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TM Electromagnetic Scattering by a
Transparent Wedge with Resistive Faces

Christian Demeterscu, Bair V. Budaev, Constantinos C. Constantinou, and Michel J. Mehler

Abstract—The Sommerfeld–Maliuzhinets method is used to
calculate the total fields in the interior and exterior regions
of an arbitrarily angled resistive wedge. A E-plane wave (TM
mode) normally illuminates the two-dimensional resistive wedge.
Two spectral functions are introduced to represent the fields
in both regions. By imposing the resistive boundary conditions
on the wedge faces, a system of coupled functional equations is
obtained for the two unknown spectral functions. The functional
equations are reduced to singular integral equations for the
auxiliary functions. The predictions for a right-angled resis-
tive wedge are shown to be in good agreement with measure-
ments.

Index Terms—Asymptotic analysis, diffraction, electromagnetic
scattering.

I. INTRODUCTION

ELECTROMAGNETIC scattering by hollow wedge struc-
tures is of interest in the context of radiowave channel

modeling. The scattering around the hollow corners of build-
ings as well as propagation over pitched roofs are important
propagation mechanisms. Rigorous modeling of the trans-
mission through hollow building corners and the associated
diffraction phenomena gives the system planners an invaluable
method to be used in their coverage prediction tools for the
urban environment in cases where radiowave transmission is
significant. The real hollow building corners can be simulated
at radiowave frequencies by resistive wedges, which are made
of two resistive sheets having a common edge and a complex
surface resistance. This simplified geometry allows us to
construct an accurate solution for the initial scattering problem.

In this paper, the electromagnetic scattering by an ar-
bitrarily angled resistive wedge is presented. The resistive
wedge is partially transparent allowing the exterior field to
penetrate inside it. Therefore, the problem at hand involves
two media. The two walls of the resistive wedge are taken
to be identical. The case when the walls are different can
be similarly investigated. The total fields in the interior and
exterior regions of the resistive wedge are represented in
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Fig. 1. The resistive wedge geometry and the system of coordinates.

terms of the Sommerfeld–Maliuzhinets integrals [1] involving
two unknown spectral functions. By imposing the resistive
boundary conditions on the resistive wedge faces, four cou-
pled functional equations are obtained for the two spectral
functions. The pole singularities of the two spectral functions
are singled outa priori by the approach presented in Budaev
and Bogy [2], [3]. Then, the problem is reduced to the solution
of a singular integral equation for each of the symmetric
or anti-symmetric components of the spectral function. The
singular integral equation can be subsequently reduced to a
Fredholm equation of the second kind. We solve numerically
these Fredholm equations and obtain the two spectral func-
tions that satisfy the pole requirement, radiation, and edge
conditions. The UTD predictions of the total scattered field
by a right-angled resistive wedge are shown to be in good
agreement with measurements taken in a controlled laboratory
environment.

II. A NALYSIS

The geometry of the problem under consideration, together
with the cylindrical polar coordinates employed, is shown in
Fig. 1. The resistive wedge has half of the exterior angle equal
to . A unity amplitude plane wave normally illuminates
the geometry, as depicted in Fig. 1.

The two resistive sheets that form the wedge are identical
and have the electrical parameter , where
is the free-space impedance and is their complex surface
resistivity [4].

The component of the total electric field in the interior
and exterior regions of the resistive wedge, respectively, is
represented in terms of the Sommerfeld–Maliuzhinets integrals
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[1] as

for

(1a)

for (1b)

where is half of the exterior angle of the resistive wedge
, is the Sommerfeld two loop contour,

are two unknown spectral functions corresponding
to the exterior and interior regions of the resistive wedge,
respectively, is the free-space wave number, and
are the cylindrical polar coordinates shown in Fig. 1. The
boundary conditions along the resistive sheets are

for

(2a)

(2b)

where are the component of electric fields on the re-
sistive sheets in the exterior and interior regions, respectively.
The electric fields given in (1) must satisfy the boundary con-
ditions (2) and the radiation condition. The spectral function

corresponding to the exterior region of the resistive
wedge, has only one pole with a residue of unity in the
strip at to correctly recover the
incident plane wave (pole requirement). In addition to these
requirements, both spectral functions should satisfy the edge
condition for .

