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Abstract—Tangential vector finite elements (TVFE'’s) overcome basis functions. Bcelec pointed out [2], [3] that it is not neces-
most of the shortcomings of node-based finite elements for elec-sarily advantageous to employ polynomial-complete TVFE’s
tromagnetic simulations. For a triangular element, this paper when applying the FEM. It was proven that a polynomial-

proposes a class of hierarchical TVFE's that differ from tradi- . .
tional TVFE's. The hierarchical nature of the proposed TVFE's COmplete expansion of a vector field can be decomposed

makes them ideally suited for employing an efficient selective into a part representing the range space of the curl operator
field expansiqn (the Iowe_st order TVFE employed within part of (V x A #£ 0, A #£ V¢) and a part representing the null space
the computational domain and a higher order TVFE employed f the curl operator{ x A = 0, A = V¢). For representation

within the remaining part of the computational domain). This is L . . .
an attractive feature not shared by nonhierarchical TVFE's for of electromagnetic fields, it suffices to employ a TVFE that is

which a more traditional approach (the same TVFE employed Ccomplete in the range space of the curl operator. Since such a
throughout the computational domain) must be applied. For de- TVFE captures polynomial variations of ordeinterior to the
termining the scattering by composite cylinders, this paper argues element and polynomial variations of order 1 along element

that the performance (in terms of accuracy, memory, and, in most edges, we call it complete to order— 0.5 and refer to it as a

cases, CPU time) of the proposed class of hierarchical TVFE's ~ .

when applying se)lective figld Fc)axpansion is superior to that of the Mixed-order TVFE or (less commonly) a reduced-order TVFE.
lowest order TVFE and a traditional nonhierarchical TVFE. This ~ For a triangular element, complete expansion to order0.5

is the case when an artificial absorber as well as a boundary requiresn(n + 2) vector basis functions. For rigorous criteria
integral ‘is used for truncating the computational domain. A~ for spurious mode elimination and extensive discussions of
guideline is given as to how lowest and higher order TVFE's . ) . ,

shall be combined for optimal performance of the proposed class mixed-order TVFE S VerSl’_'S polynomial-complete TVFE's, see
of hierarchical TVFE's. [2] and [3]. For discussions of element completeness and
spurious modes, see also [4]-[7].

A class of TVFE's is referred to as hierarchical if the
vector basis functions forming theth order TVFE are a
subset of the vector basis functions forming the+ 1)th

. INTRODUCTION order TVFE. This desirable property allows for selective field
ODE-BASED expansions in finite-element metho@xpansion using different order TVFE's in different regions
(FEM) solutions are suitable for modeling scalar quantéf the computational domain. Hence, lowest order TVFE’s
ties, but typically not so for simulating vector electromagnetican be employed in regions where the field is expected to
fields. When assigning vector field values to element nodesyry slowly whereas higher order TVFE's can be employed
values may need to be specified at locations where time regions where rapid field variation is anticipated. This
true field is undefined (corners, edges), spurious modsslective choice of TVFE’s over the computational domain
can be generated, and the enforcement of the boundagn lead to a memory and CPU time reduction as well as
conditions occurring in electromagnetics can be a challengiftgproved accuracy. Scalar FEM analysis using hierarchical
task. Tangential vector finite elements (TVFE’s), based dinite elements is a well-known approach (see, for example,
expanding a vector field in terms of values associated wif8] and [9]).
element edges and faces, have been shown to be free of thes®r a triangular element, the lowest order TVFE was
shortcomings [1] and, therefore, TVFE's are of considerabigiginally introduced by Whitney [10] and is referred to as
practical interest. the Whitney TVFE or the Whitney element. It provides a

A TVFE is referred to as polynomial-complete to a givegonstant tangential field value along element edges and a linear
order, sayn, if all possible polynomial variations up to andfie|d variation inside the element. Hence, the Whitney TVFE
including ordern are captured within the element and ofs complete to order 0.5. Several nonhierarchical TVFE's of
the element boundary. For a triangular element, polynomigfigher order than the Whitney TVFE have been introduced
complete expansion to orderrequires(n + 1)(n + 2) vector by Mur and de Hoop [11], Leet al. [12], Peterson [13],

Manuscript received September 8, 1997; revised July 15, 1998. Peterson and Wilton [5], and Gragliet al. [14]. Recently,

The aqthors are with the Radiation L_abor_atory, Dep_artment of Electricglgrrie and Webb [15] presented a hierarchical TVFE derived
ng(')geff'srf and Computer Science, University of Michigan, Ann Arbor, M('jirectly from a set of scalar finite-element basis functions [9].
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case of a triangular element follows trivially from the case of
a tetrahedral element) up to and including second order was
introduced by Webb and Forghani [16]. A recent review of
TVFE’s was given by Peterson and Wilton [7].

