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A Functional for Dynamic Finite-Element
Solutions in Electromagnetics

Charles F. BuntingMember, IEEE and William A. Davis,Senior Member, IEEE

Abstract—A new functional is introduced that satisfies of the wave equation an infinitely degenerate zero eigenvalue
Maxwell's equations, provides minimization, and eliminates spu- and eigenspace results [6] and that spurious solutions result
rious solutions. An analytical method is developed that provides from the inability of node-based elements to properly model

a means of evaluating functional forms. The analytical method his ei | h d f h
confirms the effective functional form as the fundamental cause NS €igenspace. An alternate approach departs from the typ-

underlying the difficulties with spurious solutions that are not ical nodal expansion function (a pyramidal basis function
completely eliminated under all circumstances. It is shown that of compact support defined for each node) and defines a
the curl—curl “functional” form allows for the existence of an  pasjs set in terms of the tangential field along the edges that
improper gradient behavior in a general field expansion. The i o ohery model the degenerate eigenspace of the wave
new functional is shown to be self adjoint and positive definite, . L -
thus providing an error minimization. Numerical results are ~€quation under certain circumstances. This approach (known
obtained that demonstrate the effectiveness of the new functional as the edge element method [8]), by definition, disallows
to prevent spurious solutions using node-based elements. divergent solutions within the element though a divergence
Index Terms—Finite-element methods, spurious solutions. may exist at the boundary of the elements for first order
elements. Edge elements (or vector-finite elements) [12] have
become the method of choice by many researchers for the
elimination of spurious solutions.

The use of edge elements [8] have eliminated spurious
HE electromagnetic analysis of microwave structures hggjutions for a great number of problems, but edge elements
expanded significantly with the introduction of computergre no panacea. Lee [16] reported that edge elements did not

to assist in the approximate numerical solution of problem§iminate spurious solutions for the problems formulated in
considered unsolvable by standard analytical methods. Ti@ cylindrical coordinate system and required an appropriate
researcher is often forced to choose a numerical approach ¢aknge of variables. Another important conclusion of Lee’s
problems involving scattering or guided propagation WhenevHrG] work is that the spurious solutions are eliminated by
the geometry under consideration does not coincide withegge elements are reduced to zero eigenvalues. Polstyanko
separable coordinate system. Numerical approaches are §$9 suggested that the incomplete elimination slowed the
required when high-frequency asymptotic or low-frequency,nyergence of the desired eigenvalues. Polstyanko addressed
quasi-static techniques cannot be used. The application 94 incomplete elimination of the spurious solutions by intro-
numerical methods for solving differential equations in electrq,»ucing an additional constrain equation, thus increasing the
magnetics has taken several paths in the last decade, from e@é%putational overhead.

applications of the finite-difference method [1], transmission- 14 question raised in this paper follows a more funda-
line matrix methods [2], and spectral-domain methods [3] {Qental line: if a method is variationally based, should not

the finite-difference time-domain method that has come inffe choice of poor, but admissible, expansion functions yield
maturity [4]. Finite elements have also been widely applieg},qr though possibly inaccurate, results? Motivated by the
to problems in electromagnetics, but early applications Wefg e of many finite-element schemes to properly enforce
handicapped by the appearance of spurious solutions. o ¢orrect divergence criterion on the problem to be solved

The causes of spurious solutions that result from applynilrg a robust manner, the primary purpose of this paper is
finite elements have been attributed to several difficultie introduce a new functional whose minimum corresponds
including the failure of node-based elements to properly mo 8' a solution of Maxwell's equations, eliminates spurious

th_e null space of the curl opera}tpr [6] and the improper hagblutions, and provides a mapping from the complex space
dling of natural boundary conditions [7]. Several researchet%s the real line. This functional will be consistent with the

[71, [8], [12] suggest that the node-based finite-element ba?faorous requirements of a variational scheme.

