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Mode-Matching Analysis of Top-Hat Monopole
Antennas Loaded with Radially Layered Dielectric

Laura A. Francavilla, James S. McLean, Heinrich D. Foltz, and Gentry E. Crook,Member, IEEE

Abstract—A top-hat monopole antenna with homogeneous
or inhomogeneous dielectric loading over a ground plane is
considered. Mode-matching analysis with proper enforcement
of edge conditions is applied to the problem. The results of
this technique are verified through independent calculations of
admittance as well as by comparison of fields across matching
regions. Measurements were also taken for comparison with the
results from the model. It is shown that dielectric loading can
reduce the electrical size necessary for self resonance, but only at
the expense of a large increase in radiationQQQ.

Index Terms—Antennas, dielectric loaded antennas, mode-
matching methods.

I. INTRODUCTION

ELECTRICALLY small, vertical monopole antennas oper-
ating over conducting ground planes are commonly used

to generate vertically polarized, azimuthally omnidirectional
fields. Such antennas generally exhibit large radiation qual-
ity factors and low radiation resistances. They are not self
resonant and, therefore, require a matching network in order
to be impedance matched to a source with resistive output
impedance. This matching network or antenna tuner imposes
serious limitations on the overall efficiency of the antenna
system [1].

Top-hat loading of an electrically small vertical monopole
antenna modifies the current distribution on the antenna in
such a way as to decrease the radiationand increase the
radiation resistance of the antenna [2]. In addition, material
loading with dielectric and/or magnetic materials can make an
electrically small antenna self resonant. The combination of
top-hat loading with the use of low-loss loading materials can,
therefore, produce a broad-band electrically small self-resonant
antenna with a high radiation efficiency.

In this paper, the problem of a top-hat monopole antenna
with inhomogeneous dielectric loading is considered. The
dielectric loading, in addition to making the antenna self
resonant, also makes the structure much more mechanically
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robust. The inhomogeneous dielectric loading considered here
consists of two radial layers of dielectric. This inhomogeneity
offers an additional degree of freedom in the design of such
an antenna.

The presence of dielectric loading material severely compli-
cates the application of moment-method techniques. However,
the geometry of the antenna and dielectric loading are well
suited for mode-matching analysis. Application of this tech-
nique is suggested by Morgan and Schwering [3], [4]. To
employ mode matching, a separable geometry is required.
In this case, the addition of an artificial ground plane well
above the antenna structure allows the problem to be divided
into cylindrical regions for which modal expansions can be
readily derived. Morgan and Schwering have shown that the
addition of an artificial ground plane has minimal effect on
the calculated values for the input impedance and current
distribution. This is true if the separation between the two
ground planes is large compared to the antenna dimensions
and is selected so that the analysis frequency is not coincident
with a cutoff frequency for the parallel-plate guide formed
by the two ground planes. This approach is of interest since
it can be applied to a larger class of antennas: antennas
with geometries that can be described within a cylindrical
coordinate system and which exhibit a radiation null on the

axis.
In the next section, the formulation for the electric and

magnetic field expansions to be used in the mode-matching
analysis will be discussed, including the boundary conditions
that must be satisfied. In Section III, the mode-matching
process and the resulting linear system of equations will be
presented. With this, the importance of the enforcement of
the field-edge condition will be discussed and the checks for
the self consistency of the code presented. The results will
be presented in Section IV, both from the numerical model
and from antenna measurements. Antenna input impedance
(radiation ) and resonance frequency in relation to dielectric
loading will be discussed.

II. FORMULATION

The antenna is situated over a perfectly electrically con-
ducting (PEC) ground plane and is sandwiched by an artificial
ground plane as described above. The problem can thus be
divided into four regions as shown in Fig. 1. All region
boundaries then coincide with constant coordinate surfaces
in a cylindrical coordinate system. Cylindrical harmonic ex-
pansions are used to express electric and magnetic fields in
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Fig. 1. Side view of top-hat loaded monopole antenna with radially layered
dielectric loading.

terms of unknown weighting coefficients. The coefficients in
these expansions are found by enforcing the proper boundary
and continuity conditions. Currents on the antenna are then
calculated from the magnetic field.

