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Abstract—Tangential vector finite elements (TVFE’s) overcome
most of the shortcomings of node-based finite elements for elec-
tromagnetic simulations. For a triangular element, this paper
proposes a class of hierarchical TVFE’s that differ from tradi-
tional TVFE’s. The hierarchical nature of the proposed TVFE’s
makes them ideally suited for employing an efficient selective
field expansion (the lowest order TVFE employed within part of
the computational domain and a higher order TVFE employed
within the remaining part of the computational domain). This is
an attractive feature not shared by nonhierarchical TVFE’s for
which a more traditional approach (the same TVFE employed
throughout the computational domain) must be applied. For de-
termining the scattering by composite cylinders, this paper argues
that the performance (in terms of accuracy, memory, and, in most
cases, CPU time) of the proposed class of hierarchical TVFE’s
when applying selective field expansion is superior to that of the
lowest order TVFE and a traditional nonhierarchical TVFE. This
is the case when an artificial absorber as well as a boundary
integral is used for truncating the computational domain. A
guideline is given as to how lowest and higher order TVFE’s
shall be combined for optimal performance of the proposed class
of hierarchical TVFE’s.

Index Terms— Edge-based elements, electromagnetic fields,
finite-element methods.

I. INTRODUCTION

NODE-BASED expansions in finite-element method
(FEM) solutions are suitable for modeling scalar quanti-

ties, but typically not so for simulating vector electromagnetic
fields. When assigning vector field values to element nodes,
values may need to be specified at locations where the
true field is undefined (corners, edges), spurious modes
can be generated, and the enforcement of the boundary
conditions occurring in electromagnetics can be a challenging
task. Tangential vector finite elements (TVFE’s), based on
expanding a vector field in terms of values associated with
element edges and faces, have been shown to be free of these
shortcomings [1] and, therefore, TVFE’s are of considerable
practical interest.

A TVFE is referred to as polynomial-complete to a given
order, say , if all possible polynomial variations up to and
including order are captured within the element and on
the element boundary. For a triangular element, polynomial-
complete expansion to orderrequires vector
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basis functions. Ńed́elec pointed out [2], [3] that it is not neces-
sarily advantageous to employ polynomial-complete TVFE’s
when applying the FEM. It was proven that a polynomial-
complete expansion of a vector field can be decomposed
into a part representing the range space of the curl operator
( , ) and a part representing the null space
of the curl operator ( , ). For representation
of electromagnetic fields, it suffices to employ a TVFE that is
complete in the range space of the curl operator. Since such a
TVFE captures polynomial variations of orderinterior to the
element and polynomial variations of order along element
edges, we call it complete to order and refer to it as a
mixed-order TVFE or (less commonly) a reduced-order TVFE.
For a triangular element, complete expansion to order
requires vector basis functions. For rigorous criteria
for spurious mode elimination and extensive discussions of
mixed-order TVFE’s versus polynomial-complete TVFE’s, see
[2] and [3]. For discussions of element completeness and
spurious modes, see also [4]–[7].

A class of TVFE’s is referred to as hierarchical if the
vector basis functions forming theth order TVFE are a
subset of the vector basis functions forming the th
order TVFE. This desirable property allows for selective field
expansion using different order TVFE’s in different regions
of the computational domain. Hence, lowest order TVFE’s
can be employed in regions where the field is expected to
vary slowly whereas higher order TVFE’s can be employed
in regions where rapid field variation is anticipated. This
selective choice of TVFE’s over the computational domain
can lead to a memory and CPU time reduction as well as
improved accuracy. Scalar FEM analysis using hierarchical
finite elements is a well-known approach (see, for example,
[8] and [9]).

For a triangular element, the lowest order TVFE was
originally introduced by Whitney [10] and is referred to as
the Whitney TVFE or the Whitney element. It provides a
constant tangential field value along element edges and a linear
field variation inside the element. Hence, the Whitney TVFE
is complete to order 0.5. Several nonhierarchical TVFE’s of
higher order than the Whitney TVFE have been introduced
by Mur and de Hoop [11], Leeet al. [12], Peterson [13],
Peterson and Wilton [5], and Gragliaet al. [14]. Recently,
Carríe and Webb [15] presented a hierarchical TVFE derived
directly from a set of scalar finite-element basis functions [9].
A hierarchical TVFE for a tetrahedral element (the special
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case of a triangular element follows trivially from the case of
a tetrahedral element) up to and including second order was
introduced by Webb and Forghani [16]. A recent review of
TVFE’s was given by Peterson and Wilton [7].