The discussion above presents the concepts of polynomial-
complete, mixed-order, and hierarchical TVFE’s and summa-
rizes different TVFE's that have been proposed for a triangular
element. However, there still seems to be a need for thorough
numerical investigations of the effectiveness (in terms of
accuracy and time/memory requirements) of selective field ex-
pansion using hierarchical TVFE’s. The purpose of this paper
is to introduce a class of hierarchical mixed-order TVFE's
for a triangular element and to demonstrate its performangg 1. Geometry of a triangular element and illustration of the vectors
when a selective field expansion is employed. The hierarchigak (r — r..), » = 1, 2, 3, describing the directions of the vector basis
TVFE's differ from those previously presented for a trianguldfnctions at the point”.
element. The derivation is based on an attractive set of higher

order vector basis functions recently presented by P@poygspect to the origi® of a rectangular coordinate system (see
and Kolundija [17], [18] for expanding surface currentsgig. 1). The edges from node 1 to node 2, node 2 to node 3
in conjunction with method of moments (MoM) solutionsand node 3 to node 1 are referred to as edge #1, edge #2, and
These are converted to vector basis functions applicable Egjge #3, respectively. The area of the triangle is denoted by
FEM analysis and knowledge ofé@dlec spaces and tradi- 4. Simplex (or area) coordinates, ¢», and(s; at a pointP

tional nonhierarchical mixed-order TVFE's is then applied tgescribed uniquely by a position vectsrare defined in the
specifically propose hierarchical mixed-order TVFE'’s of ordejsual manneryiz. ¢, = A,/A where A,, denotes the area

0.5, 15, and 2.5. Potentia"y, even hlghel’ order hierarChiC@‘ﬂ the triang'e formed byP and the endpoints of the edge
mixed-order TVFE's can be formulated. We demonstrate t%posite to nodex. We letn denote a unit normal vector to

performance of the proposed class of hierarchical TVFE's Bife surface of the triangle.
comparing FEM results obtained using the Whitney TVFE and popovi and Kolundija expands the surface currghtover
the proposed hierarchical TVFE’s (applying a selective fielghe triangle as [17]
expansion) to MoM solutions. 5 5

The structure of this paper is as follows. Section Il presents J - Z Jo— Z UV

the derivation of vector basis functions based on the expansion —~ —~ (1)
introduced by Popo@i and Kolundija. Section lll discusses - -

the merits of the proposed vector basis functions and propo¥éere

hierarchical mixed-order TVFE’s that are compared to existing v —F~Tn B
mixed-order TVFE’s. Expressions in terms of simplex coordi- " 924

nates are given and vector plots are added to provide a physiga‘; vector whose direction is from nodeto P and ¥, is a

unders_tar|1d|ng lf:f t'?he tT(\j/FE . ?eftlotr; \Y pr;‘:\sents a Sit biynomial function of position that provides the amplitude
numerical resufts that demonstrate the periormance o riation of the vector current componedt, = ¥,V,.

proposed class of hierarchical TVFE’s. Section V summariz%ge

d ludes th 4 outl fut kito b The polynomial¥’,, contains a number of unknown expansion
and concludes the paper and outlines futuré work 1o be Cam@@icients. Its specific form is irrelevant at this point and will
out. Parts of this work were presented earlier [19].

be given later. As in the Rao—Wilton—Glisson expansion [20],
Jsn has no normal component along the two edges sharing
noden andJ,, has both a normal and a tangential component

_ _ ) along the edge opposite to node Thus, the quantity
The proposed class of hierarchical TVFE'’s is based on an

