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Abstract—Radar target identification, as witnessed by the the summation is over poles andtover conjugate pole pairs.
plethora of the literature on the topic, is an important problem  Thys, only N/2 modes are assumed excited by the incident
of considerable interest to many civilian and military agencies. field waveform. Late time, denoted by > 77, is defined
The number of signatures even for a small target library can . . L !
become quite large since, in general, a unique return is produced as the time period after the 'nc'd?n.t pu_Ise has,passeq over
for each new target aspect. Any robust target identification the target, so that Subsequent radiation is associated with the
algorithm must adequately address this issue. The extinction target's free natural resonances. Equation (1) is constructed
pulse (E-pulse) and other related techniques, which are based onysing what is referred to as a class | coupling coefficient
a singularity expansion method description of the radar return, [4]. An SEM representation for the scattered field employing
indeed boast an aspect independent identification algorithm. . .

However, as demonstrated in this paper, the performance of these a (_:Iass Il coupling coefficient may also be constructed and
techniques in white Gaussian noise is inferior to the method €njoys the advantage of greater accuracy than the class | form
described here. In this paper, we develop a new method basedin early time0 < ¢ < 7p albeit at the expense of greater
on a generalized likelihood ratio test (GLRT) to perform target complexity [5].

identification in the presence of white Gaussian noise. As with the Some early efforts [6] attempted to identify a target based

E-pulse technique, our method takes advantage of the parsimo- it - t and itati ind dent pole t
nious singularity expansion representation of the radar return. [n 9N 1S UNIqUE aspect and excitaion independent pole terms

addition, sufficient statistics and simple practical implementations (s = £ + jw). Prony’s method [7] was employed to extract
of a GLRT are presented. Simulation results using various thin poles from measured target pulse responses, but this approach

wire targets are presented contrasting the performance of the met with limited success when the target responses were
?SI;\IRFB t:)attil(ﬁ)e E-pulse technique as a function of signal-to-noise 4.2 minated with noise.
' In a more innovative approach, Rothwaedt al. [8] and

Index Terms—Noise, radar, radar target recognition, wide- Chen et al. [9] employed extinction (E-pulse) and single
band radar. mode extraction (S-pulse) waveforms to discriminate a given
target response from among a group of such returns. This

|. INTRODUCTION work is closely related to Kennaugh's kill (K-pulse) [10]
N 1971, Baum [1] formalized a singularity expansior\{vhiCh hgs been compared to the E-pulse methqd [.11]' The
method (SEM) description for electromagnetic interactio%SpeCt independent E-pulse and S-pulse are discriminatory

. : . . waveforms which, when convolved with the late-time pulse
or scattering problems in terms of simple poles (or singu-

o ; ingl&sPonse of a matched target, produce a null or single-mode
larities) in the complex frequency plane or corresponding

damped sinusoids in the time domain. Baum [2], [3] recemi%ésponses, respectively. When an E-pulse tailored to one target

extended this earlier work to include the SEM description IS convolved with a different target a larger response results.

scattered far fields. The SEM is used to write the Iate—tin}ehe E- and S-pulses can be synthesized from knowledge of a

e N . arget’'s poles or directly from measured target response data
scattered field "impulse” response of a conducting body as[162] [13] taken in a low-noise anechoic environment. Conse-
sum of complex exponential terms ’ '

quently, this discrimination scheme is inherently more robust
N than the previously mentioned direct pole-target matching

r(t) = Z a; et t>1r (1) approach. llavarasaet al.[14] recently automated the E-pulse
i=1 and S-pulse discrimination schemes and provided an extensive

where the complex amplitude coefficient (coupling coeﬁicien?)”_aws's of how these schemes perform in the presence of
of the ith mode, a;, depends on the orientation of the tar'0S€. .

get with respect to the radar (aspect-dependent parameters]."€ E- and S-pulse methods, though effective, represent
The pole terms; is aspect-independent and represents tR&lYy one particular utilization of the prior knowledge of a

frequency and damping constant of tith mode. Note that target's poles to discriminate among a set of targets. The
noise effect on these two methods tend to seriously limit their