The discussion above presents the concepts of polynomial-
complete, mixed-order, and hierarchical TVFE’s and summa-
rizes different TVFE’s that have been proposed for a triangular
element. However, there still seems to be a need for thorough
numerical investigations of the effectiveness (in terms of
accuracy and time/memory requirements) of selective field ex-
pansion using hierarchical TVFE’s. The purpose of this paper
is to introduce a class of hierarchical mixed-order TVFE’s
for a triangular element and to demonstrate its performance
when a selective field expansion is employed. The hierarchical
TVFE’s differ from those previously presented for a triangular
element. The derivation is based on an attractive set of higher
order vector basis functions recently presented by Popovi´c
and Kolunďzija [17], [18] for expanding surface currents
in conjunction with method of moments (MoM) solutions.
These are converted to vector basis functions applicable for
FEM analysis and knowledge of Néd́elec spaces and tradi-
tional nonhierarchical mixed-order TVFE’s is then applied to
specifically propose hierarchical mixed-order TVFE’s of order
0.5, 1.5, and 2.5. Potentially, even higher order hierarchical
mixed-order TVFE’s can be formulated. We demonstrate the
performance of the proposed class of hierarchical TVFE’s by
comparing FEM results obtained using the Whitney TVFE and
the proposed hierarchical TVFE’s (applying a selective field
expansion) to MoM solutions.

The structure of this paper is as follows. Section II presents
the derivation of vector basis functions based on the expansion
introduced by Popović and Kolunďzija. Section III discusses
the merits of the proposed vector basis functions and proposes
hierarchical mixed-order TVFE’s that are compared to existing
mixed-order TVFE’s. Expressions in terms of simplex coordi-
nates are given and vector plots are added to provide a physical
understanding of the TVFE’s. Section IV presents a set of
numerical results that demonstrate the performance of the
proposed class of hierarchical TVFE’s. Section V summarizes
and concludes the paper and outlines future work to be carried
out. Parts of this work were presented earlier [19].

II. FORMULATION

The proposed class of hierarchical TVFE’s is based on an
expansion introduced by Popović and Kolunďzija [17], [18]
for the surface current on a perfectly electrically conducting
(PEC) generalized quadrilateral. For this expansion, it is
demonstrated in [17] and [18] that the surface current can be
expanded using approximately ten unknowns per square wave-
length as opposed to approximately one hundred unknowns per
square wavelength for traditional subdomain pulse-basis func-
tions. This suggests that the expansion introduced by Popović
and Kolunďzija is very efficient. Below, corresponding vector
basis functions applicable for FEM analysis are constructed.

As a degenerate case of the generalized quadrilateral con-
sidered in [17] and [18], we consider a triangular element with
nodes 1–3 described by position vectors, , and with

Fig. 1. Geometry of a triangular element and illustration of the vectors
n̂ � (r � rn), n = 1; 2; 3, describing the directions of the vector basis
functions at the pointP .

respect to the origin of a rectangular coordinate system (see
Fig. 1). The edges from node 1 to node 2, node 2 to node 3
and node 3 to node 1 are referred to as edge #1, edge #2, and
edge #3, respectively. The area of the triangle is denoted by

. Simplex (or area) coordinates, , and at a point
described uniquely by a position vectorare defined in the
usual manner,viz. where denotes the area
of the triangle formed by and the endpoints of the edge
opposite to node . We let denote a unit normal vector to
the surface of the triangle.

Popovíc and Kolunďzija expands the surface currentover
the triangle as [17]

(1)

where

(2)

is a vector whose direction is from nodeto and is a
polynomial function of position that provides the amplitude
variation of the vector current component .
The polynomial contains a number of unknown expansion
coefficients. Its specific form is irrelevant at this point and will
be given later. As in the Rao–Wilton–Glisson expansion [20],

has no normal component along the two edges sharing
node and has both a normal and a tangential component
along the edge opposite to node. Thus, the quantity

(3)

with

(4)

has no tangential component along the two edges sharing
node and has both a tangential and a normal component
along the edge opposite to node. This suggests that the
vector basis functions multiplying the expansion coefficients
in the expansion of can be employed as vector basis
functions for the edge opposite to nodewhen applying the
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FEM. Considering all three edges, the FEM expansion of an
unknown vector quantity becomes

(5)

where expressions for (depending upon the order of
the expansion) and (independent of the order of the
expansion) are to be presented.