As in [3], a cylindrical coordinate system is chosen with the
origin such that the lower ground plane constitutes the
plane and the axis of symmetry of the antenna corresponds
to the axis. The height of the antenna measured from the
ground plane is , the top-hat radius is , and the stem
radius is . The innermost dielectric (labeled as Region IV)
extends from the stem to . An infinitesimal voltage-gap
source [5] at the base of the stem of the antenna is used to
approximate the physical situation of the antenna being driven
by a coaxial line. A finite voltage-gap source used in [3]
was found to yield similar results when a small gap size was
used. However, the infinitesimal gap source is the better of the
two approximations and has the benefits of being simpler to
implement and not introduce any numerical problems into the
model. An improved approximation of the coaxial feed would
be a magnetic frill source [6], however, this would complicate
the numerical model. Based on the agreement between the
present model and experimental data (shown in Section IV)
the accuracy of the infinitesimal voltage-gap source model is
acceptable at lower frequencies.

A. Boundary Conditions

In the mode-matching technique, the field expansions used
are weighted sums of source-free solutions to Maxwell’s
equations. Thus, Maxwell’s equations are exactly satisfied in
the interior of the regions. All that remains to be done is
to enforce the boundary conditions. The tangential electric
and magnetic fields must be continuous across the region
boundaries. The tangential electric fields must be zero at
actual and artificial ground planes and the top and bottom
of the top hat because these are all assumed to be perfect
electric conductors. This is accomplished by correct choice of

wavenumbers in the field expansions. Along the stem, the
tangential electric field is zero. Also, the top hat is assumed
to be infinitesimally thin and therefore the fields at the edge of
the top hat become singular. So a field edge condition, which

determines how fields become singular, must be enforced.
Also, to satisfy causality for a source at , there are
only outward traveling waves at .

B. Field Expansions

Following [3] and [7], the expressions for the fields of the
inhomogeneous dielectric loaded top-hat monopole antenna,
which follow, were derived.

The field expansions for Region I ( and
), which contains the outer layer of dielectric, are

(1)

(2)

where is the number of modes in Region I and is
the dielectric constant of the material in Region I.
are Hankel functions of the first kind and are Hankel
functions of the second kind with order of zero or one.

where are the radial wavenumbers
for the th mode and is the free-space wavenumber.
and are the weighting coefficients to be determined. In
all regions, the negative imaginary branch of the solution is
chosen to satisfy causality.

In Region II, above the top hat ( and ), the
field equations are

(3)

(4)

where is the number of modes in Region II.

where is the radial wavenumber for the
th mode and . are weighting coefficients to be

determined. are Bessel functions of the first kind where the
order is zero or one.

In Region III ( and ) the field expansions
are expressed as

(5)

(6)

where is the number of modes in Region III.

where is the radial wavenumber for the
th mode. are weighting coefficients to be determined.
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The field expansions for Region IV ( and
), which contains the inner layer of dielectric, are

(7)

(8)

where is the number of modes in Region IV and
is the dielectric constant of the material in Region IV.

where are the radial wavenumbers for
the th mode; and are the weighting coefficients to be
determined.

III. M ODE MATCHING

Mode matching is accomplished by setting two field expan-
sions equal at the boundary between them and generating a
system of linear equations by taking inner products. In our
formulation, Region IV shares a boundary with the source.
The set of equations that results from Fourier matching along
the boundary where is written in terms of
the and weighting coefficients and wavenumber

(9)

where , where was chosen to be equal
to and and for . This is one set of
equations in the complex linear system that will be used to
solve for the weighting coefficients.

