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Abstract—A new functional is introduced that satisfies of
Maxwell’s equations, provides minimization, and eliminates spu-
rious solutions. An analytical method is developed that provides
a means of evaluating functional forms. The analytical method
confirms the effective functional form as the fundamental cause
underlying the difficulties with spurious solutions that are not
completely eliminated under all circumstances. It is shown that
the curl–curl “functional” form allows for the existence of an
improper gradient behavior in a general field expansion. The
new functional is shown to be self adjoint and positive definite,
thus providing an error minimization. Numerical results are
obtained that demonstrate the effectiveness of the new functional
to prevent spurious solutions using node-based elements.

Index Terms—Finite-element methods, spurious solutions.

I. INTRODUCTION

T HE electromagnetic analysis of microwave structures has
expanded significantly with the introduction of computers

to assist in the approximate numerical solution of problems
considered unsolvable by standard analytical methods. The
researcher is often forced to choose a numerical approach for
problems involving scattering or guided propagation whenever
the geometry under consideration does not coincide with a
separable coordinate system. Numerical approaches are also
required when high-frequency asymptotic or low-frequency
quasi-static techniques cannot be used. The application of
numerical methods for solving differential equations in electro-
magnetics has taken several paths in the last decade, from early
applications of the finite-difference method [1], transmission-
line matrix methods [2], and spectral-domain methods [3] to
the finite-difference time-domain method that has come into
maturity [4]. Finite elements have also been widely applied
to problems in electromagnetics, but early applications were
handicapped by the appearance of spurious solutions.

The causes of spurious solutions that result from applying
finite elements have been attributed to several difficulties,
including the failure of node-based elements to properly model
the null space of the curl operator [6] and the improper han-
dling of natural boundary conditions [7]. Several researchers
[7], [8], [12] suggest that the node-based finite-element basis
functions are improper for application in the curl–curl form.
It is suggested that when Maxwell’s equations are recast into
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the wave equation an infinitely degenerate zero eigenvalue
and eigenspace results [6] and that spurious solutions result
from the inability of node-based elements to properly model
this eigenspace. An alternate approach departs from the typ-
ical nodal expansion function (a pyramidal basis function
of compact support defined for each node) and defines a
basis set in terms of the tangential field along the edges that
will properly model the degenerate eigenspace of the wave
equation under certain circumstances. This approach (known
as the edge element method [8]), by definition, disallows
divergent solutions within the element though a divergence
may exist at the boundary of the elements for first order
elements. Edge elements (or vector-finite elements) [12] have
become the method of choice by many researchers for the
elimination of spurious solutions.

The use of edge elements [8] have eliminated spurious
solutions for a great number of problems, but edge elements
are no panacea. Lee [16] reported that edge elements did not
eliminate spurious solutions for the problems formulated in
the cylindrical coordinate system and required an appropriate
change of variables. Another important conclusion of Lee’s
[16] work is that the spurious solutions are eliminated by
edge elements are reduced to zero eigenvalues. Polstyanko
[17] suggested that the incomplete elimination slowed the
convergence of the desired eigenvalues. Polstyanko addressed
the incomplete elimination of the spurious solutions by intro-
ducing an additional constrain equation, thus increasing the
computational overhead.

The question raised in this paper follows a more funda-
mental line: if a method is variationally based, should not
the choice of poor, but admissible, expansion functions yield
proper, though possibly inaccurate, results? Motivated by the
failure of many finite-element schemes to properly enforce
the correct divergence criterion on the problem to be solved
in a robust manner, the primary purpose of this paper is
to introduce a new functional whose minimum corresponds
to a solution of Maxwell’s equations, eliminates spurious
solutions, and provides a mapping from the complex space
to the real line. This functional will be consistent with the
rigorous requirements of a variational scheme.

Another emphasis of this paper is to establish a methodology
for evaluating the “functional” representations in order to
present a new functional based on the insights gained. The
method to be developed directs the focus on the functional
representation to enable identification of the fundamental cause
underlying the difficulties with spurious solutions as initially
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explored by the authors [11]. This analysis may be performed
using an expansion that contains both divergenceless terms and
gradient terms (consistent with Helmholtz theorem) that span
the entire solution domain for a given problem withouta priori
assumptions. By using entire domain expansion functions that
satisfy the boundary conditions, the difficulties that may be
introduced by discretizing the domain for finite elements are
completely avoided. This approach yields significant insight
into the nature of a given functional and provides clues
regarding the source of spurious solutions. This analytical
approach will be applied to the commonly used weighted
residual form used in the penalty method with a special case
being the generic full-field “functional.” By using analytical
rather than numerical means, it will be shown that the solution
form allows for the existence of an improper gradient behavior
in a general expansion function. It will also be shown that the
parameter in the penalty method [5], which exhibits a linear
behavior in numerical solutions, is also predicted to have the
same linear behavior by the exact analytical approach.