Introducing coordinates over the triangle and using relations
from [17], it is shown in Appendix A that

(6)

(7)

(8)

The polynomial is a function of position that in terms
of a number of unknown expansion coefficients provides the
amplitude variation of the vector component . It can be
defined using normalized coordinates and over the
triangle. Specifically, we choose at node ,
along the edge opposite to nodeand along the two
edges sharing node. A detailed description of the variation
of and is given in Appendix A. From [17], we have

(9)

where and are integer constants determining the order
of the approximation and and are the expansion
coefficients. Also, , , ,

, , and .
Expansion (5) for along with (6)–(8) for , ,

and and (9) for describes the proposed vector basis
functions. However, a certain simplification provides a more
familiar form. By regrouping the terms in (9) for , (5) for

can be cast into

(10)

where denotes the total number of vector
basis functions per edge for the given values ofand .
Also, are expansion coefficients corresponding to edge

while are vector basis functions associated with
edge . is given (in terms of the simplex coordinates

, , and ) as a function of , , and times a direction
vector ( for , for and

for ). Except for normalization constants,
the vector basis functions will be directly used for
forming hierarchical mixed-order TVFE’s (see Section III).

III. D ISCUSSION

In this section, we examine the properties of the vector
basis functions introduced in the previous section and based on
these we propose new hierarchical mixed-order TVFE’s that
are contrasted to existing mixed-order TVFE’s.

From (10), we recover for the three
vector basis functions introduced by Whitney [10]. For larger

values of and , (10) includes additional vector basis
functions all of which maintain the same fundamental direction
vectors ( for edge , for edge

, and for edge ). Thus, the proposed
higher order vector basis functions differ from the lowest
order vector basis functions only in magnitude and, hence,
in a given point of the triangle, the field expanded using a
TVFE based on these vector basis functions is represented as a
linear combination of vector basis functions having only three
fundamental directions. This is one of the major differences
between the proposed and traditional hierarchical TVFE’s [15],
[16]. For the latter, the higher order vector basis functions
differ from the lowest order vector basis functions in both
magnitude and direction. The field in a given point of the
triangle is again represented as a linear combination of vector
basis functions, but in this case, the number of fundamental
vector directions used for representing the field grows with
the order of the TVFE.

An important property of (10) is that the vector basis
functions for and

are a subset of the vector basis functions for
and . This shows

that TVFE’s based on the above presented vector basis func-
tions are hierarchical, a very desirable property. Hierarchical
TVFE’s are ideally suited for employing an efficient selective
field expansion where different order TVFE’s (in this case
different values of and ) are employed in different
regions of the computational domain. Hence, for a uniform
mesh, the lowest order TVFE can be employed in regions
where the field is expected to experience smooth variation
(regions where the relative material parameters are (nearly)
unity, away from edges, etc.) whereas a higher order TVFE
can be employed in regions where the field is expected
to vary rapidly (near edges, close to material boundaries,
in dense materials, etc.). Similarly, for a nonuniform mesh
(for example, where geometric complexity requires detailed
meshing in a given region), the lowest order TVFE can be
employed where the mesh is dense while a higher order TVFE
can be employed where the mesh is coarse. Regions where
higher order TVFE’s are employed can be fixeda priori or
an adaptive scheme can be developed where lowest order
TVFE’s are initially employed throughout the computational
domain and higher order TVFE’s are subsequently employed
in regions where the error is estimated to be large.

Based on the vector basis functions in (10) for different val-
ues of and along with knowledge of Ńed́elec spaces and
traditional nonhierarchical mixed-order TVFE’s, hierarchical
mixed-order TVFE’s of order 0.5, 1.5, and 2.5 will now be
proposed and compared to existing TVFE’s. The method has
the potential of providing hierarchical mixed-order TVFE’s of
even higher orders if so desired. Explicit expressions for vector
basis functions are given in Appendix B.