The continuity of tangential fields must be enforced along
the boundary for four cases: enforcing the continuity of
the magnetic fields in Regions I and III, Regions II and III,
and then the electric fields in the same manner. The two sets
of equations from the magnetic fields are combined, as are
the two sets of equations resulting from matching the electric
fields. These two independent expressions for theweighting
coefficients may be equated, eliminating the coefficients.
This provides a second set of equations to be used in the
linear system. It is as follows:

(10)

where . The value of was chosen to be
in order to obtain the same number of equations

as unknown weighting coefficients and to satisfy the edge
condition described below. and are integrals which
result from the mode matching and are given by

(11)

and

(12)

Two other sets of equations arise from matching tangential
electric and magnetic fields at the boundary between
Regions IV and I. From matching corresponding electric fields,
we have

(13)

where . The magnetic fields are matched in
the same manner, yielding

(14)

where . The complex linear system of order
is comprised of these two sets of equations

and those from (9) and (10). The right-hand side of the matrix
system is zero except for the driving terms from (9).
Solving the linear system will now yield the , , , , and

coefficients. Knowing these, the coefficients are easily
found. The known coefficients are then substituted into the
expressions for the electric and magnetic fields, which are then
used to calculate other quantities of interest such as current
and energy.

It might seem necessary to include another equation in
the linear system in order to force the total radially directed
current at the rim of the top hat to zero as in the “null current
condition” in [3], but to do so is superfluous. This will be
addressed in the next subsection.

A. Edge Condition

To obtain convergent results it is desirable to be able to
increase the number of modes in the field expansions. Doing
so requires a well-conditioned set of equations. In [3], a “null
current condition” was applied which requires

(15)

This is equivalent to forcing the radial current on the top
hat to zero at its rim. However, to properly carry out mode
matching, the magnetic fields in Regions I and II should each
join continuously with the magnetic field in Region III in the
limit as the number of modes becomes large. This ensures that
the null current condition will be satisfied automatically in the
same limit.

It is well known [8] that the number of modes in mode-
matching analysis cannot be chosen arbitrarily. In particular,
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the ratio of the number of modes used in adjoining regions
must be chosen correctly. From the viewpoint of electromag-
netic field expansions, this ratio ensures that the summations,
in the limit of a large number of terms, have the correct order
of singularity approaching the edge. The rigorous derivation
of the edge condition in [8] applied to a bifurcation in a
rectangular waveguide also applies to the geometry in our case.
The resulting edge condition is

(16)

where .
This constraint on the number of modes can also be deter-

mined, though less rigorously, by examining the inner products
generated when matching high-order modes at the boundaries.
The product of two sinusoids integrated over many periods
will be very small unless the periods are nearly identical. If
one expands a single high-order mode in one region in terms
of the modes in the adjoining region, one sees that most of the
“matching” is done by the one or two modes of the adjoining
region that have the closest spatial frequency. Thus, if the
highest order modes in two adjacent regions do not have nearly
the same period, the coefficient for the one with the larger
number of periods will be poorly determined and the problem
will be ill conditioned.

To obtain a close match of periods between Regions I and
III, it is required that

(17)

To obtain a close match of periods between Regions II and
III it is required that

(18)

These two conditions are combined resulting in (16) above.
Hence, we believe that (15) is superfluous and (16) should be
used instead.

The total number of modes must be chosen. A general
rule of thumb for determining is to include the lowest
order mode under the structure plus at least one evanescent
mode. This suggests the following rule: . If the
value of is too low, the results will not converge. Choosing
a value of that is too large results in an ill-conditioned
matrix. We found it possible to include four to eight times the
value of for .