functlons are improper for app||ca,t|on n the curl—curl form. Another emphasis of this paper is to establish a methodology
It is suggested that when Maxwell's equations are recast |r}to ; B ; , . .
or evaluating the “functional” representations in order to

present a new functional based on the insights gained. The

I. INTRODUCTION
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explored by the authors [11]. This analysis may be performed TABLE |

using an expansion that contains both divergenceless terms and PENALTY METHOD RESULTS FOR A16-NoDE MESH
dient t istent with Helmholtz th that OF RECTANGULAR WAVEGUIDE. THE RESULTS FOR

gra Ien erms_(conS|s e_n wi ] elmnoltz eor_em) _a _Span p = 0 CoRRESPOND TO THEFULL-FIELD FUNCTIONAL

the entire solution domain for a given problem withaugriori

assumptions. By using entire domain expansion functions that p=0 p=1 Exact
satisfy the boundary conditions, the difficulties that may be 2 849202E-03 3.187462 1.1416
introduced by Q|scret|2|r)g the domaln_ for flnfte .ellemer_1ts.are 5 104455 6.671525 62832
completely avoided. This approach yields significant insight
into the nature of a given functional and provides clues 2:691510 6.900833 6.2832
regarding the source of spurious solutions. This analytical 3.174411 7.804257 7.0248
approach will be applied to the commonly used weighted 5415371 8.167882 7.0248
re§|dual form us_ed in the p?nalty metrlod W'th. a speua! case 6.599501 8 247024 8.8858
being the generic full-field “functional.” By using analytical

6.829937 10.382930 8.8858

rather than numerical means, it will be shown that the solution

form allows for the existence of an improper gradient behavior 7.639579 10.672380 9.4248

in a general expansion function. It will also be shown that the

parameter in the penalty method [5], which exhibits a linear ) o ) )

behavior in numerical solutions, is also predicted to have tR€ required in either analytical or numerical processes, the

same linear behavior by the exact analytical approach. analytical ap_proach gpplles the basic idea of the Helmholtz
Section 11 will discuss the analytical method used to evald?€orem, which specifies that any vector can be represented

ate the functional forms and apply it to the penalty methdd terms of a irrotational part and a solenoidal part. In

and the curl—curl form. Section Il will introduce the newPther words, any vector field can be completely specified

functional and discuss several important characteristics ti4 & description that contains a gradient and a curl. A

distinguish the new approach from others. The analytic"eﬂbUSt algorithm should impose the necessary restrictions

approach will be applied to the new functional, which shayithout human intervention for the desired vector field; that is,

be denoted the electric and magnetic (EH) functional sinédminating the solenoidal part typically ascribed to spurious

both fields are explicitly represented. It will be shown that thePlutions. _ . _

new functional eliminates the gradient part of a general vec- 1he functional used in the penalty method will be examined

tor expansion function, thus eliminating divergent solutiond? detail with the curl—curl form as a special case, which is

Section IV will demonstrate the robust character of the ERSO used in the edge-element approach [8]. A comparison
functional within a finite-element implementation. will be made with the numerical results of Rahman [5] to

demonstrate the parameter dependence of the wavenumber
with the penalty method. A typical expression that implements

Il. ANALYTICAL METHOD FOR the penalty method is given by
ANALYZING FUNCTIONAL FORMS _ _ _ .
This section will examine the functional forms commonly /[(V X E)- (VX En)* +p(V-E)V-E,)
used in solving dynamic problems in electromagnetics by e
using an analytical approach. By using an analytical approach, —k°E- E]dQ=0. 1)

the nature of the spurious solutions may be observed indepen- . . .
dent of the mesh structure and the numerical basis functid?\sboundary term resulting from thﬁ application of the di-
used. It is to be emphasized that the analytical approa¢grgence theorem to th& x V x E term has been set
to be described is not intended to replace finite elements, zero, enforcings x £ = 0 on the boundary for the
but used only to demonstrate the potential difficulties witherfect electric conducting (PEC) waveguides considered in
a functional form. The domain will be considered to be his paper. When the penalty term denoted by the letter
separable geometry so that entire domain expansion functi@as to zero, the curl-curl form is recovered. Whers set to
may be used to eliminate the discretization error, errors in innity, the “functional” corresponds to the Helmholtz equation.
terpolation, and errors in boundary condition implementatioNumerically, applying finite-element analysis to a rectangular
A rectangular waveguide example will be used in this pap@aveguide results in the data of Table I, graphically depicted
for both the analytical and finite-element techniques since the Fig. 1. The first three entries in the = 0 column are
solutions are well known. By a judicious choice of expansiogpurious solutions. The first few modes of the= 1 column
functions that exactly satisfy the boundary conditions angbrrespond to physical modes, but later, entries have nonzero
provide orthogonality, we can use an expansion form of afivergence.
infinite series that will provide an exact answer. A convenient1) Application of an Analytical Approach to the Penalty
form for the expansion functions is composed of the functiomgethod: The weighted residual form that serves as the starting
that describe the classic modal fields in the separable geomegint for applying the penalty method is