Manuscript received August 26, 1996; revised August 25, 1997. lperformance. In this paper, we present a new and robust target
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University, AL 36849 USA. discrimination method that is based on fundamental principles
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Hypothesis testing involves deciding among a set of altern&;:
tives (or hypotheses) based upon the observation of a set of

. . . . . - - (%)
random variables. This concept, which has been a topic studied y(Tr) b (Tr)
by statisticians for many years, provides a mathematically (T + 1) . bgk)(TL +T,)
solid foundation to perform target identification. By combinin = ; by = ‘ ;
this concept with pan SEM rgepresentation of t);le scatterged Y y(Tn +2T5) bgk)(TL +215)
field, we develop a mathematically rigorous formulation of :
generalized hypothesis testing to perform target identification. ) )
This formulation is based on a set of known polgs} T n(1r)
and a set of unknown amplitudes:; }. In addition to the n(Ty, + T,
mathematical development, numerous results are provided p =
demonstrating the effectiveness of the generalized likelihood n(1r + 215)
ratio test. These results, which are shown as percent correct

identification versus signal-to-noise ratio (SNR), contrast the

performance of the generalized likelihood ratio test (GLRT)hus, the return signal vectgr under targe& becomes
to the E-pulse filter technique.

Hy: y=Biar+n 3)
Il. PROBLEM FORMATION where the unknown vector is
The problem of interest here is to identify a specific target v h ok s
based on the scattered field returned from a “wide-band” ay=[a] a; a3 - a¥]

transmitted pulse. In order to simplify this problem, several i
assumptions are made. First, we assume that a target Aad the known signal modes are

been detected and only a single target is responsible for Bi=[bt bk ... bk ]
the returned scattered field. Furthermore, we assume that the P2 NI

target generating the return belongs to a group of targets g, e analysis presented hesg, is an unknown parameter
which we knowa priori the poles of each. Based on thesgq o i the identification of target. The only known
assumpt_lons, we will develop a generalized likelihood rat'ﬁarameters are the poles which deternfieand the measured
test to discriminate among a set bf known targets. returny. Our task is to construct a robust detection method
As mentioned previously, the concept of using a target§ yetermine which of thel! known targets is most likely

poles to perform target ID is based on the singularity expafy generate the received noisy signalthat depends on an
sion method (SEM) representation of the transient scatter@rq(nown vectora

field returned from a target that has been illuminated by an
“impulsive” (wide bandwidth) radar pulse. Assuming a targeé
exists and its from a family of\/ possible candidates, then

the SEM representation of the return from #th target in the ~ Without loss of generality, a Bayes criterion can be used to
presence of noise can be written as develop a likelihood ratio test (LRT) [15] to decide between
targets 1 and 2. The LRT is written in terms of the likelihood

functions as

. Generalized Hypothesis Testing

.
y®) =" ab O rat)  t>TL, 1<k<M ()

i=1

Hy
1) >
L. plyltarget)

: 4
where p(y|target2) =, “)

b(’“)(t) — it Since the noise has been characterized as being white and
! Gaussian, the likelihood function for thigh target is propor-

andn(t) is additive white Gaussian noise with zero mean arfPnal to
variances2. The equation in (2) leads to the major question 1
addressed in this paper. That is, if we know the target belong®(¥ targetk) o exp <—@ (y — Braw) " (y - Bkak)>-
to the family of M targets and we know the poles of the target, (5)
then what is the likelihood the target generated the rej(t)?  The thresholdy is a function of the prior probabilities and the
cost. If we assume that all targets are equally probable and
when uniform cost (zero for a correct decision and one for
an incorrect decision) is assumed, then= 1. For multiple
targets {4/ > 2), multiple LRT's need to be tested.
Though the LRT is a very useful tool in a number of
For convenience as well as for practical implementaticapplications, target identification cannot benefit directly since
using digital signal processing (DSP) hardware, we denote thidentation dependency results in the unknown parameter
various signals in (2) by their uniform samples at the intervakctor ax. An alternative solution is to use the generalized

Ill. ALGORITHM DEVELOPMENT

A. Discretization
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likelihood ratio test (GLRT) [15]. The GLRT can be writtenwhere || - || denotes the vector 2-norm (or Euclidean norm).

in a form similar to the LRT as

Hy
max,, p(y|targetl) >

GLRT:
max,, p(y|target2) m.

