dimensional problems.
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