Il. FORMULATION

expansion introduced by Popévand Kolundija [17], [18] Fo=2xJs =¥, xV,
for the surface current on a perfectly electrically conducting _— A X (r—ry) W 3)
(PEC) generalized quadrilateral. For this expansion, it is oo 24 Coonn

demonstrated in [17] and [18] that the surface current can Pgn,
expanded using approximately ten unknowns per square wave- R
length as opposed to approximately one hundred unknowns per W, = w (4)
square wavelength for traditional subdomain pulse-basis func- 24
tions. This suggests that the expansion introduced by Popokias no tangential component along the two edges sharing
and Kolundija is very efficient. Below, corresponding vectonode n and has both a tangential and a normal component
basis functions applicable for FEM analysis are constructedilong the edge opposite to node This suggests that the
As a degenerate case of the generalized quadrilateral ceeetor basis functions multiplying the expansion coefficients
sidered in [17] and [18], we consider a triangular element wiih the expansion ofF,, can be employed as vector basis
nodes 1-3 described by position vectors r», andrz with  functions for the edge opposite to noflevhen applying the
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FEM. Considering all three edges, the FEM expansion of aalues ofn, and n,, (10) includes additional vector basis
unknown vector quantityf' becomes functions all of which maintain the same fundamental direction
3 3 3 vectors (1 V{; — (o V¢ for edge#1, (V{3 — {3V, for edge
F=nxJ, = Z AxJy, = Z F, = Z U,W, () #2 and sV — (1 V@ f_or edge_#:i). '_rhus, the proposed
o o o higher order vector basis functions differ from the lowest
order vector basis functions only in magnitude and, hence,
in a given point of the triangle, the field expanded using a
TVFE based on these vector basis functions is represented as a
linear combination of vector basis functions having only three
Ifﬂ'usndamental directions. This is one of the major differences
between the proposed and traditional hierarchical TVFE's [15],

where expressions fol,, (depending upon the order of
the expansion) andV,, (independent of the order of the
expansion) are to be presented.

Introducing coordinates over the triangle and using relatio
from [17], it is shown in Appendix A that

Wi =LV — GVEG (6) [16]. For the latter, the higher order vector basis functions
W GV GG ) e e e o
Wi =V — (VG 8 g ' gen! b

triangle is again represented as a linear combination of vector
The polynomial ¥,, is a function of position that in terms basis functions, but in this case, the number of fundamental
of a number of unknown expansion coefficients provides tiygctor directions used for representing the field grows with

amplitude variation of the vector componeW,,. It can be the order of the TVFE.

defined using normalized coordinates, and v, over the  An important property of (10) is that the vector basis

triangle. Specifically, we choose, = 0 at noden, u, = 1 functons Wy« "« for k = 1,2, 3 andm = 1, ..., N""«
along the edge opposite to nodeandwv,, = £1 along the two are a subset of the vector basis functighg” ™+ for
edges sharing node. A detailed description of the variation;. — 1 9 3 andm = 1..... N®e+tD@E+1) This shows

of u, andwv, is given in Appendix A. From [17], we have  hat TVFE’s based on the above presented vector basis func-
ne [ e ' tions are hierarchical, a very desirable property. Hierarchical
U, =2 |6+ al(ui? -1t (9) TVFE's are ideally suited for employing an efficient selective
j=1 i=3 field expansion where different order TVFE’s (in this case
wheren, andn, are integer constants determining the ordélfferent values ofn, and n,) are employed in different

of the approximation andy¥. and o’ are the expansion regions of the computational domain. Hence, for a uniform
coefficients. AlsOu; = (o +Ca, w11 = Co— (s, U2 = (341 mesh, the lowest order TVFE can be employed in regions

Uavs = (3 — (1, Uz = (1 + Co, anduzvz = (1 — Co. where the field is expected to experience smooth variation

Expansion (5) forF along with (6)—(8) for W,, W,, (regions where the relative material parameters are (nearly)
and W and (9) for¥,, describes the proposed vector basignity, away from edges, etc.) whereas a higher order TVFE
functions. However, a certain simplification provides a mofeédn be employed in regions where the field is expected
familiar form. By regrouping the terms in (9) fo¥,,, (5) for 0 vary rapidly (near edges, close to material boundaries,

F can be cast into in dense materials, etc.). Similarly, for a nonuniform mesh
3 N (for example, where geometric complexity requires detailed
F— Z Z B (10) meshing in a given region), the lowest order TVFE can be

- k,m k,m

employed where the mesh is dense while a higher order TVFE
can be employed where the mesh is coarse. Regions where
whereN"™" = n,(n,—1) denotes the total number of vectoligher order TVFE'’s are employed can be fixadriori or
basis functions per edge for the given valuesmgfandn.. an adaptive scheme can be developed where lowest order
Also, c;*.« are expansion coefficients corresponding to edg’/Fg's are initially employed throughout the computational

#k while V\;fn[}l are vector basis functions associated Withomain and higher order TVFE's are subsequently employed
edge#k. Wi, is given (in terms of the simplex coordinatesy, regions where the error is estimated to be large.