(6)

Maximizing the likelihood function

1
p(y|targetk) o exp <— (v — Bkak)H(y — Bkak))

202

is equivalent to minimizing|y — Bay||?, hence yielding a
least squares solution tp = Bpa; as

5k,max it (BkHBk)_lBify (7)

Substituting the least-squares solution into the GLRT for

the simple two target case (with = 1) yields after some
manipulation the decision rule

Hy
>

y"Bi(B{'B1) 'Bl'y < y"By(B{'B:) 'Bl'y. (8)
2

If we maintain the conditions of equal prior probabilities an
uniform cost, then for multiple hypothesis testing, the abo
decision rule can be generalized faf target discrimination as

decide{y(t)} =targetk if y"B.(BB;)"'By
is maximum (9)

IV. SUFFICIENT STATISTICS AND PRACTICAL CONSIDERATIONS

A. Real Time Implementation

As one can see from (10), the GLRT is simply based upon the
computation of| (BB, )~*/?B{’y||. Therefore, the sufficient
statistics for the GLRT aréBi'B,,)~/? and B,y.

If hardware implementations on continuous time signals
are necessary, these sufficient statistics can be written for
continuous time signals as shown in (11) and (12), shown at
the bottom of the page, whel® = [T}, T') is the processing
window. A closed-form solution exits for the integrals in the
matrix BB, since the integrands are products of simple
exponential terms. Thus, this allowB/B,)~Y/?B{ to be
precomputed and stored in memoryaagriori knowledge. To
summarize, the GLRT detector is simply

deciddy(t)} =targetk if ||(BB;)~*/?Bily|?

IS maximum (13)

The computation of the sufficient statistB} B,)~/?B}
is dependent on the processing wind®W. In our analysis,
we assume the beginning of late-time to be twice the

jscrimination scheme, the beginning of the late-time must be
estimated. As shown by llavarasahal. [14], the beginning
of late-time for backscattered responses is given by

gaximum transit time of the target. However, in a practical

Ty =Ty + T, + 2T, (14)

where 73, is the maximum transit time of the target, is

the effective pulse duration used in the system, dpdis

an estimate of the time when the incident wave strikes the
leading edge of the target. The tirfig is estimated based on a
threshold voltagé’ which needs to be large enough to detect

Having developed a maximum likelihood (ML) decisiorsmall signals, but small enough to maintain a small false alarm

rule to discriminate among a set 8f targets, it is appropriate rate. Under a Gaussian noise assumptigngan be calculated
to introduce the concept of the “sufficient statistics.” Generallygr 5 desired mean time between false alarms [16]. The end-
speaking, “sufficient statistics” represent those computatiofihe 7" can be chosen so that 99% of the noise-free signal

which are sufficient to make a decision as to which targghergy is contained within the processing window [14].
is present. In other words, the sufficient statistics answer

the question, “What minimal computations are required ig Computational Complexity

order to decide which target is present?” Through some minor q h fici istics introduced ab h
manipulation, the decision rule in (9) can be rewritten as Based on the sufficient statistics introduced above, the

follows: computational complexity of the GLRT algorithm can be
investigated. If we assume that each target in the librarythas

yIBL(BEB,) !By = ||(BEB,)"V?*Bfy|? (10) poles and that the received signals sampled? times, then