Substituting the spectral representations of the fields (1) into
the boundary conditions (2) and using the inversion formula
for the Sommerfeld integrals [5], yields the following system
of coupled functional equations for the two unknown spectral
functions:

(3a)

(3b)

(3c)

(3d)

where , is the pseudo-Brewster angle and are
arbitrary constants. For physically realizable passive resistive
boundary conditions, the real and imaginary parts ofmust
satisfy the inequalities , . Because
the constants do not have any physical meaning we show
that they can be set to zero by a suitable choice of additive
constants which may be added to the Sommerfeld integrals (1)
without modifying them. We divide (3a) and (3c) by and

take the limit to obtain

(4a)

The Sommerfeld integrals (1) are invariant under the transfor-
mation , where are arbitrary
constants. Therefore, applying this transformation in (4a),
yields

(4b)

To satisfy the identity (4b), we can choose the arbitrary
constants such as

(5)

which, therefore, reduces the constants to zero.
The two spectral functions can be written in terms of their

symmetric and antisymmetric components in the form

(6)

where

(7a)

(7b)

Inserting (6) into (3), yields the functional equations satisfied
by the antisymmetric components in the form

(8a)

(8b)

and similarly for the symmetric components

(9a)

(9b)

The two systems of (8) and (9) have similar forms and we
present in detail only the solution of (8).

The systems of (8) and (9) can be rewritten in the matrix
form

(10)

where and are the reflection and transmission
coefficients, respectively, of a resistive sheet given by Senior
and Volakis [4]

(11)
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Once and have been found in the vertical
strips , , respectively, then we can
analytically continue them in the entire complexplane by
using (10) iteratively.

Following Budaev and Bogy [2], [3], we write the symmet-
ric and antisymmetric components in the form

(12a)

(12b)

where have the poles of in the strip
and are regular functions in the same strip. The

function is regular in the vertical strip ,
therefore, the absence of an incident field yields
in (12b) and are regular in this strip. has only
one pole in at to correctly recover the
incident field. Thus, we can choose the meromorphic functions

in the form

(13)

We discuss now only the antisymmetric components ,
the discussion for the symmetric case being similar. The first
set of poles of located in are at .
Both functions have a pole at with a residue
equal to and, thus, , being the sum of the symmetric
and antisymmetric components, has a residue equal to unity
at this pole, which accounts for the incident field. Each of

has a pole at with residue equal to ,
respectively, and, therefore, has a residue equal to zero
at this pole.

It is apparent from (10) how the poles of propagate
in the complex plane [2], [3]. If is a pole of ,
then the next set of poles are at . The pole of the
reflection coefficient in (10) at gives rise to a
set of poles of at . These are
the poles which produce the surface waves, which propagate
along the resistive sheet faces.

The residues of the poles corresponding to the geometri-
cal optics (GO) fields are determined by the reflection and
transmission coefficients. The residues of the surface wave
poles can be written in terms of in the strips

, calculated by evaluating the reflection and transmission
coefficients in (10) in the limit , yielding

(14)

If the arguments of in (14) do not lie in the vertical
strips , respectively, then the next recursive step
in (10) should be used to bring the arguments in the indicated
strips. The poles of , which might have contributions
in the evaluation of the final Sommerfeld integrals (1), are
at for the exterior incident field,
for reflections on the exterior faces of the resistive sheets,

for surface waves along the exterior faces of
the resistive sheets, and for the transmitted field
through the resistive wedge. The poles of , which may be

caught inside the loop are at for fields transmitted
to the interior of the resistive wedge,
for reflections on the inside faces of the resistive wedge, and

for the surface waves propagating on the
interior faces of the resistive wedge. For , multiple
reflections/transmissions have to be accounted for.

