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Green’s Function for an Unbounded Biaxial Medium
In Cylindrical Coordinates

Panayotis G. Cottis, Christos N. Vazouras, and C. Spyrou

Abstract—The dyadic Green’s function for an unbounded isotropic with a magnetic permeabilify, = 47 x 10~7 H/m.
biaxial medium is treated analytically in the Fourier domain. An exp[—jwt] time dependence is assumed throughout the
The Green’s function is initially expressed as a triple Fourier text. ’

integral, which is next reduced to a double one by performing the The G 's function is first det ined triole i
integration over the longitudinal Fourier variable. A delta-type € GIEEN'S IUNCUON'IS ISt Gelefmined as a tipie INverse

source term is extracted, which is dependent on the particular Fourier integral. Then, the integration over the longitudinal
coordinate system. Fourier variableX is performed and the far-field behavior of

the two kinds of constituent waves that appear is studied in the

spectral domain. A delta-type source term is extracted, which

is dependent on the specific application of Fourier integration.

l. INTRODUCTION It is interesting to notice that the cylindrical coordinate system

ADIATION of electromagnetic waves in unbounded?rovides the opportunity to point out the different forms of
anisotropic media is a problem of great interest from bothe delta source term according to the different principal

a theoretical and a practical point of view. In treating suc¥plume implicitly assumed; this is in contrast to the spherical

problems, the well-known Sommerfeld radiation condition igoordinate system [11], [14], where only the implicit choice of

not applicable and under certain conditions incoming wav@sspherical principal volume is possible within the framework

appear. Several methods have been proposed to treat radig@foffourier transform approach.

in anisotropic media. Arbel and Felsen [1] have proposed the

energy radiation condition based on the requirement that the [l. FORMULATION OF THE PROBLEM

waves transport energy away from the source. Seshadri and Warhe dyadic Green’s function due to a point source excitation

[2] made use of the principle of causality, which requires thgcated at/’ inside a biaxial medium must satisfy the tensor
absence of response before the starting of the source. Lee g@a#hholtz equation

Lo [3] and C(_)ttl; and Konqylls [4]. made use of the ]lmltlng VXV x Gr/r) — K22 Glr/r') = I6(r =) (2)
absorption principle to obtain a unique solution in anisotropic -

lossless media. Further treatment of wave propagation Where ko is the free-space wavenumber atdis the unit
anisotropic media can be found in [5]-[12]. In [13], Green’dlyadic. To solve (2) in cylindrical coordinatesi(r/r’) is
dyadics in bianisotropic media are treated by means off@presented through its inverse Fourier transform as
Fourier transform approach and asymptotic expressions are = , _ . ,

derived for the far- and near-field regions. Glr/r) = / / / g(k) expljk - (r — 1)} dk 3)

In the present work, the dyadic Green'’s function for an URghereg(k) is the Fourier transform ofi(r/r') and
bounded biaxial anisotropic medium is derived in the Fourier = T

transform domain in a cylindrical coordinate system. Such k=Fkk =pp+ Az (4)
a coordinate system is well suited to configurations such @sthe Fourier transform variable in cylindrical coordinates
cylindrical waveguides, two-dimensional problems, and so ofp, ¢,,, ). The limits of integration in (3) run from-oc to
We consider a medium characterized by a real diagonal relativec and are omitted for simplicity; this convention will be
permittivity tensore of the form maintained in the following. The dielectric tensor of (1) is

eg 0 0 written in cylindrical coordinates as

E=|0 e 0| =e122 4200+ €322 (1) e1cos? g, +exsin®, (e2 —e)sing,cosp, 0

0 0 e3 E= |(e2—e1)sing,cosp, ersin®, +excos?p, 0
wheree;, ¢ = 1,2, 3, are real positive quantities. Such a form 0 0 €3
can cover a wide variety of media (namely, those with a (5)
real symmetric permittivity tensor) by means of a coordinate g pityting (3) and the corresponding Fourier integral
rotation, as explained in [11]. The medium is mag”euca”é!xpression for the delta function into (2), using (5), and

applying the operatoV x V x with respect to th z spatial
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where Taking into account the above relatio(r /') is written
as
A(k) = K3(I - kk) — K2e. 7 _ +oo 2 +oo
A0 (L= H) = s @ G(r/r') = ——kQ(;W)g / pdp / dey / dx
Solving (6) and substituting the solution into (3¥(r/r’) is Loo -
obtained in the form of a triple Fourier integral > Z Z M expliA(z — 2)]
a(p) nN=—oo Mm=—0o
G(z/ eXP k- (z—1)]dk  (8) -explj(me + ne)] exp[—j(m + n)gp|
J(pp) In(pp’)
——— = a(p, ©p, A 19
whereD(k) is the determinant ofi(k) anda(™ (k) its adjoint D(k) ap. ¢p: ) (19)
matrix given by where @(k) is the matrix resulting after the translation of
o Upp  Gppy  pr a®) (k) from the (p, @,, \) cylindrical coordinate system to
a® (k)= |ag,p oo, G |- (9) the (p, ¢, 2) cylindrical coordinate system, the unit vectors of

which do not depend upon the integration variables. This is
accomplished via the transformation

a(k) =T a®(k)-T (20)

ax, ax., QXX
The elements o&?) (k) are given in the Appendix.