Section II will discuss the analytical method used to evalu-
ate the functional forms and apply it to the penalty method
and the curl–curl form. Section III will introduce the new
functional and discuss several important characteristics that
distinguish the new approach from others. The analytical
approach will be applied to the new functional, which shall
be denoted the electric and magnetic (EH) functional since
both fields are explicitly represented. It will be shown that the
new functional eliminates the gradient part of a general vec-
tor expansion function, thus eliminating divergent solutions.
Section IV will demonstrate the robust character of the EH
functional within a finite-element implementation.

II. A NALYTICAL METHOD FOR

ANALYZING FUNCTIONAL FORMS

This section will examine the functional forms commonly
used in solving dynamic problems in electromagnetics by
using an analytical approach. By using an analytical approach,
the nature of the spurious solutions may be observed indepen-
dent of the mesh structure and the numerical basis functions
used. It is to be emphasized that the analytical approach
to be described is not intended to replace finite elements,
but used only to demonstrate the potential difficulties with
a functional form. The domain will be considered to be a
separable geometry so that entire domain expansion functions
may be used to eliminate the discretization error, errors in in-
terpolation, and errors in boundary condition implementation.
A rectangular waveguide example will be used in this paper
for both the analytical and finite-element techniques since the
solutions are well known. By a judicious choice of expansion
functions that exactly satisfy the boundary conditions and
provide orthogonality, we can use an expansion form of an
infinite series that will provide an exact answer. A convenient
form for the expansion functions is composed of the functions
that describe the classic modal fields in the separable geometry.

An important aspect of the analytical approach is allowing
for all possible vector field descriptions. Since we cannot
assume that the computer “knows” what form of solution will

TABLE I
PENALTY METHOD RESULTS FOR A 16-NODE MESH

OF RECTANGULAR WAVEGUIDE. THE RESULTS FOR

p = 0 CORRESPOND TO THEFULL-FIELD FUNCTIONAL

be required in either analytical or numerical processes, the
analytical approach applies the basic idea of the Helmholtz
theorem, which specifies that any vector can be represented
in terms of a irrotational part and a solenoidal part. In
other words, any vector field can be completely specified
by a description that contains a gradient and a curl. A
robust algorithm should impose the necessary restrictions
without human intervention for the desired vector field; that is,
eliminating the solenoidal part typically ascribed to spurious
solutions.

The functional used in the penalty method will be examined
in detail with the curl–curl form as a special case, which is
also used in the edge-element approach [8]. A comparison
will be made with the numerical results of Rahman [5] to
demonstrate the parameter dependence of the wavenumber
with the penalty method. A typical expression that implements
the penalty method is given by

(1)

A boundary term resulting from the application of the di-

vergence theorem to the term has been set

to zero, enforcing on the boundary for the
perfect electric conducting (PEC) waveguides considered in
this paper. When the penalty term denoted by the letteris
set to zero, the curl–curl form is recovered. Whenis set to
unity, the “functional” corresponds to the Helmholtz equation.
Numerically, applying finite-element analysis to a rectangular
waveguide results in the data of Table I, graphically depicted
in Fig. 1. The first three entries in the column are
spurious solutions. The first few modes of the column
correspond to physical modes, but later, entries have nonzero
divergence.

1) Application of an Analytical Approach to the Penalty
Method: The weighted residual form that serves as the starting
point for applying the penalty method is

(2)
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Fig. 1. Graphical depiction of the numerical solution of the data in Table I
using the penalty method for a 16-node rectangular waveguide model.

or equivalently

(3)

Making use of the Helmholtz theorem to generalize the pos-

sible values of electric field suggests thatcan be written as
the sum of a gradient term and a curl expression given by a
sum of TE and TM modes in a waveguide such as

(4)

The choice of expansion functions for , , and is
motivated by the desire to satisfy the boundary condition that
was assumed in omitting the integration over the waveguide
wall and to provide orthogonality in performing the integration
over the cross section. Convenient expansion functions are the
modal fields given by

(5)

(6)

and

(7)

Applying the method of weighted residuals to (2), and
making use of orthogonality, three equations for , ,
and are obtained as given by the matrix expression of the
form with (8), shown at the bottom of the page, and

, where is the cutoff wavenumber
given by and is the wavenumber

. For a nontrivial solution the determinant must
vanish, leading to the eigenvalue equation

(9)

Examining the possible solutions that can provide a solution
to (9) provides three possible cases to consider:

1) the classical solution ;
2) the solution ;
3) the solution .