An important aspect of the analytical approach is allowing
for all possible vector field descriptions. Since we cannot B [VXVXE—RE—pv(V-E)]=0 (2)
assume that the computer “knows” what form of solution will v
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2r = w,/pe. For a nontrivial solution the determinant must

vanish, leading to the eigenvalue equation
det{Z} = (k) (k — % = %) [p(k2 = 4%) — 1]
x {[12 (") (B2 %)} =0. (©)
Examining the possible solutions that can provide a solution
to (9) provides three possible cases to consider:

1) the classical solutiofk? — +? — k%) = 0;
2) the solution(k? — 42) = 0;

Spurious

o Das

Exact results 3) the solution[p(k? — v?) — k%] = 0.
. L \‘_ﬁ%-, For the classical solution whefé? —~% — k?) = 0, the fields
0 P P RN T 12 are divergence free fgr # 1 (sinceC,,,, = 0) and the vector

Fig. 1. Graphical depiction of the numerical solution of the data in TableGOmponents are completely decoupled fore= 1, where the
using the penalty method for a 16-node rectangular waveguide model.  gradient term is represented I,,, and may be nonzero.

This decoupling is characteristic of the Helmholtz equation
that cannot guarantee solenoidal fields. The second case of
(k? —~?) = 0 allows the presence of a solution/at= 0 and
also permits a TM-type solution with a gradient term to exist,
specifically C,,.,, = vAmn-
= = ==, . The more interesting example of the pervasive spurious
- CV{E" XV x By +p(V-E)EL}-fuds = 0. (3)  solutions is the case ¢p(k2 —~2) — k2] = 0, which permits
a gradient solution since thé€,,,, assume any value. For
Making use of the Helmholtz theorem to generalize the pog-+ 1 the parameter dependence of the problem does not
sible values of electric field suggests ttatan be written as allow for the elimination the spurious solutions. Consider
the sum of a gradient term and a curl expression given bythe numerical problem with a 16-node mesh model for a
sum of TE and TM modes in a waveguide such as rectangular waveguide with PEC walls. The plot of Fig. 2
depicts the finite-element solution for the cutoff wavenumber
B [V(fe™ ™) = V x (e )+ V x V x (3hee™7)]. squared(k?) for varying penalty parameter as depicted by
4) the hollow circles. It can be seen that as the parameter
varied there are some numerical solutions gy which have
The choice of expansion functions faf., 1, and f is

an obvious linear dependence. The analytical approach is able
motivated by the desire to satisfy the boundary condition thig predict this linear behavior of the penalty method as reported

was assumed in omitting the integration over the wavegui¥ Rahman [5]. Consider (9) with = 0 to obtain
wall and to provide orthogonality in performing the integration B2 — {pkf

over the cross section. Convenient expansion functions are the k2.
modal fields given by

or equivalently

UV X E)- (VX E) = KE B}, +p(V - E)(V - B3} dv

(10)

The solid line is a plot ofpk? for the mode corresponding

_ . (mT (T to the spuriousSs; mode and the dashed line is a plot for
e 3 — Arn,n - 5 5 . . .
Pel ) zm:zn: Sm( a x) Sm( b y) ®) the S22 mode. Though this expression does not provide the
mm nw y intercepts of the plot of Fig. 2, the slope very accurately
U@ y) =D Bun COS(Ta:) COS(_y) (6)  approximates the slope fd? as computed by the numerical

finite-element solutions.
It has been suggested by Rahman [5] that the spurious
. mm . nmw
Fa,y) =YY" Cun 8111(73:) Sln(Ty). (7)  solutions are those which are dependent on the penalty param-
mon eter. By increasing the penalty term, the spurious eigenvalues