The remaining problem is to find the regular functions
in the strips , respectively. We can

substitute (12) into (8) to obtain

(15a)

(15b)

where

(16a)

(16b)

where the terms account for all the poles of the
spectral functions in the strips . In (15), by
making the following substitutions:

(17)

these equations become

(18a)

(18b)

where is the following integral operator [2]

(19)

whose main property is

(20)

and is valid for any function holomorphic in the vertical
strip .

The functions are regular in the vertical strips
, respectively, therefore, (17) and

(18) are defined in the vertical strip where both
sides of the equations can be Fourier transformed. Equations
(18) are solved numerically in our approach to find .
Once these two auxiliary functions have been determined, the
functions can be obtained in the regularity strips using
the following inverse operators [2], [3]:

(21)

It is evident from (21) that the auxiliary functions
need to be known only along the imaginary axis ,
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which is consistent with the condition in (19).
Eliminating between the two equations (18) and making
the change of variable , the following singular integral
equation for is obtained:

for (22)

where the singular kernel is

(23a)

and

(23b)

In (22), is a real variable, therefore the kernel
has a singularity on the integration path at . It is worth
pointing out that (22) has been normalized by dividing it with

. This normalization is important for the accuracy of
the numerical results. We use a regularization procedure before
discretizing (22). Thus, we reduce (22) to a Fredholm equation
of the second kind [6]. The integral equation (22) can be
rewritten as

(24)

where is a singular integral operator defined by

(25)
and is a regular integral operator of the form

(26)

From the theory of singular integral equations [6], we know
that by applying the inverse operator in (24) yields a
nonsingular integral equation of the form

(27)

The inverse operator is derived in the Appendix in the
form

(28)

where and are known functions defined in
the Appendix.

We reduce now (27) to a Fredholm equation of the second
kind with a regular kernel. We first find the product operator

from (27) by applying on the left of (26) and

interchanging the order of integration in the resulting equation
to obtain

(29)

where the regular bounded kernel is

(30)

Using (29) we can rewrite (27) in the form

(31)

where

(32)

Equation (31) is a Fredholm equation of the second kind with
a regular kernel that can be directly discretized and solved
numerically. Once has been found along the
imaginary axis by solving numerically (31), then using (18a),
the second auxiliary function is readily found.
are found from (21) in the vertical strips ,
respectively. Outside these strips, are analytically con-
tinued using (15). At this stage, the antisymmetric components

are completely determined by (12), (13), and (21).
The symmetric components can be found in a

similar way, where the auxiliary functions are now

(33)

and the integral operator for this symmetric case is now

(34)

which has the property

(35)

The inverse operator, corresponding to given in (34), is

(36)

Substituting (12) into (9) and using the auxiliary functions
to group the symmetric components of in

the resulting equations we obtain (see (18)–(22) for a similar
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approach) the following singular integral equation for

for (37)

where the singular kernel is

(38)

and

(39)

with given in (13).
The singular integral equation (37) is similar to (22) and,

therefore, the approach used before to reduce (22) to a Fred-
holm equation of the second kind with regular kernel can be
applied here as well. Once the resulting Fredholm equation
is solved numerically for then the symmetric
components are readily found from (36) and (12).

The spectral functions are now completely deter-
mined in the strips , respectively, and can be
analytically continued in the entire complex plane using
(10).

For the sake of clarity, here we summarize the calculation
of the two spectral functions as follows.

Step 1 Use (6) to express in terms of their sym-
metric and anti-symmetric components .

Step 2 Use (12) to recast into and
where account for the incident field pole
while and are regular functions in
the strips , respectively.

Step 3 Use (13) to calculate .
Step 4 Use (17) and (33) to introduce the auxiliary func-

tions and used to calculate
and , respectively.

Step 5 Solve numerically the Fredholm equations (31) and
that corresponding to (37) for and

, respectively.
Step 6 Use the relations between and from

(18a) and between and from (9) and
(33) to find and . At this stage both

and are known on the imaginary
axis.