— NH A
by T hy v (1) dt
o (k)
b s (OB (8) dt
Biy = |2 Y| _ I w0} (11)
4.H .k*
b®"y S w7 (2) dt
[ B8 ) dt [ 080 (0)6(7" (#) dt S B8 0B (1) dt
bRy ar [ @ @y de o [ B @b (¢) de
BkHBk: fw 1 2 fw 2 2 fVI N 2 (12)
L 08900 () dt [ 08900 @) dt o [y OOV () dt
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TABLE |
THE NATURAL FREQUENCIES OF THEFOUR TARGETS USED IN THE SIMULATION
v s’“c“l Thin Cylinder 45° Swept Wing Perturbed Tripole 60° Swept Wing
m,n Real Imag. Real Imag. Real Imag. Real Imag.
N - 1,1 |[-02574 & 2.8743 [ -0.1142 £ 2.6857 || -0.2123 =+ 2.8645 | -0.1320 =+ 2.7726
y AN y 1,2 || -03792 50329 || -0.1748 * 3.0626 || -0.2206 =+ 2.9538 | -0.1149 =+ 3.2110
(U 13 || 04660 =+ 90.0117 || 03215 * 3.6006 || -0.2689 =+ 6.2325 | -0.2092 & 3.5114
Eo Eq’ 1.4 -0.5353 4+ 12.0955 || -(1L4772 £ 6.6060 -0.5025 £ 9.2240 -0.6288 £ 6.5274
1,5 || -0.5935 + 15.1775 || -0.4050 =+ 7.9230 | -04821 & 8.0461 | -0.3005 =+ 7.9773
Y 16 || -0.6436 + 18.2533 06182 & 0.3581 | -0.4637 = 12.6192 || -0.6102 + 9.3557
X X 17 || -0.6870 % 21.3103 || -0.5604 + 11.0463 || -0.7218 = 15.0031 || -0.5647 + 11.0262
1,8 || -0.7244 & 24.3726 | 05560 =+ 12.0588 | -0.7552 = 15.4586 || -0.4928 £ 120933
Target A Target B Target C Target D T [ FPERE aERRRr | (5882 & 14.8505 || 0.7043 = 18.6706 | 0.7015  11.6847
. . . . CT0 | e e 08085 & 15,4281 || -0.9387 = 20.9337 || -0.6075 & 15.6585
Fig. 1. Targets A, B, C, and D used in the simulations to demonstrate theg | #= & 5w 5+ | 6356 & 16,4076 | -0.0835 = 21.5461 || -0.4349 1 16.5412
performance of the GLRT and E-pulse technique. 112 || #=##*%  #%%eeF | 07765 & (8.7524 || -0.9383 & 246863 || -0.6272  + 18.6455
103 || F=%exrERRRR 06201 & 21,1990 || rreer  wweeek 0G0+ 219738
114 EEEEE T EEE T _()9542 + 215145 EEEETEY kk ok 709514 -+ 217111
1,15 KA K FHFEER Z0.7550 & 22.3478 EETTTTY FAAA AR C0.6915 + 221412