B. Self-Consistency Checks

The self consistency of our mode-matching algorithm was
evaluated using two methods. First, a comparison was per-
formed between input admittance of the monopole as com-
puted directly from the stem current at the gap source and as
computed via the conservation of complex power. The input
admittance as computed from the stem current is

(19)

The input impedance as computed via the conservation of
complex power is [7]

(20)

where is the radiated power and and are the time
average stored electric and magnetic energies, respectively.
The first term in (20) (the conductance) can be computed from
the surface integral of the real part of the Poynting vector over
a surface enclosing the antenna. Taking this surface to be a
cylinder in Region III, we obtain

(21)

The second term in (20) (the susceptance) involves the com-
putation of the difference between the time-average stored
electric and magnetic energy around the antenna. The total
energy in Region III is infinite due to the steady-state nature
of the problem. Nevertheless, the quantity is finite.
After some manipulation, the expression for in
Region III can be shown to be

(22)

where is when and when . This makes use
of energy orthogonality of the modes, which follows from the
orthogonality of the circular sine and cosine functions. When
the asymptotic forms of the Bessel and Neumann functions
are used, the integrand is identically zero, which is in keeping
with the equipartition of energy in the far field. Evaluation of
the integral therefore yields

(23)

Similar expressions can be derived for all regions.
As an example, these computations were performed for an

unloaded monopole with the same dimensions as that used in
[3]. Fig. 2 shows plots of both susceptance and conductance
versus frequency calculated from energy and current when
the edge condition is properly enforced. The good agreement
between susceptance curves suggests the self-consistency of
the code. When the null current condition is enforced instead
of the edge condition, however, the agreement is quite poor.
Since conductance is calculated from far-field radiated power,
which is relatively insensitive to perturbations, it is expected
to be better behaved than the susceptance. There is still,
however, an improvement in the level of agreement when
the edge condition is enforced. Conductance calculations were
in agreement to at least six decimal places when the field
edge condition was enforced. If the null current condition
is enforced instead, there is agreement between the two
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Fig. 2. Comparison of susceptance and conductance independently calcu-
lated from current- and time-average stored energies as a function of frequency
when the field-edge condition is enforced. The dimensions of the antenna were
a = 1:19 mm, b = 3:87 cm, andh = 3:175 cm.

Fig. 3. Comparison of the strength of the imaginary component of the
z-directed electric fields at� = b boundary as a function of height when
the field edge condition is enforced and when the null current condition is
enforced. Similar behavior was observed for the real components of these
fields. The dimensions of the antenna are the same as those in Fig. 2.

calculations to only two decimal places. A second check on
the self-consistency of the algorithm involved verification of
the continuity of the computed electric and magnetic fields at
the region boundaries. The real and imaginary components of
the electric and magnetic fields were plotted as a function
of height showing the fields matching across cylindrical
regions. For the unloaded monopole used in [3], Fig. 3 shows
the imaginary component of both and on the
boundary for both the field and null current conditions. The
agreement between the two is clearly much better when the
edge condition is enforced than when the null current condition
is enforced without the edge condition. This was also the case
for the real components of these electric fields.

C. Numerical Efficiency and Limitations of the Algorithm

Because all of the matrix inner products are obtainable in
closed form, no numerical integration is required to set up the
linear system. Also, because the mods used in each region

Fig. 4. Comparison of input impedance from experiment and from model
as a function of frequency for the unloaded top-hat monopole antenna. The
dimensions of the antenna area = 2:381 mm,b = 3:810 cm, andh = 3:200
cm.

are analogous to the “entire-domain” basis functions used in
moment-method techniques, a relatively small number of them
is required to obtain accurate results. This was also noted in
[3]. Thus, it is expected that this approach is at least as efficient
as moment-method techniques.

The main limitation of this mode-matching algorithm is
the fact that it only applies to a limited set of geome-
tries—separable, cylindrical geometries, for which no power
radiates along the axis. Nevertheless, there are many ge-
ometries to which this method can be applied. This algorithm
can include the effects of dielectric loss via the use of a
complex permittivity. Conductive losses require more effort to
include in that the field expansions must be made more general.
A more comprehensive model with both types of losses is
currently under development.

IV. RESULTS AND EXPERIMENTAL VERIFICATION

The numerical model discussed above was used to model
several different top-hat monopole antennas, loaded and
unloaded, and the results were verified with experiments.
The monopole antennas were constructed out of copper and
fed through a bulkhead connector in a ground plane. Input
impedance measurements were made with an automatic vector
network analyzer.