Step 7 Use the inverse operators from (21) and (36) to
obtain and in the regularity strips
from and , respectively. At this
stage, the spectral functions are completely
determined in their regularity strips ,
respectively.

Step 8 Use (10) to analytically continue outside
their regularity strips.

By closing the Sommerfeld two-loop contour in (1) by
the two steepest descent paths through the saddle points,
several poles may be captured inside the resulting loop. These
poles give rise to the GO fields and surface waves. The high-
frequency approximations of the integrals along the steepest
descent paths give rise to diffracted fields in a UTD form.

To validate our predictions, we now present a comparison
between the total scattered field by a resistive right-angled
wedge and measurements taken in a controlled laboratory
environment. In this case, and the exterior UTD
diffracted field are

(40)

where the exterior diffraction coefficient is given
by

(41)

where are the residues of the poles of
captured inside the closed loop, and
is the complex transition function [7]. The explicit expressions
for the residues of the GO poles are given by the known
reflection and transmission coefficients of (11), while the
residues of the surface wave poles are given by (14). Without
loss of generality, by symmetry of the geometry in Fig. 1 it is
only necessary to consider incidence angles in the interval

. The interior uniform theory of diffraction
(UTD) diffracted field has the form

(42)

where the interior diffraction coefficient is given
by

(43)

where are the residues of the poles of
captured inside the closed loop and . In
the next section, we compare this UTD form of the total
electric field with measurements taken in the laboratory at 30
GHz on a right-angled hollow thin plaster-board wedge. For
convenience, we change the reference angle to ,
as shown in Fig. 2.
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Fig. 2. New system of coordinates.

III. N UMERICAL SIMULATIONS AND EXPERIMENTS

We proceed to establish the validity of the UTD form of the
solution presented here through controlled laboratory experi-
ments. We use the Birmingham propagation range, which is
a semi-anechoic chamber with a flat aluminum ground plane.
The transmitter was a vertically polarized ground-based open-
ended WR28 waveguide, fed with a 30-GHz CW constant
level signal. A right-angled penetrable dielectric plaster-board
hollow wedge was built so that the angle of incidence on
the lit face was and the edge was 1.5 m away
from the transmitter. The thickness of the plaster board was
9 mm. The hollow wedge sides were approximately 0.60 m
high, one side extending all the way to the transmitter (i.e.,
was 1.5 m long) and the shadowed side was 1 m long. This
geometrical arrangement means that the incident wave was, to
a good approximation, a plane wave at the edge and the effects
due to the finite size of the resistive wedge are negligible. The
receiver was a vertically polarized ground-based standard-gain
pyramidal horn antenna with a boreside gain of 18 dBi and a

20 dB beamwidth of 37 in the plane. The choice of the
receiving antenna was dictated by the requirement of detecting
the field strength in the deep shadow region of the wedge
above the noise floor of our spectrum analyzer (receiver).

In Fig. 3, we present a comparison of the predictions of
the new UTD form of the total field against the experimental
measurements taken at a distance of from the
edge. The complex relative permitivitty for the plaster was
measured to be using a standard waveguide
measurement technique at the chosen experimental frequency.
The measurement accuracy was1 dB, while the repeatability
of the measurements was0.83 dB (worst case). The receiving
antenna was moved along a circular path over 180in steps of
5 , and its boreside was directed toward the edge of the wedge.
The first illuminated quadrant and the interior
fourth quadrant were not covered, as the receiver support
would have interfered with the experiment and the directivity
of the horn antenna would have yielded field strength levels
near or under the noise floor of our receiver.