Applying the method of weighted residuals to (2), an@"® pushed out of the search window of iterative eigenvalue
making use of orthogonality, three equations fof,,,, Bun schemes consistent with the parameter choice of Reddy [9].

andC,,,, are obtained as given by the matrix expression of the
form Zz = 0 with (8), shown at the bottom of the page, and!!l- THE NEw FUNCTIONAL (EH) AND RELATED PROPERTIES
2 = {Apn, Bons Cmn } £, Wherek, is the cutoff wavenumber  The emphasis on the functional as a key to the robust

given by k2 = (%)% 4+ (2%)? and k is the wavenumber elimination of spurious solutions was demonstrated by the

and

(k2) (B2 +77) (k2 — 72 — k?) 0 —(E) (v +0[p(k2 = %) - #7]
Z= 0 (K2){k2 —+* - K} 0 (8)
—(y + ) (k2) (k2 — 7% — &?) 0 (k2 +77) [p(k2 = ~?) — K]
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205 O [emtyemos combined simply as a function of complex frequency as
""""" Modal: 522 og;oooooogo.e . - —_ =
180 + o - dp dp -
v ° e —_— = = Ci(Vx H E—J) (—s**e’
Teor o 0 ° ° ° o/"/ da, 0O;b, v{ (Vo H s ) (=57t en)]
140F o e - = = -
ol o 07 . + Co[(V X E—spH 4+ M) - (V x )]} dV
g ool ® e e ° =0 (13)
5 .
- ZS . and
4o ° ° O _ 00 _ [ 4ei((V x H = seE— 1) (V x h)]
“r - —seE— ).
N e, Od, Syt "
O Q 0 0 0O 0 0 0 0 0 0 O0C < —_ —_ —_
o L I 1 I +CQ[(VXE+SLLH+M)

50 D1 02 03 04 05 06 07 08 08 1.0 _
P S(sTpTh) AV =0 (14)

Fig. 2. Penalty method applied to a 16-node mesh of a rectangular wayghere the conjugate of (13) and (14) would have been obtained
guide. if a summation were used in place of the difference in the
left-hand side, providing individual variations with respect to
analytical approach applied to the penalty method and th# parameters. Note that the first variation results in a set of
special case of a full-field functional. Most formulationgoupled equations.
including edge elements begin with Maxwell's equations and The second variations are given by
then perform a substitution to obtain a vector-wave equation 92 82
that is either in terms of the electric field or the magnetic field FICE = a(bn)?
typical of the curl—curl form. In order to obtain the weighted " "
residual form typically used in finite-element approaches for -2 {Cl(|352n|2) + Co|V x En|2} dV >0
these second-order systems, a residual is formed by integrating v
the product of the equation and a weighting function over thsnd
domain. These approaches essentially constitute an application 9p 8p
of the method of weighted residuals or the method of moments 3(cn)? = 3(d)?
[15] since the “functionals” used do not provide a mapping _ _
to the real line andlo notprovide a minimization. The new =2 [ {Ci(|sphnl?) + Co|V x hp[?}dV > 0.
functional that provides a mapping to the real line is given by v
. . R . It can be seen that since the second variation is always
p(E,H) = [ {C1|V x H — jueE — J> + C4|V x E positive for nontrivial solutions, the numerical solution to (11)
oo corresponds to a minimum, and represents an upper bound to
+ jwpH + M|2}dV (11) the exact solution.

The Euler equation for the EH functional can be obtained
where the constant€’; and C, are real valued and strictly by considering (13) and (14) with appropriate boundary con-
positive. Examining Lll) itivill be noted that the functional igjitions to yield
dependent upon both and H, obtained by taking the magni- _ — - =
tude squared of each of Maxwell’s equations. The magnitude / eq [Cr(=s"e" WV x H—seE—J)
squared is consistent with the definition of an inner product v - -
over a complex space. Recall that the divergence information + OV X (VX E+4spH +M)]dV =0
is contained within the curl equations for nonzero frequencie
so that divergence need not be explicitly expressed. The N . R
constraint on the constants and the use of the magnitude / hy, - [CIV x (Vx H —seE — J)
squared yields a functional that is positive definite and renders v