the size of the sufficient statisti@B)~*/?B is N x Q.
Multiplying this quantity byy requires N@Q multiplications
and N(Q) — 1) additions and yields a vector of lengtN.
Performing the Euclidean norm operation as shown in (13) o5
requires an additiona¥ multiplies andV — 1 additions. Thus, %
to compute (13) for a single target requires a totaNgfo+1)
multiplications andV @ — 1 additions. If we haveVl targets,
then in order to yield a decision, a total afN(Q + 1) I_,Late_ﬂme
multiplications andM (N @ — 1) additions must be performed. s 0 15 20 25 a0 @ 40 45 50
The number of calculations required to render a decision via Time (1)
the E-pulse technique are approximately the same requiféigl 2. The backscattering response of the thin wire (Target A) due to an
by the GLRT. However, in the E-pulse technique, each EPPUIsive plane wave incident from = 75°.
pulse filter is essentially a digital filter with its own sampling
rate. This feature is due to the construction of an E-pulseimerical form via the method of moments. The poles that
filter for each individual target and involves the resonanc#¢ere used in obtaining the back scattered field from each
of each target [8], [17]. Thus, if we hav&/ targets, then target are listed in Table I. The first eight complex conjugate
we needM different samplers. This obviously increases thpole pairs were used in computing the backscattered field
preprocessing time before a decision can be made and, farpulse response of the 1-m-thin cylinder. In order to ensure
thermore, it undoubtedly makes the system more complicatéét the same bandwidth was used among each of the four
and expensive. targets, it was necessary to use the first 15 conjugate poles
pairs to compute the impulse response of thé 4hd 60
swept wing aircraft models. Similarly, the first twelve poles
of the perturbed symmetric tripole were used in computing its
impulse response. Fig. 2 shows the backscattering response
of the thin cylinder (target A) due to an impulsive plane
To demonstrate the effectiveness of the GLRT as a funwave incident from¢ = 75°. It should be noted here that
tion of signal-to-noise ratio (SNR), several simulations wetthe impulse responses for all targets were computed using a
conducted using the four targets shown in Fig. 1. Target @lass | coupling coefficient; thus, the early-time portion of the
is a simple 1-m-long thin cylinder lying along the axis responses are inaccurate.
and centered at the origin. Target B is a swept wing aircraft The experimental setup for the simulation process is il-
model. This example was chosen for its obvious relevankestrated in Fig. 3. In each simulation, a computer randomly
to target identification (ID). The fuselage of the aircraft lieselects one of the targets from the target library. The selection
along thex axis with forward and aft sections of 1/3 andprocess is conditioned by the assumption that each target has
2/3 m, respectively. The wings are swept back #m the an equal probability of being present. Recall this assumption
normal to the fuselage and are 1/2 m in length. Target C isnms used in the development of the GLRT detector. In the
perturbed symmetric tripole. Two of the arms are each a leng#sults to be presented here, two different simulations were
of 1/2 m, and the third arm has a length of 0.5238 m. Targpérformed. One simulation involves only targets A, B, and C.
D is also a swept wing aircraft model similar to Target Bln the remaining simulation, all four targets are used. Thus,
The only distinguishing feature between the two is the angie the simulation involving three targets, each target has a
at which the wings are swept back. The wings on Target D até3 probability of being selected. Similarly, each target has a
swept back 60 from the normal to the fuselage. Also showrprobability of 1/4 of being selected in the simulation involving
in Fig. 1 is the orientation of the incident field, relative to four targets.
each target. Once a target has been selected, white Gaussian noise is
The scattering data used in the experiment are the theoret@dtled to a corresponding signaturgtf) of the selected
impulse responses of the four targets mentioned above. Th&sget. The value of the average noise powéris adjusted
responses were obtained using the SEM, which was cast iatxordingly for a specified SNR (in decibels) through the

1

Relative Amplit

V. SIMULATION RESULTS

A. Experimental Setup
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Fig. 3. The experimental setup for demonstrating the performance of the 04 R
GLRT and comparing it to the E-pulse filter technique. *
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Fig. 5. The performance of the GLRT, LRT, and E-pulse filter technique as
a function of SNR for different aspect angles using targets A, B, and C.

computed at the output of E-pulse filter A is defined as

b - TLEE,
! }—» Late-Time / § 02 (t) dt

Relative Amplitude

15 L L L L L L ) 1 1

0 5 10 15 20 Tim265(ns) 30 35 40 45 50 E‘A _ TL:};SA ) (17)
€A
Fig. 4. The backscattering impulse response of the thin wire (Target A) for / 6?1 (t) dt
¢ = 75° and an SNR of 0 dB. 0

The parameter(t) represents the convolution of the E-pulse
ea(t) with the received return. 1&(¢) is the correct target
(Target A), then ideally the energy ratio would be zero. The
time 71ps, is defined as

relationship

o2 = Pygl0 SNR/10 (15)

Trips, =1., +21, (18)
where P, is the average power of the uncorrupted signatuemd represents the “earliest time at which the unknown target
r(t) and is defined as convolution is certain to be a unique series of natural modes”

[18]. The timeZ’ , is the duration of the E-pulse for Target A,
1 /T ) and7ipg, is the end time of the energy ratio. In general, the
Puig = 7 /0 () dt (16) time Tigr is selected so that the window lendtheg — T.ks

is the same for each ratio. For the simulations presented here,

) i . awindow length of 15 ns was used. A correct identification is
Note the average power of the signatiitg; is computed Using jetermined by the minimum energy ratio at the output of the

both the early-time and late-time portions of the return. Tk\?—pulse of the unknown target. For example, if the energy ratio

end-time7” of the integration is arbitrarily chosen to be 50 nS,; e output of the E-pulse filter for Target A is the smallest,
Fig. 4 shows the backscattering response from the thin wikes Target A is selected to be the correct target
for ¢ = 75° and an SNR of 0 dB. '