For the special case of , we obtain
from (10) a set of three vector basis functions ,

, forming a mixed-order TVFE of order 0.5 identical
to the Whitney TVFE [10] (see Appendix B). This result was
expected since the lowest order expansion adopted by Popović
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and Kolundžija is identical to the Rao–Wilton–Glisson expan-
sion [20] whose vector basis functions reduce to the Whitney
vector basis functions when converted using the procedure
applied above. This lowest order TVFE provides a constant
tangential field along element edges, a linear variation of the
normal field component along element edges (referred to as
CT/LN field variation along element edges) and a linear field
variation interior to the element.

A traditional second-order polynomial-complete TVFE is
described by twelve vector basis functions (see [5]). However,
by excluding the four vector basis functions associated with the
null space of the curl operator, this second-order polynomial-
complete TVFE can be reduced to a mixed-order TVFE of
order 1.5 formed by eight vector basis functions as presented
by Peterson [13] (see Appendix B). The latter provides a linear
variation of the tangential field component along element
edges, a quadratic variation of the normal field component
along element edges (referred to as LT/QN field variation
along element edges) and quadratic field variation interior to
the element. Based on the vector basis functions from (10) for

, we propose eight vector basis functions
forming an alternative and hierarchical mixed-order TVFE
of order 1.5 providing LT/QN field variation along element
edges and quadratic field variation interior to the element (see
Appendix B).

Peterson’s mixed-order TVFE of order 1.5 [13] has the
desirable property of being complete to second order in the
range space of the curl operator. This property ensures a
complete second-order expansion of a field with nonzero curl
and guarantees eigenvalue solutions free of spurious nonzero
eigenvalues. Due to the existence of a linear transformation
(see Appendix B) from Peterson’s eight vector basis functions
to the proposed eight vector basis functions, the proposed hier-
archical mixed-order TVFE of order 1.5 has the same desirable
property. However, the two TVFE’s are not identical. Their
vector basis functions span the same space but have different
properties and may not be equally efficient numerically.

For both mixed-order TVFE’s of order 1.5, six of the
vector basis functions provide a linearly varying tangential
component along element edges while the remaining two
vector basis functions (identical for the two different TVFE’s)
provide a quadratic variation of the normal field component
along element edges. However, the linear variation of the
tangential component along element edges is obtained in two
different ways. For Peterson’s mixed-order TVFE, the two
unknowns per edge represent the magnitude of the field at
edge endpoints. For the proposed mixed-order TVFE, the two
unknowns per edge represent the average field value along
the edge and the deviation from this average value at edge
endpoints.

A generalization to even higher order hierarchical mixed-
order TVFE’s is possible. For the special case of

, (10) gives vector basis functions that based on knowl-
edge of Ńed́elec spaces and traditional nonhierarchical mixed-
order TVFE’s of order 2.5 [5], [21]1 can be used for forming a
hierarchical mixed-order TVFE of order 2.5 (see Appendix B).

1A correction of the mixed-order TVFE of order 2.5 presented by Peterson
and Wilton [5] was given by Peterson [21].

Fig. 2. Plot of the proposed vector basis function�2r�3 � �3r�2 for a
triangular element.

Fig. 3. Plot of the proposed vector basis function(�2��3)(�2r�3��3r�2)
for a triangular element.

The similarity between the hierarchical mixed-order TVFE’s
of order 1.5 and 2.5 is apparent and one gets an impression
of the needed generalizations for obtaining even higher order
TVFE’s. However, use of TVFE’s beyond order 2.5 does not
seem to be of practical interest.

To pictorially illustrate the behavior of the proposed vector
basis functions, we consider a triangular element where the
nodes 1, 2, and 3 have the coordinates , , and

in a rectangular coordinate system. The lowest
order vector basis function associated with
edge is plotted in Fig. 2. For the proposed mixed-order
TVFE of order 1.5, the linear variation of the tangential field
along edge is provided by (due to the
hierarchical nature of the proposed class of TVFE’s) and by

plotted in Fig. 3. For Peterson’s
mixed-order TVFE of order 1.5, the linear variation of the
tangential field along edge is provided by and
by individually (see Figs. 4 and 5) and this mixed-
order TVFE, therefore, does not compare to the lowest order
TVFE in a hierarchical fashion. The two vector basis functions
providing quadratic normal field variation along element edges
are the same for the two mixed-order TVFE’s. The vector
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Fig. 4. Plot of the traditional vector basis function�2r�3 for a triangular
element.