C1y G2, @ndG) as a function of;, (2, andg times a direction  gaged on the vector basis functions in (10) for different val-

vector (1Ve—G Vi fork =1, (VG—(Vefork = 2and e of,, andn, along with knowledge of Bcelec spaces and
(3V (1 —(1 V(g for k = 3). Except for normalization constants, o ditional nonhierarchical mixed-order TVFE's, hierarchical

n

the vector basis function®Vy:,,« will be directly used for ny o4 order TVFE's of order 0.5, 1.5, and 2.5 will now be
forming hierarchical mixed-order TVFE'’s (see Section III). proposed and compared to existing TVFE's. The method has
the potential of providing hierarchical mixed-order TVFE’s of
IIl. DiscussioN even higher orders if so desired. Explicit expressions for vector
In this section, we examine the properties of the vectbasis functions are given in Appendix B.
basis functions introduced in the previous section and based ofror the special case ofn,, n,) = (1,2), we obtain
these we propose new hierarchical mixed-order TVFE’s thiiom (10) a set of three vector basis functioWé;?,, k =
are contrasted to existing mixed-order TVFE’s. 1, 2, 3, forming a mixed-order TVFE of order 0.5 identical
From (10), we recover fofn,, n,) = (1, 2) the three to the Whitney TVFE [10] (see Appendix B). This result was
vector basis functions introduced by Whitney [10]. For largesxpected since the lowest order expansion adopted by Ropovi

k=1 m=1l
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and Kolundija is identical to the Rao—Wilton—Glisson expan- -

sion [20] whose vector basis functions reduce to the Whitney -

vector basis functions when converted using the procedure

applied above. This lowest order TVFE provides a constant -
tangential field along element edges, a linear variation of the .q_-r—."--.“‘--.

normal field component along element edges (referred to as _,_-.._'lh._“n...‘\.

CTI/LN field variation along element edges) and a linear field 'r,\

variation interior to the element. ——NN

A traditional second-order polynomial-complete TVFE is —— T W, "'\ "\ \

described by twelve vector basis functions (see [5]). However, “ N\ ‘h \'. \ \

by excluding the four vector basis functions associated with the -

null space of the curl operator, this second-order polynomial- - % A \

complete TVFE can be reduced to a mixed-order TVFE of el 't '.'

order 1.5 formed by eight vector basis functions as presented i 1, 1. T
|

by Peterson [13] (see Appendix B). The latter provides a linear

variation of the tangential field component along elemefig. 2. Plot of the proposed vector basis functigyVv¢s — (3V(a for a
edges, a quadratic variation of the normal field compongfigngular element.

along element edges (referred to as LT/QN field variation

along element edges) and quadratic field variation interior to =

the element. Based on the vector basis functions from (10) for | —

(n., ny) = (2, 3), we propose eight vector basis functions

forming an alternative and hierarchical mixed-order TVFE —_———

of order 1.5 providing LT/QN field variation along element —

edges and quadratic field variation interior to the element (see

Appendix B). safn i Sl Ay
Peterson’s mixed-order TVFE of order 1.5 [13] has the = m om ow o

desirable property of being complete to second order in the . il

range space of the curl operator. This property ensures a

complete second-order expansion of a field with nonzero curl i » v A

and guarantees eigenvalue solutions free of spurious nonzero e . "l

eigenvalues. Due to the existence of a linear transformation A

(see Appendix B) from Peterson’s eight vector basis functions t T

to the proposed eight vector basis functions, the proposed hier- T T

archical mixed-order TVFE of order 1.5 has the same desiralplg. 3. piot of the proposed vector basis functign—(s )(C2 V(s — 3 V(a)

property. However, the two TVFE’s are not identical. Theifor a triangular element.

