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Green’s Function for an Unbounded Biaxial Medium
in Cylindrical Coordinates
Panayotis G. Cottis, Christos N. Vazouras, and C. Spyrou

Abstract—The dyadic Green’s function for an unbounded
biaxial medium is treated analytically in the Fourier domain.
The Green’s function is initially expressed as a triple Fourier
integral, which is next reduced to a double one by performing the
integration over the longitudinal Fourier variable. A delta-type
source term is extracted, which is dependent on the particular
coordinate system.

Index Terms—Biaxial medium, dyadic Green’s function.

I. INTRODUCTION

RADIATION of electromagnetic waves in unbounded
anisotropic media is a problem of great interest from both

a theoretical and a practical point of view. In treating such
problems, the well-known Sommerfeld radiation condition is
not applicable and under certain conditions incoming waves
appear. Several methods have been proposed to treat radiation
in anisotropic media. Arbel and Felsen [1] have proposed the
energy radiation condition based on the requirement that the
waves transport energy away from the source. Seshadri and Wu
[2] made use of the principle of causality, which requires the
absence of response before the starting of the source. Lee and
Lo [3] and Cottis and Kondylis [4] made use of the limiting
absorption principle to obtain a unique solution in anisotropic
lossless media. Further treatment of wave propagation in
anisotropic media can be found in [5]–[12]. In [13], Green’s
dyadics in bianisotropic media are treated by means of a
Fourier transform approach and asymptotic expressions are
derived for the far- and near-field regions.

In the present work, the dyadic Green’s function for an un-
bounded biaxial anisotropic medium is derived in the Fourier
transform domain in a cylindrical coordinate system. Such
a coordinate system is well suited to configurations such as
cylindrical waveguides, two-dimensional problems, and so on.
We consider a medium characterized by a real diagonal relative
permittivity tensor of the form

(1)

where , are real positive quantities. Such a form
can cover a wide variety of media (namely, those with a
real symmetric permittivity tensor) by means of a coordinate
rotation, as explained in [11]. The medium is magnetically
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isotropic with a magnetic permeability H/m.
An time dependence is assumed throughout the
text.

The Green’s function is first determined as a triple inverse
Fourier integral. Then, the integration over the longitudinal
Fourier variable is performed and the far-field behavior of
the two kinds of constituent waves that appear is studied in the
spectral domain. A delta-type source term is extracted, which
is dependent on the specific application of Fourier integration.
It is interesting to notice that the cylindrical coordinate system
provides the opportunity to point out the different forms of
the delta source term according to the different principal
volume implicitly assumed; this is in contrast to the spherical
coordinate system [11], [14], where only the implicit choice of
a spherical principal volume is possible within the framework
of Fourier transform approach.

II. FORMULATION OF THE PROBLEM

The dyadic Green’s function due to a point source excitation
located at inside a biaxial medium must satisfy the tensor
Helmholtz equation

(2)

where is the free-space wavenumber andis the unit
dyadic. To solve (2) in cylindrical coordinates, is
represented through its inverse Fourier transform as

(3)

where is the Fourier transform of and

(4)

is the Fourier transform variable in cylindrical coordinates
. The limits of integration in (3) run from to

and are omitted for simplicity; this convention will be
maintained in the following. The dielectric tensor of (1) is
written in cylindrical coordinates as

(5)

Substituting (3) and the corresponding Fourier integral
expression for the delta function into (2), using (5), and
applying the operator with respect to the spatial
cylindrical coordinates, the following matrix equation for the
elements of results:

(6)
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where

(7)

Solving (6) and substituting the solution into (3), is
obtained in the form of a triple Fourier integral

(8)

where is the determinant of and its adjoint
matrix given by

(9)

The elements of are given in the Appendix.
To study the Green’s function, one may regard as

a wave propagating either along theaxis or away from the
axis. Accordingly, the above integral should be written in a

suitable form by expressing as a biquadratic polynomial
in either the Fourier variable or the Fourier variable.

In the first case, one writes as

(10)

where , are the four roots of the
biquadratic in

(11)

where

(12)

(13)

(14)

In the second case, is written as

(15)

where are the four roots of the
biquadratic in

(16)

where

(17)

(18)

To eliminate the integration over one Fourier variable, say
over , use is made of the well-known expansion of a plane
wave

Taking into account the above relations, is written
as

(19)

where is the matrix resulting after the translation of
from the cylindrical coordinate system to

the cylindrical coordinate system, the unit vectors of
which do not depend upon the integration variables. This is
accomplished via the transformation

(20)

and

(21)

with due to the orthonormal nature of the
cylindrical coordinate system.

III. I NTEGRATION OVER THE

LONGITUDINAL FOURIER VARIABLE

In this section, the case corresponding to will
be examined, while the case will be examined in
Section IV. A study of the integrand function of (19) is
necessary.

First, a careful examination of the integrand function with
respect to the Fourier variable reveals that two kinds of
integrals over appear; those related to the tensor elements

, , , , and , that are zero when is odd
and those related to , , , and that are zero when

is even. Taking this into account, (19) is written as

(22)
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where

(23)

and

(24)

Having as our objective to perform the integration over the
variable, we regard as a wave propagating along

the axis and write as in (10). Thus, four poles appear
in the integrand function, namely , .