a mapping from a complex space to the real line, thus + Co(s* ")V x E+3uf1+]\7[)] dV = 0.
providing a functional that is useful in the application of ) ] .
variational techniques. This system of equations can be written in the least-squares
The first variation can be examined by considering a set 8perator formZ?(Lv — f) = 0 where for the EH functional
complex expansion functions expressed as VOIVX  —se\/Ch H
- _ :[su\/@ mw}’ :{E} and
E= Z En Cn .
I (12) f:{‘l\/a }
H=> H,hy, —MCy

The expression for the adjoink® is simply the conjugate
with complex coefficient#,, andH,, given byE,, = a,,+jb, transpose ofl,, providing the conjugate form of the source
and H,, = ¢, + jd,. The first variation of (11) may be free Maxwell's equations.
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A. Recapturing the Curl-Curl Form with V, denoting the portion ofV transverse toz. The

Recall that the coefficients in (11) were specified as positivi€finitions for the field which provide orthogonality and the
An interesting question that may be explored is: what if tHaAPpropriate boundary behavior for a rectangular waveguide are

coefficients arericorrectly set as Ye =D Amn Sin( x) Sin(?‘y)
a
m n

Ch 22
—=-= (15) (21)
Co € Py = Z Z B Cos(ma:) COS(%Z/)
a
where the material parameteesand o are positive real? mon
Performing this substitution in (13) yields
mT nmw
- = = - w1 = Z Z Do COS(—J}) Cos(7y>
/CQ[(VxVxE—kE—.]+V><M)-ejl]dv ™ a (22)
1% . ma . nmw
- - = . e = E nsinl —ax)sinl —y
+j§ Co(Vx E+spuH +M)-(nx el)]dS =0. zm:zn: (a ) (b )
av
(16) and
wherek? = —s%ue. Note that the first integral corresponds to f= Z Z Crn Sin(mx) Sin(%y)
the standard curl—curl form, now with sources included. The m n @ (23)
surface integral can be easily removed if perfect conductors =33 Fn Cos(mx) COS(Ty).
bound the domain via application éfx ¢ = 0. Recapturing ™o a b

the curl—curl equation by imposing the constraints on the _ _
Ihe system of equations that results from substituting

coefficients as described by (15) is suggestive of a fundame S : .- : .
difficulty associated with the curl—curl equation for numericg )=(23) iin (11) and obtaining the first variation results
£ system that can be expressed by

applications. The hypothesized constraint of (15) representg1

violation of the original constraints for positive definiteness (Z){c,} =0 (24)
and minimization on the EH functional of (11) whetg and
C, are strictly positive. where

— T
B. Application of the Analytical Approach to the EH {ep} = {Amn: Buns Couns Doy By Frun }

Functional for Waveguide Propagation and (25), shown at the bottom of the page, where the matrix
For the electric and magnetic fields, let us assume thetries arek? = (™5)* 4 (%5)2, B = (k2 + "), C =

modal form (4) with the inclusion of a gradient term to allow(y + ~v*), and D = (kZ — +?).

the proper form for any general vector as required by the The desired eigenvalues are obtained by setfifig= 0.

Helmholtz theorem. The general field expressions for boffhe form of the zero locations in the matrix of (25) suggests

electric and magnetic fields are given by that there are two independent solutions, the first eigenvalue
- equation for{ B,..,., Din, Fimn } OF {¢1, 1, g} characteristic
E=c(z,y)e 7 =[V(fe 7)) =V x (25, 77) of TE modes is
V XV x (Zpee 7* 17 .
and PV G L A0 it = 2R - 2 42 =0 (@26)
o_ 71 —vz —vz p— The remaining part of the determinant is the eigenvalue
H = h(zx, =1V 75 =V X (Zpee™ : -
v (2, y)e [Vige ™) ) E:‘f ) equation for{A,..., Crun, Emn} OF {te, f, .} characteristic
+V XV x (Zpre™)] (18)  of TM modes is
giving (c1)?cokt|s|?ec™ |k2 — 72|2|k2 . 72|2 =0. 27)
- _ 2 2 2
¢ =Vi(f =) +2x Vet = 2(vf + Vive)  (19) These eigenvalue forms require either
and 1) K —k++*=0;

- 2) k-9 =0
h =Vi(g—ven) + 2% Vige — 2(vg+ Vier) (20) 3) k2 = 0.