After adding the noise to the signaturét), the corrupted C. Results
return is then given to the GLRT detector, which renders a
decision as to which target is present. This process is repeate®f the two simulations performed, the first involves only
1000 times aeachspecified value of SNR. For the purpose&argets A, B, and C. The results of this simulation are shown

of this experiment, the SNR values are chosen to range frdiFig. 5 for various target orientations. For each target ori-
—25 to 35 dB. entation, the performance of the GLRT, LRT, and E-pulse

technique are plotted as a function of SNR in decibels. The per-
formance of each method is defined as the number of correct
identifications per 1000 trials at a specified value of SNR.
Also shown in Fig. 3 is the scheme by which the perfor- The LRT is included in the results in order to provide an
mance of the GLRT is compared to E-pulse filter techniquapper bound on the performance of the GLRT. In the LRT,
In this scheme, an energy ratio [18] is computed at the outghe poles as well as the coupling coefficients of each target are
of each E-pulse filter. For example, the energy ratio to beow a priori whereas in the GLRT, only the poles of each

B. E-Pulse Filter Design
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Fig. 6. The performance of the GLRT, LRT, and E-pulse filter technique
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correctly identify the target in every trial at an SNR value of
13 dB. The E-pulse technique does not equal this performance
until the SNR reaches 27 dB. Thus, for this aspect angle,
there is roughly a 14-dB difference in SNR for the same level
performance between the two methods. In the other aspect
angles considered, this difference in performance exceeds 15
dB in SNR and reaches 17 dB in the case where the aspect
angle is 60. Nevertheless, it should be noted that in all of our
simulation tests, GLRT consistently outperforms the E-pulse
technique.

VI. CONCLUSIONS

In this paper, we have used well-established mathematical
models and rigorous statistical analysis to develop a simple
but reliable method to perform target identification. Beginning
with an SEM representation of the scattered field, we have
developed a detector based on a GLRT that is capable of

a function of SNR for different aspect angles using targets A, B, C, and Didentifying a specific target out of a family df/ candidates.

target are known. Because the LRT utilizes more informati
in the identification process, it clearly out performs both the
GLRT and E-pulse technique by a significant margin. In eac
of the aspect angles considered here, the LRT begins to idenF
the correct target in every trial at approximateh6 dB of

on

The GLRT assumes only a knowledge of a target's natural
resonances thereby making the method aspect independent.
A number of numerical results were presented demonstrat-
ing the effectiveness of the GLRT in the presence of random
ise. These results showed the ability of the GLRT to identify
¥ correct target at low SNR values. Furthermore, the GLRT
was compared to the E-pulse technique. In the simulations we

SNR. Note that at very low values of SNR, the confiden
level of the GLRT is very low. At these values, the GLR
detector correctly identifies the target only 33% of the time.
This result is consistent with the condition that each target has
an equal probability of being present. Thus, when the SNR is
very low, the best the GLRT detector can do is conditionedi]
by what is know about the targets beforehand.

The difference in performance between the GLRT and Ep;
pulse technique varied with aspect angle. At an aspect angle of
30°, the GLRT begins to correctly identify the target in every 3
trial at an SNR of approximately 12 dB. This same level off4]
performance does not occur with the E-pulse technique until
the SNR reaches approximately 22 dB. Thus, there is a 10 djg,
difference in SNR for the same level of performance between
the two methods at a target orientation of 3Uhis difference
in performance is observed to increase for the other aspec%
angles considered. In the case where the aspect angl€,is 6Q
the difference in performance exceeds well over 20 dB in SNR.

The results of the second simulation, which involved targets
A, B, C, and D, are similar to those obtained in the three targd#!
simulation. These results are shown in Fig. 6 for four different
target orientations. In all the target orientations considered]
the LRT out performed both the GLRT and E-pulse technique
by a considerable margin as expected. Furthermore, at very
low SNR values, the GLRT detector identifies the corredtl
target only 25% of the time. As was observed in the previoysy
simulation, this is consistent with the condition that each target
has an equal prior probability of being selected. [12]

As expected, the performance of the GLRT and E-pulse
technique increase with increasing SNR. However, the dif-
ference in performance between the two methods varied wEﬁ’]
aspect angle. At an aspect of°3the GLRT detector begins to

erformed, the GLRT out performed the E-pulse method by
a considerable margin.
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