Fig. 5. Plot of the traditional vector basis function�3r�2 for a triangular
element.

basis function associated with edge
(zero field along edge ) is plotted in Fig 6. All vector basis
functions are seen to provide the postulated variation.

IV. NUMERICAL RESULTS

In the previous section, properties of various TVFE’s were
examined. Specifically, the mixed-order TVFE of order 0.5
(corresponding to , see also [10]), Peter-
son’s mixed-order TVFE of order 1.5 [13] and the proposed
hierarchical mixed-order TVFE of order 1.5 (corresponding to

and reduced from twelve to eight vector
basis functions) were compared. It is the aim of this section to
numerically demonstrate the performance of the proposed class
of hierarchical TVFE’s when the field is selectively expanded
using the lowest order TVFE in part of the computational
domain and the proposed hierarchical mixed-order TVFE of
order 1.5 in the remaining part of the computational domain.
A guideline will be given as to how lowest and higher
order TVFE’s shall be combined for optimal (with respect
to accuracy, memory, and CPU time) performance.

Fig. 6. Plot of the vector basis function�1(�2r�3��3r�2) for a triangular
element.

A FEM computer code was developed to evaluate the
scattering of a TE or TM polarized plane wave by an arbitrary
infinite cylinder composed of PEC’s and isotropic dielectric
and/or magnetic materials. The code is based on a standard
FEM formulation for two-dimensional problems where the
transverse field component is expanded using a TVFE and the
solution domain is truncated using a homogeneous isotropic
artificial absorber (AA) (a fictitious material of relative per-
mittivity and permeability backed by a PEC structure)
of thickness ( denotes the free-space wavelength)
placed a distance from the scatterer [22]. The resulting
sparse FEM matrix equation system is solved using a quasi-
minimal residual solver [23]. For validation, MoM results
were successfully compared to FEM results using each of the
three TVFE’s individually as well as the two different TVFE’s
selectively over the computational domain.

Let us consider a square PEC cylinder of side length
situated in a free space region characterized by the permittivity

and the permeability . Centered on the upper side of the
cylinder is a rectangular groove of length and of height

. The groove is filled with a material characterized by the
relative permittivity and the relative permeability

. The cylinder is illuminated by a TE (with respect
to the cylinder axis) polarized homogeneous plane wave whose
propagation vector forms a 45angle with all sides of the
cylinder, as illustrated in Fig. 7.

In the following, we compare the scattering by the cylinder
using different TVFE options and different uniform discretiza-
tions to demonstrate the merits of the proposed hierarchical
mixed-order TVFE’s when the field is selectively expanded
over the computational domain. In Fig. 8, we compare results
for the two-dimensional radar cross section (RCS)
normalized to as a function of the observation angle2.
The MoM result is denoted “MoM.” For a mesh where the
generic element edge size is , the FEM result using
the lowest order TVFE is denoted “FEM-1 TVFE-coarse”
and the FEM result using selective field expansion (with the
groove and a layer surrounding the scatterer as the region
in which the mixed-order TVFE of order 1.5 is employed)

2� = 45� corresponds to backscatter and� = 225� corresponds to forward
scattering (see Fig. 7).
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Fig. 7. Coated square cylinder with crack and illuminated by TE-polarized
plane wave.

Fig. 8. Bistatic RCS of the cylinder in Fig. 7.

is denoted “FEM-2 TVFE’s-coarse.” For a mesh where the
generic element edge size is , the FEM result using the
lowest order TVFE is denoted “FEM-1 TVFE-dense.”