1) Unloaded Monopole:In Fig. 4, the predicted and mea-
sured input impedance of an unloaded top-hat monopole with
dimensions mm, cm, and cm
are shown. The resistance curves show excellent agreement
while the reactance curves, although still in good agreement,
tended to diverge somewhat at higher frequencies. These
measurements were repeated with a second ground plane
placed above the antenna as was assumed in the numerical
model. The results for a ground plane spacing of 23 cm (the
smallest distance assumed in the numerical model) are shown
in Fig. 4. As can be seen, the second ground plane had a very
small effect on the data.

2) Teflon-Loaded Monopole:A Teflon-loaded top-hat
monopole was also characterized; the results are shown in
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Fig. 5. Comparison of input impedance from experiment and from model
as a function of frequncy for the Teflon-loaded top-hat monopole antenna.
The dimensions for this antenna are the same as those in Fig. 4 except that
c = 1:27 cm.

Fig. 6. Plot of calculated input impedance as a function of frequency for
the top-hat monopole antenna with dielectric loading in Region IV with
�IV = 10:0. The dimensions of the antenna are the same as those in Fig. 4
except thatc = 1:5 cm.

Fig. 5. The dielectric loading of the antenna was inhomoge-
nous as Teflon was placed only in Region IV. The dimensions
for this antenna were the same as those given for the unloaded
top-hat monopole antenna with and cm.
The shift in resonance frequency was small as expected, but
correctly predicted. Again, the experimentally determined and
computed resistance curves agree quite well and the reactance
curves show fairly good agreement.

3) Monopole Loaded with High-Density Dielectric:The
effect of a high-density dielectric in Region IV was investi-
gated using the numerical model. For this study, the following
monopole dimensions were chosen: mm,
cm, cm, and cm. For the particular case
of and , the predicted input impedance
is plotted in Fig. 6 showing a significant reduction of the
fundamental resonance frequency.

In order to study the size reduction obtained by dielectric
loading, the fundamental resonance frequency of a loaded

Fig. 7. First-series resonance frequency as a function of relative permittivity.
The solid line represents dielectric loading in Region IV and air in Region I.
The dashed line represents dielectric loading in Region I and air in Region
IV. All antennas had the dimensions specified in Fig. 4.

Fig. 8. log (Q) as a function of relative permittivity. The solid and dashed
lines represent the same situations given in Fig. 7. All antennas had the
dimensions specified in Fig. 4.

monopole with the above dimensions was plotted versus
as in Fig. 7. The solid line indicates the situation where,
the innermost dielectric layer, is varied and is held fixed
at 1.0. The dashed line indicates the opposite case with
varied over a range of values and constant at 1.0. It can be
seen that loading the antenna with material of higher dielectric
constant will decrease the resonance frequency,. However,
this dielectric loading also increases thetremendously. The
radiation (approximately twice the inverse of fractional
impedance bandwidth) was calculated at the first-series res-
onance for increasing dielectric constants. The expression for

can be derived from energy and power [7]

(24)

A plot of versus is shown in Fig. 8. Again, the solid
line indicates the situation where is large and is constant
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at 1.0. The dashed line indicates the opposite, withvaried
over a range of values and constant at 1.0.

V. CONCLUSION

The technique of mode matching was applied to a top-hat
loaded monopole antenna, which may have homogeneous or
inhomogeneous loading under the top-hat structure. Because
the matrix inner products are available in closed form, the
technique is comparable to moment methods in the required
numerical effort, but can be applied to geometries difficult
to analyze by moment methods. The separable, cylindrical
geometry of the structure lends itself to mode matching, which
provides an accurate analysis for this geometry. In contrast to
previous work, it was shown that to obtain good results the
edge condition must be properly enforced and the null current
condition must not be used. Measurements were taken for
comparison with numerical results in some cases and showed
good agreement. It was also shown that the series resonance
frequency can be reduced by using dielectric loading.
However, this is done at the expense of increased, much
higher than would be expected from the decrease in electrical
size.
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