vector basis functions span the same space but have different

properties and may not be equally efficient numerically.  The similarity between the hierarchical mixed-order TVFE’s
For both mixed-order TVFE's of order 1.5, six of theof order 1.5 and 2.5 is apparent and one gets an impression

vector basis functions provide a linearly varying tangentigf the needed generalizations for obtaining even higher order

component along element edges while the remaining tWa/FE’s. However, use of TVFE’s beyond order 2.5 does not

vector basis functions (identical for the two different TVFE'syeem to be of practical interest.

provide a quadratic variation of the normal field component To pictorially illustrate the behavior of the proposed vector

along element edges. However, the linear variation of thgsis functions, we consider a triangular element where the

tangential component along element edges is obtained in th@des 1, 2, and 3 have the coordinatés 0), (1, 0), and

different ways. For Peterson’s mixed-order TVFE, the tw@, 1) in a rectangula(z, ) coordinate system. The lowest

unknowns per edge represent the magnitude of the fieldgi#ler vector basis functiod V(s — (3V ¢, associated with

edge endpoints. For the proposed mixed-order TVFE, the twWege 42 is plotted in Fig. 2. For the proposed mixed-order

unknowns per edge represent the average field value alongFg of order 1.5, the linear variation of the tangential field

the edge and the deviation from this average value at edgleng edge#2 is provided by(,V{s — 3V, (due to the

endpoints. hierarchical nature of the proposed class of TVFE’'s) and by
A generalization to even higher order hierarchical mixec{c2 — ()(GV (3 — (3V(y) plotted in Fig. 3. For Peterson’s
order TVFE's is possible. For the special casgwf, n.) = mixed-order TVFE of order 1.5, the linear variation of the

(3, 4), (10) gives vector basis functions that based on knowkngential field along edge2 is provided by(,V¢; and
edge of Necélec spaces and traditional nonhierarchical mixegy ¢, V¢, individually (see Figs. 4 and 5) and this mixed-
order TVFE'’s of order 2.5 [3], [2f]can be used for forming a order TVFE, therefore, does not compare to the lowest order
hierarchical mixed-order TVFE of order 2.5 (see Appendix BYVFE in a hierarchical fashion. The two vector basis functions

1A correction of the mixed-order TVFE of order 2.5 presented by PetersMOdeg quadratic normal fle|.d variation along element edges
and Wilton [5] was given by Peterson [21]. are the same for the two mixed-order TVFE's. The vector
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; | 'I' " Fig. 6. Plot of the vector basis functign((> V(3 — (3 V(2 ) for a triangular
element.
Fig. 4. Plot of the traditional vector basis functignVV(3 for a triangular

element.
A FEM computer code was developed to evaluate the
— N scattering of a TE or TM polarized plane wave by an arbitrary
infinite cylinder composed of PEC’s and isotropic dielectric
—— and/or magnetic materials. The code is based on a standard
—_——— FEM formulation for two-dimensional problems where the
transverse field component is expanded using a TVFE and the
———— solution domain is truncated using a homogeneous isotropic
e ———— artificial absorber (AA) (a fictitious material of relative per-
mittivity and permeabilityl — 2.7 backed by a PEC structure)
e e of thickness0.25)q (Ao denotes the free-space wavelength)
e e e placed a distanc@.5), from the scatterer [22]. The resulting
sparse FEM matrix equation system is solved using a quasi-
| e R e e e minimal residual solver [23]. For validation, MoM results
were successfully compared to FEM results using each of the
three TVFE's individually as well as the two different TVFE's
E o = o = =R W = = = selectively over the computational domain.

Let us consider a square PEC cylinder of side lenigh
situated in a free space region characterized by the permittivity
g0 and the permeability,g. Centered on the upper side of the
cylinder is a rectangular groove of lengklz /2 and of height
Ao/4. The groove is filled with a material characterized by the
relative permittivitye, = 2 — j2 and the relative permeability
i = 2—32. The cylinder is illuminated by a TE (with respect
to the cylinder axis) polarized homogeneous plane wave whose
propagation vector forms a 45angle with all sides of the