To study the Green’s function, one may reg&@-/r’) as
a wave propagating either along theaxis or away from the and

z axis. Accordingly, the above integral should be written in a (p-p p-p p-3
suitable form by expressin®(k) as a biquadratic polynomial T=\|¢p D &p-¢ &p-2
in either theX Fourier variable or the Fourier variable. - 5.p 29 5.3
In the first case, one writeB(k) as - cos(ey — @) sinle, —@) 0
P P
D(k) = —k3ez (X2 — A1) (A2 — A) (10) = |—sin(pp —¢) cos(gp—¢) O (21)
0 0 1

where+X; = £A;(p, ¢p), ¢ = 1,2 are the four roots of the = _ _
biquadratic in\ with 7! = T7 due to the orthonormal nature of the

cylindrical coordinate system.
—/{}363[)\4 + b)\)\Q + C)\] =0 (11)
Ill. | NTEGRATION OVER THE

where LONGITUDINAL FOURIER VARIABLE

by = ba(p, ¢p) = —kg(e1 +e2) + [L+ &(pp) /ealp® (12) In this section, the case corresponding /to# ' will
ex = ea(p,gp) = [5(%)/53]1{L be examined, while the case — ¢’ will be examined in
— kR[eren/es + E(wp)] PP + Kikeres (13) ﬁsggsgalr\;. A study of the integrand function of (19) is
_ 2 ) .

§(op) = 100" pp + e 8in” . (14) " First, a careful examination of the integrand function with
respect to thep,, Fourier variable reveals that two kinds of
integrals overp,, appear; those related to the tensor elements
D(k) = —k3&(ep) (p° — p1) (p* — p3) (15)  pp, Qpgy Qpy Aoy, ANdar.., that are zero whem +n is odd
and those related t0,., o, o.,, anda., that are zero when
m + n is even. Taking this into account, (19) is written as

In the second casd)(k) is written as

where+p; = +p;(A,¢,), ¢ = 1,2 are the four roots of the
biguadratic inp

1 o0 27
_k3£(¢p)[p4 + bpr +e]=0 (16) Glr/r') = (27r) / pdp o diep
where oo expliA(z = #)]
" /_oo D m
by = bp(A, ¢p)
_ 2 1.2 6(()01)) + 5152/53 m—n
= [Elon) T el (X~ Kes =) (A7) 9D T o (pp) T (pp") expli(mep + )]
ey = cp(A) = e3(A2 — k2ey) (A2 — k2en). (18) ©

x exp[—j(m + n)pplac(p, ¢p, A)
+ D 5T m(pp) Jn(pe') expli(me + ng')]

m,n

To eliminate the integration over one Fourier variable, say
over ), use is made of the well-known expansion of a plane
wave (o)

+o0 . _
exp(jk - r) = exp(jAz) Y " Jm(pp) explim(p — o)l X Pl (m )2 Jas(p. ¢, A) (22)

m=—0o<
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where approaches [19]-[20], the whole singular term is considered;
P a0 in others [18], [21], an explicit delta-type term is extracted

2 (p, ops \) = a;’; a;: 0 while a distributional behavior (not of the delta type) is
- 0 0 a.. also embedded in the remaining terms via a special limiting

- - (23) procedure (principal volume approach) or via the structure of

o 0 0 ap the eigenfunction expansion in the source region.
@ (p,ppsA) = | O 0 ae: By means of the Fourier representation approach adopted
[@zp Gz O here, the delta-type source term may be derived in a fairly
and straightforward manner. It should be noted that the Fourier

transform associating: to g and vice versa should be inter-
Z _ Z Z Z _ Z Z (24) preted in the distributional sense; more precisely, given any
£ < p £ < scalar componery of g, the corresponding scalar component
m=—oo N=—0 ’ m=—oo N=—0o — . . 3 L= . . . .
m4n=even () m-+n=odd G of G is a distribution defined via its “inner product” by the
propriate testing functions

3

3

)

o~

Having as our objective to perform the integration over tHe®
A variable, we regardz(r/r') as a wave propagating along _ /// N
the » axis and writeD(k) as in (10). Thus, four poles appear (& v) = Glr, 1)) dr

in the integrand function, nameltA; = +£X;(p, ¢p), i = 1, 2. _ o =
The integrations to be performed are of the form = /// exp[—jk -] g(k)y(k)dk  (28)