For the classical solution where , the fields
are divergence free for (since ) and the vector
components are completely decoupled for , where the
gradient term is represented by and may be nonzero.
This decoupling is characteristic of the Helmholtz equation
that cannot guarantee solenoidal fields. The second case of

allows the presence of a solution at and
also permits a TM-type solution with a gradient term to exist,
specifically .

The more interesting example of the pervasive spurious
solutions is the case of , which permits
a gradient solution since the assume any value. For

the parameter dependence of the problem does not
allow for the elimination the spurious solutions. Consider
the numerical problem with a 16-node mesh model for a
rectangular waveguide with PEC walls. The plot of Fig. 2
depicts the finite-element solution for the cutoff wavenumber
squared for varying penalty parameter as depicted by
the hollow circles. It can be seen that as the parameteris
varied there are some numerical solutions for, which have
an obvious linear dependence. The analytical approach is able
to predict this linear behavior of the penalty method as reported
by Rahman [5]. Consider (9) with to obtain

(10)

The solid line is a plot of for the mode corresponding
to the spurious mode and the dashed line is a plot for
the mode. Though this expression does not provide the

intercepts of the plot of Fig. 2, the slope very accurately
approximates the slope for as computed by the numerical
finite-element solutions.

It has been suggested by Rahman [5] that the spurious
solutions are those which are dependent on the penalty param-
eter. By increasing the penalty term, the spurious eigenvalues
are pushed out of the search window of iterative eigenvalue
schemes consistent with the parameter choice of Reddy [9].

III. T HE NEW FUNCTIONAL (EH) AND RELATED PROPERTIES

The emphasis on the functional as a key to the robust
elimination of spurious solutions was demonstrated by the

(8)
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Fig. 2. Penalty method applied to a 16-node mesh of a rectangular wave-
guide.

analytical approach applied to the penalty method and the
special case of a full-field functional. Most formulations
including edge elements begin with Maxwell’s equations and
then perform a substitution to obtain a vector-wave equation
that is either in terms of the electric field or the magnetic field
typical of the curl–curl form. In order to obtain the weighted
residual form typically used in finite-element approaches for
these second-order systems, a residual is formed by integrating
the product of the equation and a weighting function over the
domain. These approaches essentially constitute an application
of the method of weighted residuals or the method of moments
[15] since the “functionals” used do not provide a mapping
to the real line anddo not provide a minimization. The new
functional that provides a mapping to the real line is given by

(11)

where the constants and are real valued and strictly
positive. Examining (11) it will be noted that the functional is

dependent upon both and , obtained by taking the magni-
tude squared of each of Maxwell’s equations. The magnitude
squared is consistent with the definition of an inner product
over a complex space. Recall that the divergence information
is contained within the curl equations for nonzero frequencies,
so that divergence need not be explicitly expressed. The
constraint on the constants and the use of the magnitude
squared yields a functional that is positive definite and renders
a mapping from a complex space to the real line, thus
providing a functional that is useful in the application of
variational techniques.

The first variation can be examined by considering a set of
complex expansion functions expressed as

(12)

with complex coefficients and given by
and . The first variation of (11) may be

combined simply as a function of complex frequency as

(13)

and

(14)

where the conjugate of (13) and (14) would have been obtained
if a summation were used in place of the difference in the
left-hand side, providing individual variations with respect to
all parameters. Note that the first variation results in a set of
coupled equations.

The second variations are given by

and

It can be seen that since the second variation is always
positive for nontrivial solutions, the numerical solution to (11)
corresponds to a minimum, and represents an upper bound to
the exact solution.