IV. NUMERICAL RESULTS cylinder, as illustrated in Fig. 7.

In the previous section, properties of various TVFE’s were In the following, we compare the scattering by the cylinder
examined. Specifically, the mixed-order TVFE of order 0.8sing different TVFE options and different uniform discretiza-
(corresponding ton,, n,) = (1, 2), see also [10]), Peter-tions to demonstrate the merits of the proposed hierarchical
son’s mixed-order TVFE of order 1.5 [13] and the proposetixed-order TVFE’s when the field is selectively expanded
hierarchical mixed-order TVFE of order 1.5 (corresponding tever the computational domain. In Fig. 8, we compare results
(ne, n) = (2, 3) and reduced from twelve to eight vectofor the two-dimensional radar cross section (RGS) p
basis functions) were compared. It is the aim of this section f@rmalized to), as a function of the observation angté.
numerically demonstrate the performance of the proposed cld&e MoM result is denoted “MoM.” For a mesh where the
of hierarchical TVFE's when the field is selectively expandegeneric element edge size (s15)o, the FEM result using
using the lowest order TVFE in part of the computationdhe lowest order TVFE is denoted “FEM-1 TVFE-coarse”
domain and the proposed hierarchical mixed-order TVFE ahd the FEM result using selective field expansion (with the
order 1.5 in the remaining part of the computational domaigroove and a layer surrounding the scatterer as the region
A guideline will be given as to how lowest and highein which the mixed-order TVFE of order 1.5 is employed)
order TVFE’s shall be combined for optimal (with respect 2¢ = 45° corresponds to backscatter apie= 225° corresponds to forward
to accuracy, memory, and CPU time) performance. scattering (see Fig. 7).

Fig. 5. Plot of the traditional vector basis functignV{> for a triangular
element.

basis function¢; (V{3 — (3V{») associated with edgg-2
(zero field along edgé-2) is plotted in Fig 6. All vector basis
functions are seen to provide the postulated variation.
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Fig. 9. Coated square cylinder with crack loaded by a dielectric slab and
A
o illuminated by TE-polarized plane wave.
Fig. 7. Coated square cylinder with crack and illuminated by TE-polarized

plane wave. 2%
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Observation angle ¢ [degrees| Flg 10. Bistatic RCS of the cylinder in Flg 9.
Fig. 8. Bistatic RCS of the cylinder in Fig. 7.
TABLE |
. « s " COMPARISON OFRELEVANT PARAMETERS FOR THETHREE FEM RESULTS INFIG. 8
is denoted “FEM-2 TVFE's-coarse.” For a mesh where thé _ -
generic element edge size(si Ay, the FEM result using the -y [ e[S o e S e v
lowest order TVFE is denoted “FEM-1 TVFE-dense.” 1 TVFFE - Denser mesh 3977 19664 111 scconds 2.1059 dB
2 TVFEs - Coarse mesh 1070 7292 21 seconds 1.5614 dB

The “FEM-1 TVFE-coarse” result is seen to compare rea-
sonably well with the exact MoM result. However, discrep-

ancies can be seen and this is not surprising since the megfinder. As depicted in Fig. 9, the groove is filled with free
is relatively coarse. For the denser mesh, the “FEM-1 TVFEpace and the slab has the relative permittiwjty= 2— ;2 and
dense” result shows a slight improvement. However, by keegpre relative permeability:, = 2 — 2. For the same illumina-
ing the original mesh and employing the proposed mixed-ordgsn as before, results similar to those in Fig. 8 are given in
TVFE of order 1.5 close to the scatterer where the fieldig. 10 and they reinforce the conclusions from the previous
can be expected to vary rapidly and accurate modeling iase: the “FEM-1 TVFE-coarse” result compares reasonably
therefore, necessary, the “FEM-2 TVFE’s-coarse” result showigIl with the exact MoM result and the “FEM-2 TVFE's-
a significant improvement. It matches the MoM result exactlyoarse” result is, though found using less computational re-
except in regions surrounding nulls and it was obtained usisgurces than the “FEM-1 TVFE-dense” result, significantly
less computational resources (less unknowns, less nonzeiore accurate than the “FEM-1 TVFE-dense” result.
matrix entries, and less matrix solution time) than the “FEM- Explicit parameter values quantifying the computational
1 TVFE-dense” result. In conclusion, we observe selectiwavings for the results in Figs. 8 and 10 are given in Tables |
field expansion to be superior to the more traditional approaahd I, respectively. In both cases, improved accuracy is
of using a denser mesh and the same TVFE throughout tilgtained for less nonzero matrix entries (i.e., less memory)
computational domain. and less solution time.