7 :/+°° E(p,op, A) exp[jiAz = 7] ) (25) where
A O IO ' Ty — L 50 exolik - o] di
P(k) = o P(r) expljk - r] dr. (29)
It may easily be verified that the elements Bfp, ¢,, \)

contain\ at some power from zero to three, except for t#e This is the familiar Parseval’s identity, extended to define
element containing a* term. Therefore, the above integraléhe distributional Fourier transform [23]; this extension applies
can be evaluated using residue theory for all values: of Particularly when the “conventional” inverse Fourier transform
with the exception of the:s term whenz = z’. This case imposed ong gives rise to divergent integrals, as in the case
corresponds to the singularity source term and is examinggdelta distributions. The right-hand side of (28) converges

in Section IV. The integrals given by (25) are broken im@rowdedz/}(@) is sufficiently well behaved at infinity, i.eyi(r)

integrals of the form is sufficiently smooth.
Equations (28)—(29) show that the only components; of

7O _ /+°° Alexp[jA(z — #)] g\ i—0123 (26 Yieldingterms proportional tg(x), and, hence, correspond-
= oo (M2=A7)(A2-A3) e ing to components ofy containing as(r — r’) term are the

. . . ones that contain a constant term. This may be expressed in a
'I_'hese m_tegrals are evaluated by appropriate contour INteYsre precise way by means of the concept of the support of
tion fo yield the final result a distribution. Upon inspection of (8)—(9), taking into account

79 = Jms N1 N / (10) and (15), it may be seen that such aregthéerm in o,
I\ = m[ 1 expliii]z — 2] and the\* term in c, i.e., the following terms iry,, and
— Ay texplirelz — 2[]] @7 P respectively,

4

p
here 0

’ 1B(en) (0 - 12) (0 — 1))
17 z > 2! )\4

5T (=1, z< 2" (31)

RBes(02 — ) (02— N3)
Details about how the above result is derived and about the

physical interpretation of the two types of waves that conﬂ%n analogous approach of considering the leading terms in

up are given in [4]. It should be noted that under certaft corresponding partial fraction expansion has been proposed

i . : . In [24].
conditions, exponentially decreasing waves along thexis . . . . .
are observed as well as incoming waves. At this point, one could take into consideration [22] that

when the inverse Fourier transform is imposedgothe order

of the integrations over the variables and p that extend

up to infinity implies a certain principal volume procedure.
The singular behavior of Green’s dyadics as the observatibtore precisely, performing the integration ovefirst implies

point traverses the source point has been extensively discusbed the dimension of the principal volume along thexis

over the past 30 years for the isotropic case (see, e.g., [15]-[2ahishes first, corresponding to a pillbox-shaped volume [22].

and references therein). From the whole discussion, one n&iynilarly, performing the integration over first corresponds

infer that in regions containing the source point, the Greerts a needle-shaped principal volume.

dyadic should be viewed as a singular distribution, i.e., oneApplying this procedure to the terms (30)—(31) given above,

that cannot be identified to any ordinary function. In somene observes the following: If the integration ovar is

IV. DERIVATION OF THE DELTA-TYPE SOURCE SINGULARITY
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performed first, the integral ovex resulting from the term  The constant parts contributed by the above terms may be
(30) is convergent. Moreover, (12)—(14) show that when found as the zero-order coefficients in their Fourier series
goes to infinity,A? and A\3 go to —oc, i.e., the roots\; and expansion, as follows:

Ao are purely imaginary. Hence, the integration owegives

rise to an expression that is exponentially decaying with @ — 1 ™1+ cos 2, o (372)
which subsequently renders the resulting integral gygand 0 2w Jo  a+pBcos2p, 7

p convergent. Thus, the term (30) does not produce a delta- @ 1 [T 1—cos2p,

type term in this case. An analogous situation holds for the Co’ = Gy o m Pp (37b)

term (31) when the integration overis performed first. To

27 :
summarize: in the case of a pillbox-shaped principal volume, C((Jc) = 1 _ sinZpp dop. (37¢)
only the term (31) contributes a delta-type singularity, while 21 Jo o+ Bcos2pp
in the case of a needle-shaped principal volume only the term © _
(30) does. Obviously,C;” = 0 due to the odd symmetry of the integrand

According to the previous considerations, the specific pa#ound the poing,, = 7, while the other two coefficients can
of the term (31) that leads to the delta-type term when ttR¢ evaluated by means of the integrals
integration overA is performed first is