C1|s|?ee*B + Co DD* 0 —C4|s)%ee*C 0 C18*c*B — CaspD* 0
0 Ci|s|?ec* + C2B 0 Cis*e*D — CasuB 0 CosuC
7 — 12 —Cils|?ee*C 0 C1|s|?cc*k 2B 0 —Cys*e*C 0
e 0 CiseD* — Cos*p*B 0 C1DD* + Co|s]?up*B 0 —Cso|s]?up*C
Ci1seB — Cos*u*D 0 —CseC 0 0

C1B + Csls|?up*
0

0 Cos*u*C 0 —Cals|?pp* Cols]Pupn* k2B

(25)
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The solutions of (24) corresponding to thenimumof the and
variational expression given by the EH functional (11), which

. Ki1 — vKnz — 7K 2Kua)nh
decouple into a set of TE and TM modes as demonstrated by ct{(Kn1 = 7Knz = 77Ky, + 7/ Kas)n

(26) and (27), respectively. The solution is independent of the — JR(T] =y TL) e} — jk ea{(S] — v8D)e
constantsC; and Cz. The solution of|k? — 42|? =0and —j/thﬁﬁ} -0 (31)

k% = 0 actually forces all fields to be zero, thus being a trivial R _

(and valid) solution of the full problem. where ¢ and h are vectors representing the coefficients of

This section utilized an analytical approach to test a givéhe electric and magnetic field expansions. In the analytical
functional expression for the appropriate solutions to a prdevelopment, we found that the solution was independent of
scribed boundary value problem. By applying the concepts andc,. Thus, we are able to write the four parts of (30)
of the Helmholtz theorem to allow for the possibility of aand (31) independently equal to zero as
gradient-type solution to exist, the analytical approach does

not constrain the vector nature of the problem. It must be kept (T1 =7 T2)nh — jkMee =0 (32)
in mind that the computer cannot possibly know what form (Kot — 7Kez — 7KL, + |7/ Kes) e

is desired, requiring a complete generalization of the vector =

field in the test process. The undesirable gradient behavior + jk(S1 —+"S2)nh =0 (33)
was completely eliminated by the introduction of the least- (Kn1 — vKnz — 7KL, + 1 Kus)nen

squares variational expression. In the next section, an example — KT =4 TH) T =0 (34)
of applying finite elements and demonstrating the robustness A T A

of the new functional will be performed on the rectangula@nd

waveguide. (ST —~8§)e — jkMunh = 0. (35)

We may also simply set; andce to unity (or other values)
) ] . o ~and solve (30) and (31).

Thls_sectlon details the_ nod_al—based flr_ute—elerne”t imple-There are three basic problems that can be examined in the
mentation of t_he EH_fun_Ct|0n_aI m_troduced in Section II_I. Theontext of (32)—(35). The first problem is one which considers
purpose of this section is primarily that of demonstrating thge propagation constantfor a prescribed frequency of oper-
robust nature of the EH functional in eliminating spuriougion, (embedded in the definition &). The second problem,
solutions with node-based elements. The first variation Wilefy| in material characterization, involves the determination
be recast in terms of the wavenumber and the related matg¥ ;. for a measured propagation constantat a specified
representati(_)n will then be examine_d. A least-squares matﬁiéquency, thus providing the product pfand . The third
approach will be employed that will yield results that argsefy| problem examined in this paper is the determination of
free from the spurious solutions that plague the full-field anflg ctoff wavenumbek, or frequencyw, with v = 0.
penalty approaches. This functional will be shown to eliminate The resultant overdetermined system may be handled by the

spuripus so_Iutions in finite-element applicat'ions and prOVidea%plication of the method of least squares [10] by incorporat-
solution which converges as the node density of the mesh u%-éi the v in the matrices and writing the combined matrix

to discretize the domain is increased. as
To set up the element matrices for a homogeneous media, .