The Euler equation for the EH functional can be obtained
by considering (13) and (14) with appropriate boundary con-
ditions to yield

and

This system of equations can be written in the least-squares
operator form where for the EH functional

and

The expression for the adjoint is simply the conjugate
transpose of , providing the conjugate form of the source
free Maxwell’s equations.
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A. Recapturing the Curl–Curl Form

Recall that the coefficients in (11) were specified as positive.
An interesting question that may be explored is: what if the
coefficients are incorrectly set as

(15)

where the material parameters and are positive real?
Performing this substitution in (13) yields

(16)

where . Note that the first integral corresponds to
the standard curl–curl form, now with sources included. The
surface integral can be easily removed if perfect conductors
bound the domain via application of . Recapturing
the curl–curl equation by imposing the constraints on the
coefficients as described by (15) is suggestive of a fundamental
difficulty associated with the curl–curl equation for numerical
applications. The hypothesized constraint of (15) represents a
violation of the original constraints for positive definiteness
and minimization on the EH functional of (11) where and

are strictly positive.

B. Application of the Analytical Approach to the EH
Functional for Waveguide Propagation

For the electric and magnetic fields, let us assume the
modal form (4) with the inclusion of a gradient term to allow
the proper form for any general vector as required by the
Helmholtz theorem. The general field expressions for both
electric and magnetic fields are given by

(17)

and

(18)

giving

(19)

and

(20)

with denoting the portion of transverse to . The
definitions for the field which provide orthogonality and the
appropriate boundary behavior for a rectangular waveguide are

(21)

(22)

and

(23)

The system of equations that results from substituting
(21)–(23) in (11) and obtaining the first variation results
in a system that can be expressed by

(24)

where

and (25), shown at the bottom of the page, where the matrix
entries are , ,

, and .
The desired eigenvalues are obtained by setting .

The form of the zero locations in the matrix of (25) suggests
that there are two independent solutions, the first eigenvalue
equation for or characteristic
of TE modes is

(26)

The remaining part of the determinant is the eigenvalue
equation for or characteristic
of TM modes is

(27)

These eigenvalue forms require either

1) ;
2) ;
3) .

Z = k2
c

C1jsj2""�B +C2DD
� 0 �C1jsj2""�C 0 C1s

�"�B � C2s�D
� 0

0 C1jsj2""� +C2B 0 C1s
�"�D � C2s�B 0 C2s�C

�C1jsj2""�C 0 C1jsj2""�k�2

c
B 0 �C1s

�"�C 0

0 C1s"D
� �C2s

���B 0 C1DD
� +C2jsj2���B 0 �C2jsj2���C

C1s"B �C2s
���D 0 �C1s"C 0 C1B +C2jsj2��� 0

0 C2s
���C 0 �C2jsj2��� 0 C2jsj2���k�2

c
B

(25)



154 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 1, JANUARY 1999

The solutions of (24) corresponding to theminimumof the
variational expression given by the EH functional (11), which
decouple into a set of TE and TM modes as demonstrated by
(26) and (27), respectively. The solution is independent of the
constants and . The solution of and

actually forces all fields to be zero, thus being a trivial
(and valid) solution of the full problem.

This section utilized an analytical approach to test a given
functional expression for the appropriate solutions to a pre-
scribed boundary value problem. By applying the concepts
of the Helmholtz theorem to allow for the possibility of a
gradient-type solution to exist, the analytical approach does
not constrain the vector nature of the problem. It must be kept
in mind that the computer cannot possibly know what form
is desired, requiring a complete generalization of the vector
field in the test process. The undesirable gradient behavior
was completely eliminated by the introduction of the least-
squares variational expression. In the next section, an example
of applying finite elements and demonstrating the robustness
of the new functional will be performed on the rectangular
waveguide.

IV. THE EH FUNCTIONAL-FINITE-ELEMENT IMPLEMENTATION

This section details the nodal-based finite-element imple-
mentation of the EH functional introduced in Section III. The
purpose of this section is primarily that of demonstrating the
robust nature of the EH functional in eliminating spurious
solutions with node-based elements. The first variation will
be recast in terms of the wavenumber and the related matrix
representation will then be examined. A least-squares matrix
approach will be employed that will yield results that are
free from the spurious solutions that plague the full-field and
penalty approaches. This functional will be shown to eliminate
spurious solutions in finite-element applications and provide a
solution which converges as the node density of the mesh used
to discretize the domain is increased.