27 1 /2 1
—— dp, =4 S —, |
1 /0 o+ Fcos 2, Yr /0 o+ Fcos 2, Yr
/{}363 B o
and, in view of (A.3), this term arises alsodn.. Hence, after vaz— (32
Fourier inversion, it is readily seen that the delta-type termis 27 4g 20, 2 os 20, J
1 o /0 a+ Beos2¢, T / o+ fBcos2p, Yr
kies b —1)22 27 2ro

RN

in the case of a pillbox principal volume.
Likewise, in the case of a needle-shaped principal volumghich eventually yield
the (30) term contributes to the delta-type term through

1
ol — 38a
R L ¢ Val/E +e) o5
ka€(ep)  ki(e1cos® o + exsin” o) o ! (38b)
Upon translation in the spherical cordinate system via P VE(E+ VE)

(20)—(21) (see also (A.1) of the Appendix), this term appears

N Gpps Goos Gop G Multiplied by From (19) and (20) and taking (38a) and (38b) into account,

one concludes that the delta-type term is
(D~ §)? = cos®(pp — @) = cos® pcos® @,

(@) 2 (4) - 2 Noana
+ sin? © sin? ©p + 2cos @ sin g cos @, sin @, [(CO cos” ¢ + € sin 90) PP

a) - b P
(32) + (C’é ) gin? @+ C’é ) cos? <p) )
(B~ ¢)* = sin®(ip, — ) = sin’ pcos® g, + (G5 = C§) sinpcos p(pp + $p)] 8(r — 1)
+ cos? psin? ©p — 2cos @ sin g cos @, sing, _ [(COSQ P n sin” 90) 55+ <51112 ¥ + cos® 90) P
(33) VEL NE NG VE2
(- 7)(5 ) = cos(ipy — @)sin(y — 9) 2B s+ 07)
= (cos® ¢ — sin? @) cos @, sin @y, v ?52
+ sin ¢ cos @(sin? ¢, — cos® @,,). (34) X —————6(r —1').
VEL T /€2
Hence, the following terms emerge: . :
9 9 In the isotropic case; = es = 3 = ¢ the above terms
cos? ¢, _ 1+cos2yp, (35a) reduce to
e1cos? g, +easin®, o+ Bcos2p, 1 (55 + 50)8( 3
sin? @p 1 —rcos2¢, (35b) 2e PPt PRI — 1
2 in2 B
ELCO8Tgp F ea8iTp fﬁ €08 2¢p for a needle-shaped principal volume or
COS ©p, SN @), _ sin 2¢), (35¢)
e1cos? g, +exsin®p,  a+ fcos2p, 173736(7‘ —7')

£
where ] o ] )
for a pillbox-shaped principal volume. Both expressions coin-

a=¢1+e P=¢e1 —eo. (36) cide to those given in the literature [18].
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V. CONCLUSION

(20]

The dyadic Green's function for an unbounded biaxighyj
medium has been treated analytically in the Fourier domain.

The initial triple Fourier integral is reduced to a double on

199

, “Analytic methods and free-space dyadic Green’s functions,”
Radio Sci, vol. 28, pp. 847-857, 1993.

W. S. Weiglhofer and A. Lakhtakia, “On singularities of dyadic Green
functions and long wavelength scattering;lectromagn. vol. 15, pp.
209-222, 1995.

] K. K. Mei, “On the perturbational solution to the dyadic Green's

by performing the integration over the longitudinal Fourier
variable. The delta-type source term has been extracted for
both a pillbox- and a needle-shaped principal volume. In tﬁ1e3]
limit ey = e2 = &3, this term reduces to the corresponding

one of the isotropic case given in the literature.

APPENDIX

After some trivial algebra, the elements of the adjoint matrix don, o ] )
[17] J. G. Fikioris, “Electromagnetic field inside a current-carrying region,”

@(E) featuring in (9) are found to be
app = p* + (X* — B — kjes)p® — kies(A\* — B)
Upp, = Gp,p = —Cp* + kiesC
apr = rp = Ap° + A(A2 — B)p
—Ap? — k2es(\? — A)
QoA = G, — APC
ax=AN—A)p*+ (N -B)\? - A)-C?

a‘?p ep —

where

A= App) = k(g1 cos® ¢, + e25in” ¢,,)
B = B(pp) = kj(e15in? ¢, + 2 cos® ¢,,)
C = C(pp) = ki(e1 — €2) sin ¢, cos @,
After translation into th€p, ¢, z) cylindrical coordinate sys-

tem according to the transformation (20), the elements bj
may readily be found through the relation

aij = (h-)k-Dan i,5=p, 0,2 hk=p, A
I,k
(A1)

For example
App = (- ﬁ)Qapp +(p- ﬁ)(‘ﬁp - p) Apep

+(Gp PP D) gy + (Bp - Pp) ppp, (A2)
(A.3)

Azz = AAN
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