we normalize the constants; andC, from the first variation JkMe, ,_T -

of (13) and (14) and replace the complex radian frequency K. JkS < 6—) =0 (36)

IV. THE EH FUNCTIONAL-FINITE-ELEMENT IMPLEMENTATION

J LT _
with the wavenumbek and the wave impedanegto obtain e ) Ko, nh
_ —ST jkMy,

/S{cljk*[(nvt X h—ymzxh—jke) cp]l+el(Vexe g equivalently

X T4 jEhnh) - (Ve X TF — "2 x ©)]}dS =0 M, 07 0 Tiy _

28 k| O Sl &)= | e 012 (37
It o \\yr )T | 0 Kul|\nh )

and 0 M, i 0

/{61 [(nV: x h —ynz x h —jke)- (Vi x h} Applying a least-squares matrix approach, (37) is multiplied

_ . . _ by the transpose conjugate of the matrix on the left side of
— 42X W) — cagk*[(Ve X € — 42 x e + jknh) (37) to obtain

]} dS = 0. (29) ., [M{M.T,T} 0 °
_ Lo , J 0 SIS: + MMy, | \nh
Equations (28) and (29) may be written in matrix form as 191 rVih [ \7 .
- - . — _ 0 MlTl + TlKhl Q 38
Jk*er{(Ty =y Ta)nh — jAM, ) = |STK. + M{S] 0 o) 38

_ S dl 2 -
+e2{(Ka WK‘”_ 7 Koz + 1 Kes) e It is important to note that (38) is in the form of a generalized
+ jk(S1 —~"S2)nh} =0 (30) eigenvalue problemiz = ABz so that all the eigenvalues and
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TABLE I multiplication. The use of more restrictive bases such as edge
CuTOFF WAVENUMBERS FOR THEEH FUNCTIONAL USING THE elements or potential forms may provide further improvement.
LEAST-SQUARES MATRIX APPROACH FOR THEL16- AND 51-Nobe MESH
EHF;?lzt(;(e):al EHsFlurrir(:)tcliggal Exact V. CONCLUSION
3.2213 3.1735 3.1416 The functional representation of the curl—curl form allows
7.1625 6.4754 6.2832 divergent solutions to exist as long as a gradient solution is
;:igg g:ggig 2:52? allowed in the solution space. Several approaches have been
36236 73209 7 0248 taken to model the solution space with varied degrees of
12.224 9.6666 3.8858 success. The results of the analytical approach presented in
12.483 9.7231 8.8858 this paper confirm that the functional is the fundamental cause
12.890 10.545 9.4243 of spurious solutions and may not be completely addressed

by the choice of the expansion functions as suggested by the
application of edge elements. Through an analytical approach
the functional has been found to allow for the existence of
an improper gradient behavior in an expansion consistent
with the Helmholtz theorem. It has also been shown that the
linear behavior of the parameter in the penalty method can be
predicted in an exact formulation by the analytical approach.
The key contributions of this work have been the in-

troduction of a new functional (EH) forcing the satisfac-

A A& vy : : . - 2
_ o tion of Maxwell's equations, providing a minimization, and
| i eliminating spurious solutions. The EH functional has been
f Exact results successfully implemented in a finite-element scheme after
. : ¥ W A demonstrating the ability to eliminate the improper gradi-
= 4 5 & T “A0 11 12 13 PR ; ;
ent behavior in the exact analytical approach. The resulting

Fig. 3. Graphical depiction of the numerical solution for the EH functionahumerical solution for the cutoff wavenumber demonstrated

of the data in Table Il using the least-squares matrix approach for the 16- Eﬂ”fé robustness of the functional in that spurious solutions

51-node rectangular waveguide model. A . .
were eliminated. The convergence was also briefly examined

with the numerical solutions appearing to closely approximate

eigenvectors can be computed. All eigenvalue computatiogg.en the higher order modes. This paper has demonstrated

in this paper were performed in MATLAB. Table Il details, st functional that will eliminate spurious solutions,

the eigenvalues corresponding to the cutoff wavenumbers g%{tisfy Maxwell's equations, and provide a minimum oy
the mesh of a 16-node rectangular waveguide model. ONgSsonable basis set '
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