We now consider a slightly different cylinder geometry by To test the validity of the reported observations for an alter-
introducing a slab of length, and height\y/4 on top of the native mesh truncation scheme, the FEM code was modified to
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TABLE I 30
COMPARISON OF RELEVANT PARAMETERS
FOR THE THREE FEM ResuLTs IN FiG. 10

MoM
FEM - 1 TVFE - Coarse mesh

FEM Code Unknowns | Non-zero mat. entries | Mat. solution time | RMS error 20f ===~ FEM~1TVFE - Denser mesh
1 TVFE - Coarse mesh 900 4398 12 scconds 2.7353d8 |- — = FEM — 2 TVFEs — Coarse mesh
1 TVFE - Denser mesh 4469 22118 153 seconds 1.2883 dBB
2 TVFEs - Coarse mesh 1280 9466 35 seconds 0.6290 dB
= 10r
=
H
0
&
o
g, U :
r

—10r

! it
-20 . . . . .
4 { LFEL P 45 75 105 135 165 195 225
L
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Fig. 12. Bistatic RCS of the cylinder in Fig. 11.
Lol '
3 TABLE Il
COMPARISON OF RELEVANT PARAMETERS
.=kl £p=2-jlL5 FOR THE THREE FEM REsuLTS IN FiG. 12
el
. . X i i i FEM Code Unknowns | Non-zero mat. entries | Mat. solution time | RMS error
Fig. 11. Grating structure on top of a grounded dielectric and illuminated TVFE - Coarse mesh 1230 19662 172 scconds 5.3980 dB
by TE polarized plane wave. 1 TVFE - Denser mesh 2421 43961 301 scconds 0.9807 dB
2 TVFEs - Coarse mesh 1716 25884 534 scconds 0.7705 dB

use a boundary integral (Bl) for truncating the finite-element h der TVEE's (either P 's mixed-order TVFE of
mesh. Where the AA mesh truncation scheme is approximateég er oraer s (either Peterson’s mixed-order 0

the Bl is (at least until discretized and coupled with aﬂrder 15 or t_he proposed mixed-order TYFE of ordgr 1'5_)
FEM system) exact and, hence, it is attractive for truncati uld be applied throughout the co_mputaﬂonal don’1a|n. This
finite-element meshes. For our test, the integral contour & proach was tested and the two mixed-order TVFE's of order
situated a slight distance away from the scatterer so thafL'é gave similar "’?”d accurate r_esults but could not_measure
piecewise constant (lowest order) expansion can be emploﬁﬂiw'th the selec_tlve approagh n terms_of computatloqgl re-
for discretizing the BI. As illustrated in Fig. 11, we considepPUrces- Altgrnatlvely, nonuniform meshing could be utll!zed.
a rectangular PEC cylinder of width\3 and height 0.25, Howe.ver, .thIS .could be employed for all the TVFE options
covered by a dielectric material of width\@ and heighth described in thls_paper e_md was therefo_re not tested. Moreover,
whose relative permittivity is, = 2 — j0.5. On top of the mesh _regene_ratlon for |mprovegl _solut|0n accuracy is not an
dielectric is a grating structure of height 0)25consisting atfcractlve option. Nevertheless, it is reasonable to_ assume that
of three PEC strips of lengths 0.X§ 0.5\, and 0.75, this approach would lead to accurate_resglts with a denser
respectively, separated by dielectric inserts of Iengthx(Q.Sme,Sh close to the scatterer where the field is expected to vary
having the relative permittivitye,, = 10. A structure of this rapidly.
type (but of different size and different material composition)
is of practical interest for guiding electromagnetic waves and V. CONCLUSIONS AND FUTURE WORK
below we demonstrate how a selective field expansion canWe introduced a class of hierarchical TVFE's for FEM
lead to accurate modeling of the fields in and near the gratidiscretization. The properties of the proposed class of TVFE's
structure and thereby accurately predict the scattered fielebre discussed and a comparison to those of traditional
The structure is situated in free space and illuminated &a¥FE'’s was given. A set of nhumerical results were presented
the previous two cylinders. Results similar to those in Fig. that demonstrate the effectiveness of the proposed class of hier-
and Table | are given in Fig. 12 and Table Ill. The resultarchical TVFE's when the computational domain is selectively
again reinforce the conclusions reported above, except that th&cretized using the lowest order TVFE in part of the domain
matrix solution time for the “FEM-2 TVFE’s-coarse” resultand a proposed hierarchical mixed-order TVFE of order 1.5
is larger than that for the “FEM-1 TVFE-dense” result. Thign the remaining part of the domain. Hence, the computational
fact is due to the condition number of the resulting FEM-Bdlomain can initially be discretized using lowest order TVFE’s
equation system and might change if a different iterative solvend the accuracy of the solution can then be improved by
had been applied. Further, we note that the preprocessing tipe¢ectively superimposing more vector basis functions where
is significantly larger for the “FEM-1 TVFE-dense” result thamapid field variation is anticipated, i.e., in regions near edges,
the “FEM-2 TVFE’s-coarse” result due to the larger Bl systermear material boundaries, in dense dielectrics, etc.
This must be kept in mind when interpreting Table IlI. Although the class of hierarchical TVFE's was presented
We note that at least two other approaches could be utiliziat a triangular element, the approach has the potential to
for improving the accuracy of FEM results. For exampldye more general. The derivation of a class of hierarchical
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_ 2,3 anduz, 3 = 1 at the edge opposite to node 3. The
/— algebra is similar and we arrive at