The integrations to be performed are of the form

(25)

It may easily be verified that the elements of
contain at some power from zero to three, except for the
element containing a term. Therefore, the above integrals
can be evaluated using residue theory for all values of
with the exception of the term when . This case
corresponds to the singularity source term and is examined
in Section IV. The integrals given by (25) are broken into
integrals of the form

(26)

These integrals are evaluated by appropriate contour integra-
tion to yield the final result

(27)

where

Details about how the above result is derived and about the
physical interpretation of the two types of waves that come
up are given in [4]. It should be noted that under certain
conditions, exponentially decreasing waves along theaxis
are observed as well as incoming waves.

IV. DERIVATION OF THE DELTA-TYPE SOURCE SINGULARITY

The singular behavior of Green’s dyadics as the observation
point traverses the source point has been extensively discussed
over the past 30 years for the isotropic case (see, e.g., [15]–[22]
and references therein). From the whole discussion, one may
infer that in regions containing the source point, the Green’s
dyadic should be viewed as a singular distribution, i.e., one
that cannot be identified to any ordinary function. In some

approaches [19]–[20], the whole singular term is considered;
in others [18], [21], an explicit delta-type term is extracted
while a distributional behavior (not of the delta type) is
also embedded in the remaining terms via a special limiting
procedure (principal volume approach) or via the structure of
the eigenfunction expansion in the source region.

By means of the Fourier representation approach adopted
here, the delta-type source term may be derived in a fairly
straightforward manner. It should be noted that the Fourier
transform associating to and vice versa should be inter-
preted in the distributional sense; more precisely, given any
scalar component of , the corresponding scalar component

of is a distribution defined via its “inner product” by the
appropriate testing functions

(28)

where

(29)

This is the familiar Parseval’s identity, extended to define
the distributional Fourier transform [23]; this extension applies
particularly when the “conventional” inverse Fourier transform
imposed on gives rise to divergent integrals, as in the case
of delta distributions. The right-hand side of (28) converges
provided is sufficiently well behaved at infinity, i.e.,
is sufficiently smooth.

Equations (28)–(29) show that the only components of
yielding terms proportional to , and, hence, correspond-
ing to components of containing a term are the
ones that contain a constant term. This may be expressed in a
more precise way by means of the concept of the support of
a distribution. Upon inspection of (8)–(9), taking into account
(10) and (15), it may be seen that such are theterm in
and the term in , i.e., the following terms in and

, respectively,

(30)

(31)

An analogous approach of considering the leading terms in
a corresponding partial fraction expansion has been proposed
in [24].

At this point, one could take into consideration [22] that
when the inverse Fourier transform is imposed on, the order
of the integrations over the variables and that extend
up to infinity implies a certain principal volume procedure.
More precisely, performing the integration overfirst implies
that the dimension of the principal volume along theaxis
vanishes first, corresponding to a pillbox-shaped volume [22].
Similarly, performing the integration over first corresponds
to a needle-shaped principal volume.

Applying this procedure to the terms (30)–(31) given above,
one observes the following: If the integration over is
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performed first, the integral over resulting from the term
(30) is convergent. Moreover, (12)–(14) show that when
goes to infinity, and go to , i.e., the roots and

are purely imaginary. Hence, the integration overgives
rise to an expression that is exponentially decaying with,
which subsequently renders the resulting integral overand

convergent. Thus, the term (30) does not produce a delta-
type term in this case. An analogous situation holds for the
term (31) when the integration over is performed first. To
summarize: in the case of a pillbox-shaped principal volume,
only the term (31) contributes a delta-type singularity, while
in the case of a needle-shaped principal volume only the term
(30) does.

According to the previous considerations, the specific part
of the term (31) that leads to the delta-type term when the
integration over is performed first is

and, in view of (A.3), this term arises also in . Hence, after
Fourier inversion, it is readily seen that the delta-type term is

in the case of a pillbox principal volume.
Likewise, in the case of a needle-shaped principal volume,

the (30) term contributes to the delta-type term through

Upon translation in the spherical cordinate system via
(20)–(21) (see also (A.1) of the Appendix), this term appears
in , , , , multiplied by

(32)

(33)

(34)

Hence, the following terms emerge:

(35a)

(35b)

(35c)

where

(36)

The constant parts contributed by the above terms may be
found as the zero-order coefficients in their Fourier series
expansion, as follows:

(37a)

(37b)

(37c)

Obviously, due to the odd symmetry of the integrand
around the point , while the other two coefficients can
be evaluated by means of the integrals

which eventually yield

(38a)

(38b)

From (19) and (20) and taking (38a) and (38b) into account,
one concludes that the delta-type term is

In the isotropic case the above terms
reduce to

for a needle-shaped principal volume or

for a pillbox-shaped principal volume. Both expressions coin-
cide to those given in the literature [18].
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V. CONCLUSION

The dyadic Green’s function for an unbounded biaxial
medium has been treated analytically in the Fourier domain.
The initial triple Fourier integral is reduced to a double one
by performing the integration over the longitudinal Fourier
variable. The delta-type source term has been extracted for
both a pillbox- and a needle-shaped principal volume. In the
limit , this term reduces to the corresponding
one of the isotropic case given in the literature.

APPENDIX

After some trivial algebra, the elements of the adjoint matrix
featuring in (9) are found to be

where

After translation into the cylindrical coordinate sys-
tem according to the transformation (20), the elements of
may readily be found through the relation

(A.1)

For example

(A.2)

(A.3)
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