The “FEM-1 TVFE-coarse” result is seen to compare rea-
sonably well with the exact MoM result. However, discrep-
ancies can be seen and this is not surprising since the mesh
is relatively coarse. For the denser mesh, the “FEM-1 TVFE-
dense” result shows a slight improvement. However, by keep-
ing the original mesh and employing the proposed mixed-order
TVFE of order 1.5 close to the scatterer where the field
can be expected to vary rapidly and accurate modeling is,
therefore, necessary, the “FEM-2 TVFE’s-coarse” result shows
a significant improvement. It matches the MoM result exactly
except in regions surrounding nulls and it was obtained using
less computational resources (less unknowns, less nonzero
matrix entries, and less matrix solution time) than the “FEM-
1 TVFE-dense” result. In conclusion, we observe selective
field expansion to be superior to the more traditional approach
of using a denser mesh and the same TVFE throughout the
computational domain.

We now consider a slightly different cylinder geometry by
introducing a slab of length and height on top of the

Fig. 9. Coated square cylinder with crack loaded by a dielectric slab and
illuminated by TE-polarized plane wave.

Fig. 10. Bistatic RCS of the cylinder in Fig. 9.

TABLE I
COMPARISON OFRELEVANT PARAMETERS FOR THETHREE FEM RESULTS IN FIG. 8

cylinder. As depicted in Fig. 9, the groove is filled with free
space and the slab has the relative permittivity and
the relative permeability . For the same illumina-
tion as before, results similar to those in Fig. 8 are given in
Fig. 10 and they reinforce the conclusions from the previous
case: the “FEM-1 TVFE-coarse” result compares reasonably
well with the exact MoM result and the “FEM-2 TVFE’s-
coarse” result is, though found using less computational re-
sources than the “FEM-1 TVFE-dense” result, significantly
more accurate than the “FEM-1 TVFE-dense” result.

Explicit parameter values quantifying the computational
savings for the results in Figs. 8 and 10 are given in Tables I
and II, respectively. In both cases, improved accuracy is
obtained for less nonzero matrix entries (i.e., less memory)
and less solution time.

To test the validity of the reported observations for an alter-
native mesh truncation scheme, the FEM code was modified to
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TABLE II
COMPARISON OF RELEVANT PARAMETERS

FOR THE THREE FEM RESULTS IN FIG. 10

Fig. 11. Grating structure on top of a grounded dielectric and illuminated
by TE polarized plane wave.

use a boundary integral (BI) for truncating the finite-element
mesh. Where the AA mesh truncation scheme is approximate,
the BI is (at least until discretized and coupled with an
FEM system) exact and, hence, it is attractive for truncating
finite-element meshes. For our test, the integral contour is
situated a slight distance away from the scatterer so that a
piecewise constant (lowest order) expansion can be employed
for discretizing the BI. As illustrated in Fig. 11, we consider
a rectangular PEC cylinder of width 3 and height 0.25
covered by a dielectric material of width 3 and height
whose relative permittivity is . On top of the
dielectric is a grating structure of height 0.25consisting
of three PEC strips of lengths 0.75, 0.5 and 0.75 ,
respectively, separated by dielectric inserts of length 0.5
having the relative permittivity . A structure of this
type (but of different size and different material composition)
is of practical interest for guiding electromagnetic waves and
below we demonstrate how a selective field expansion can
lead to accurate modeling of the fields in and near the grating
structure and thereby accurately predict the scattered field.
The structure is situated in free space and illuminated as
the previous two cylinders. Results similar to those in Fig. 8
and Table I are given in Fig. 12 and Table III. The results
again reinforce the conclusions reported above, except that the
matrix solution time for the “FEM-2 TVFE’s-coarse” result
is larger than that for the “FEM-1 TVFE-dense” result. This
fact is due to the condition number of the resulting FEM-BI
equation system and might change if a different iterative solver
had been applied. Further, we note that the preprocessing time
is significantly larger for the “FEM-1 TVFE-dense” result than
the “FEM-2 TVFE’s-coarse” result due to the larger BI system.
This must be kept in mind when interpreting Table III.

We note that at least two other approaches could be utilized
for improving the accuracy of FEM results. For example,

Fig. 12. Bistatic RCS of the cylinder in Fig. 11.