Overall, the predictions are in good agreement with the
measurements. Our prediction using the UTD form of the
scattered field produces a mean error of 0.67 dB and a standard
deviation of 4.45 dB. This degree of agreement is justifiable
given our measurement accuracy and the fact that we have
modeled only very thin dielectric walls as resistive sheets.
The discrepancy which occurs around 190is due to the

Fig. 3. Exterior region field-strength measurements versus UTD theoretical
predictions for right-angled resistive wedge.

fact that the thickness of the plaster boards is comparable
with the wavelength. Our presented model is suitable for
hollow wedges, which have dielectric slab walls sufficiently
thin to be modeled as resistive sheets. If the thickness of
the dielectric wall increases then the higher order transition
boundary conditions should be used for a better simulation of
the hollow wedge in which case our method can be expanded
to treat the higher order boundary conditions. It was observed
that the surface waves were strongly attenuated away from
the edge of the resistive wedge, so for most of the practical
applications in the context of radiowave propagation, they
are negligible. This could not be verified experimentally,
as the receiver support structure only allowed us to take
measurements up to 260. Nevertheless, we have verified
this through numerical simulations for a range of complex
dielectric relative permittivities typical for building materials
such as brick and concrete.

We present in Fig. 4 the predicted total field, the GO field,
and the UTD diffracted field both in the interior and exterior
regions of the right-angled resistive wedge from Fig. 2. A
unity plane wave normally illuminates the right-angled
resistive wedge from Fig. 2. The incidence angle is
and the observation point is moving on a complete circle
of radius . The relative complex permitivitty of
the dielectric from which the resistive sheet is made of is

.
Inspection of the data plotted in Fig. 4 reveals that the total

field is continuous across the resistive sheets. The diffracted
field correctly compensates the GO discontinuities across the
incidence/reflection shadow boundaries where the total field is
continuous.

IV. CONCLUSION

In this paper, we presented the diffraction by an arbitrarily
angled resistive wedge using the Sommerfeld–Maliuzhinets
method. A new UTD diffraction coefficient was derived from
a steepest decent uniform asymptotic approximation of the
Sommerfeld integrals for the right-angled resistive wedge. This
UTD form of the total field was compared with measure-
ments taken in a controlled laboratory environment and good
agreement was obtained throughout.



DEMETRESCUet al.: TM ELECTROMAGNETIC SCATTERING BY WEDGE WITH RESISTIVE FACES 53

(a)

(b)

Fig. 4. (a) Exterior and (b) interior fields for a right-angled resistive wedge.

We have identified the existence of surface waves, which
are exponentially attenuated both with distance from the
edge of the wedge and with increasing angular separation
from the faces of the wedge. The excitation of these surface
waves is sensitive to the electrical parameters of the dielectric
material from which the resistive sheets are composed. For
most practical applications, especially in the urban mobile
radio propagation prediction programs of current interest, these
waves have been found to be negligible through numerical
simulations. The critical factor in making reliable predictions
seems to be the accuracy with which the boundary value
problem is modeled on the dielectric hollow wedge walls and,
in particular, on the shadowed face. The experimental results
were taken for a wall thickness of 0.9-free-space wavelengths
and were found to be in good agreement with the analysis.
When the thickness of the dielectric slabs, which form the
walls of the hollow wedge increases, higher order transition
boundary conditions are likely to be required for a better
simulation of the actual hollow wedge.

APPENDIX

In this Appendix, we derive the expression of the inverse
operator . The operator inversion problem can be stated
as follows: find the solution of

(A.1)

providing that is a known function decaying at
and the operator is given in (25). In other words we want

to express as . We use the notations

and in order to express in the
form

(A.2)

where is an unknown function holomorphic in the
vertical strip . Inserting (A.2) into (A.1) and using
(19) and (20) yields

(A.3)

where . Equation (A.3) is a first-order
difference equation for the unknown function . To solve
it we follow Maliuzhinets’ approach [1] and express in
the form

(A.4)

where is the bounded solution of the homogeneous
equation corresponding to (A.3) of the form

(A.5)

where

(A.6)

and satisfies the following inhomogeneous first-order
difference equation

(A.7)

Using the Fourier transform method [1], we can find the
solution of (A,7) in the form

(A.8)

Outside the regularity strip , the functions
and are analytically continued by (A.6) and (A.7),
respectively. Inserting (A.8), (A.5), and (A.4) into (A.2) yields
the inverse operator in the form

(A.9)

with

(A.10)

(A.11)
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