To set up the element matrices for a homogeneous media,
we normalize the constants and from the first variation
of (13) and (14) and replace the complex radian frequency
with the wavenumber and the wave impedanceto obtain

(28)

and

(29)

Equations (28) and (29) may be written in matrix form as

(30)

and

(31)

where and are vectors representing the coefficients of
the electric and magnetic field expansions. In the analytical
development, we found that the solution was independent of

and . Thus, we are able to write the four parts of (30)
and (31) independently equal to zero as

(32)

(33)

(34)

and

(35)

We may also simply set and to unity (or other values)
and solve (30) and (31).

There are three basic problems that can be examined in the
context of (32)–(35). The first problem is one which considers
the propagation constantfor a prescribed frequency of oper-
ation (embedded in the definition of). The second problem,
useful in material characterization, involves the determination
of for a measured propagation constantat a specified
frequency, thus providing the product of and . The third
useful problem examined in this paper is the determination of
the cutoff wavenumber or frequency with .

The resultant overdetermined system may be handled by the
application of the method of least squares [10] by incorporat-
ing the in the matrices and writing the combined matrix
as

(36)

or equivalently

(37)

Applying a least-squares matrix approach, (37) is multiplied
by the transpose conjugate of the matrix on the left side of
(37) to obtain

(38)

It is important to note that (38) is in the form of a generalized
eigenvalue problem so that all the eigenvalues and
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TABLE II
CUTOFF WAVENUMBERS FOR THEEH FUNCTIONAL USING THE

LEAST-SQUARES MATRIX APPROACH FOR THE16- AND 51-NODE MESH

Fig. 3. Graphical depiction of the numerical solution for the EH functional
of the data in Table II using the least-squares matrix approach for the 16- and
51-node rectangular waveguide model.

eigenvectors can be computed. All eigenvalue computations
in this paper were performed in MATLAB. Table II details
the eigenvalues corresponding to the cutoff wavenumbers for
the mesh of a 16-node rectangular waveguide model. Once
again a graphical approach to the presentation of the data
of Table II may prove valuable in the interpretation of the
results obtained. Consider the plot of Fig. 3. Note that the
approximate numerical modes, though not accurate at higher
orders, can be brought into correspondence with the exact
solutions.

It is significant to note that the eigenvalues are free from
the appearance of the spurious solutions that plagued the full-
field and penalty method approaches. The higher order modes
are not very accurate for the coarse discretization. The ideas
of convergence can be demonstrated by considering a more
finely discretized mesh where the rectangular waveguide is
modeled with 80 elements and 51 nodes. The results for the
cutoff wavenumbers are also given by Table II. The more
finely discretized mesh provides improved results appearing to
converge toward the exact results. These results demonstrate
that even the higher order modes are adequately modeled
by the more finely discretized mesh. Once again, there are
no spurious solutions generated. It is possible to now bring
the solutions of the numerical problem into a one-to-one
correspondence with the exact problem. The higher order
modes are accurately modeled as well. These numerical results
support the claim that nodal elements are useful in used in a
properly posed functional form. One disadvantage of the use of
(38) is that the some of the sparsity is sacrificed in the matrix

multiplication. The use of more restrictive bases such as edge
elements or potential forms may provide further improvement.

V. CONCLUSION

The functional representation of the curl–curl form allows
divergent solutions to exist as long as a gradient solution is
allowed in the solution space. Several approaches have been
taken to model the solution space with varied degrees of
success. The results of the analytical approach presented in
this paper confirm that the functional is the fundamental cause
of spurious solutions and may not be completely addressed
by the choice of the expansion functions as suggested by the
application of edge elements. Through an analytical approach
the functional has been found to allow for the existence of
an improper gradient behavior in an expansion consistent
with the Helmholtz theorem. It has also been shown that the
linear behavior of the parameter in the penalty method can be
predicted in an exact formulation by the analytical approach.

The key contributions of this work have been the in-
troduction of a new functional (EH) forcing the satisfac-
tion of Maxwell’s equations, providing a minimization, and
eliminating spurious solutions. The EH functional has been
successfully implemented in a finite-element scheme after
demonstrating the ability to eliminate the improper gradi-
ent behavior in the exact analytical approach. The resulting
numerical solution for the cutoff wavenumber demonstrated
the robustness of the functional in that spurious solutions
were eliminated. The convergence was also briefly examined
with the numerical solutions appearing to closely approximate
even the higher order modes. This paper has demonstrated
a robust functional that will eliminate spurious solutions,
satisfy Maxwell’s equations, and provide a minimum forany
reasonable basis set.
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