TABLE III
COMPARISON OF RELEVANT PARAMETERS

FOR THE THREE FEM RESULTS IN FIG. 12

higher order TVFE’s (either Peterson’s mixed-order TVFE of
order 1.5 or the proposed mixed-order TVFE of order 1.5)
could be applied throughout the computational domain. This
approach was tested and the two mixed-order TVFE’s of order
1.5 gave similar and accurate results but could not measure
up with the selective approach in terms of computational re-
sources. Alternatively, nonuniform meshing could be utilized.
However, this could be employed for all the TVFE options
described in this paper and was therefore not tested. Moreover,
mesh regeneration for improved solution accuracy is not an
attractive option. Nevertheless, it is reasonable to assume that
this approach would lead to accurate results with a denser
mesh close to the scatterer where the field is expected to vary
rapidly.

V. CONCLUSIONS AND FUTURE WORK

We introduced a class of hierarchical TVFE’s for FEM
discretization. The properties of the proposed class of TVFE’s
were discussed and a comparison to those of traditional
TVFE’s was given. A set of numerical results were presented
that demonstrate the effectiveness of the proposed class of hier-
archical TVFE’s when the computational domain is selectively
discretized using the lowest order TVFE in part of the domain
and a proposed hierarchical mixed-order TVFE of order 1.5
in the remaining part of the domain. Hence, the computational
domain can initially be discretized using lowest order TVFE’s
and the accuracy of the solution can then be improved by
selectively superimposing more vector basis functions where
rapid field variation is anticipated, i.e., in regions near edges,
near material boundaries, in dense dielectrics, etc.

Although the class of hierarchical TVFE’s was presented
for a triangular element, the approach has the potential to
be more general. The derivation of a class of hierarchical



ANDERSEN AND VOLAKIS: NOVEL CLASS OF HIERARCHICAL TANGENTIAL VECTOR FINITE ELEMENTS FOR EM 119

Fig. 13. Illustration of the variation ofu1 andv1 over a triangle.

TVFE’s for a generalized quadrilateral and, as a special case, a
curved triangle would again begin with a suitable polynomial
expansion for a surface current as presented by Popović
and Kolundžija. Such elements conform well to almost all
geometries and are thus attractive for FEM discretization.
Hierarchical mixed-order TVFE’s of order 0.5, 1.5, and 2.5
for a tetrahedral element have already been developed [24].

APPENDIX A

In this Appendix, explicit expressions for , , and
are derived.

To derive an expression for , we introduce two co-
ordinates over the triangle. These are degenerates
of similar coordinates for a generalized quadrilateral [17].

takes its minimum value at node 1 and its
maximum value along edge while takes its
minimum value along edge and its maximum
value along edge . is constant and is
linear along straight lines parallel to edge while is
linear and is constant along straight lines starting at node 1
and ending at edge , as illustrated in Fig. 13. Using these
coordinates, the position vectordefining can be expressed
as [17]

(11)

where

(12)

(13)

Further, and can be shown to be related to the simplex
coordinates , , and via

(14)

(15)

From (4) for , trivial algebra then leads to

(16)

To derive expressions for and , we can similarly
introduce coordinates and where
along the two edges shared by node , at node

and at the edge opposite to node . The
algebra is similar and we arrive at

(17)

(18)

(19)

(20)

(21)

(22)

APPENDIX B

In this Appendix, explicit expressions for the vector basis
functions discussed in Section III are presented. The basis
functions are not normalized.

A. Whitney’s Mixed-Order TVFE of Order 0.5

Whitney’s mixed-order TVFE of order 0.5 is characterized
by the three vector basis functions

(23)

(24)

(25)

B. Peterson’s Mixed-Order TVFE of Order 1.5

Peterson’s mixed-order TVFE of order 1.5 is characterized
by the eight vector basis functions

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

C. The Proposed Hierarchical Mixed-Order
TVFE of Order 1.5

The proposed hierarchical mixed-order TVFE of order 1.5
is characterized by the eight vector basis functions

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)
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D. Transformation Between Mixed-Order TVFE’s of Order 1.5

The two mixed-order TVFE’s of order 1.5 presented above
are related through a linear transformation. Let be
a column vector containing Peterson’s eight vector basis
functions , , and be a column vector
containing the proposed eight vector basis functions ,

. In this case, is related to via

(42)

where is the sparse transformation matrix

(43)

E. The Proposed Hierarchical Mixed-Order TVFE of Order 2.5

The proposed hierarchical mixed-order TVFE of order 2.5
is characterized by the fifteen vector basis functions

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)
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