,‘ u,=1 u2 =3+ G 17)

”””” Ty G-
L u=3 TG G (o
ey W2 =GV —GVE (19)
uz =(1 + (2 (20)

-G
vz = Cl T CQ (21)
W3 =V — V. (22)

u,=0

Fig. 13. lllustration of the variation of; andv; over a triangle.
APPENDIX B

TVFE's for a generalized quadrilateral and, as a special case, <’|:1n this Appendix, explicit expressions for the vector basis

. ! S . Vnctions discussed in Section Ill are presented. The basis
curved triangle would again begin with a suitable polynomk';[\ . :
. . __functions are not normalized.
expansion for a surface current as presented by Popovi
and Kolundija. Such elements conform well to almost all ) )
geometries and are thus attractive for FEM discretizatioff: Whitney’s Mixed-Order TVFE of Order 0.5

Hierarchical mixed-order TVFE's of order 0.5, 1.5, and 2.5 Whitney’'s mixed-order TVFE of order 0.5 is characterized
for a tetrahedral element have already been developed [24py the three vector basis functions

APPENDIX A Wi =GV — GV (23)
In this Appendix, explicit expressions foW,, W, and W5 =GVG -GV (24)
W, are derived. Wi =GV — eVi. (25)

To derive an expression foW;, we introduce two co-
ordinates(u1, v1) over the triangle. These are degeneratgs peterson’s Mixed-Order TVFE of Order 1.5
of similar coordinates for a generalized quadrilateral [17].
u; takes its minimum value:; i, = 0 at node 1 and its
maximum valueu; max = 1 along edge#2 while v; takes its
minimum valuev; i, = —1 along edge#3 and its maximum

Peterson’s mixed-order TVFE of order 1.5 is characterized
by the eight vector basis functions

2 _
value v1 max = 1 along edge#l. u; is constant ands is W; =@V (26)
linear along straight lines parallel to edgé2 while w, is W5 =GVE (27)
linear andv; is constant along straight lines starting at node 1 W2I=0(V( (28)
and ending at edg¢-2, as illustrated in Fig. 13. Using these W2 = (Vs (29)
coordinates, the position vecterefining P can be expressed ;
as [17] Wi =GV (30)
W2 =6V (31)
PSRt T H e (11) W2 =((GVE — &VEa) (32)
where W3 =(RVE— V). (33)
ry, =3((rs —r1) + (r2 —r1)] (12)

C. The Proposed Hierarchical Mixed-Order
(13)  TVFE of Order 1.5

Further,»; andv, can be shown to be related to the simplex The proposed hierarchical mixed-order TVFE of order 1.5
coordinates(;, {2, and (s via is characterized by the eight vector basis functions

Puivy = %(rQ - 1‘3).

up =G +G (14) W3 = (Vs — (Vs (34)
v = % (15) W3 = (VG — (VG (35)
2 Wi =0V - eV (36)
From (4) forn = 1, trivial algebra then leads to W2 = (G — G) V(s — V) 37)
Wi = V(- (V. (16) Wi = (- )(GVG - GVEG) (38)

3 _
To derive expressions foW, and W3, we can similarly Wg =G - Q)(GVe —GVa) (39)
introduce coordinate§us, vo) and (uz, v3) wherevy 3 = +1 W2 =G(GVEG - GVEG) (40)
along the two edges shared by na2le3, u, 3 = 0 at node W32 = (LVEG — (V). (41)
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