
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 1, JANUARY 1999 101

Asymptotic Analysis of the Natural
System Modes of Coupled Bodies in the
Large-Separation Low-Frequency Regime
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Abstract—In this paper, we examine the natural system modes
(characteristic frequencies and currents) of two coupled bodies in
the limit of large separation. It is known that when objects are
oriented such that they may interact electromagnetically, natural
modes of the coupled system occur. These modes differ from,
but may be related to, the natural modes of the isolated bodies.
For example, the first antisymmetric and symmetric system fre-
quencies of two identical bodies separated by some intermediate
distance spiral around the dominant natural frequency of the
isolated body as separation is varied. As separation further
increases, these system resonances tend toward the origin in the
complex frequency plane, rather than approaching the isolated
body-dominant natural frequency. Here we treat an N -body
scattering problem in the limit of large separation by replacing
the bodies with equivalent dipole moments. The natural frequen-
cies are obtained as singular points in the scattering solution.
For the special case of two coupled objects, a simple equation
for the natural system frequencies is obtained that shows that
the real radian-system frequency approaches the origin as 1/r,
independent of the relative orientation and type of the two bodies.
The damping coefficient approaches the origin approximately
logarithmically as a function of the body orientation and type.
Using this formulation, the natural system modes of two coupled
wires are investigated for large separation between the wires and
compared to an integral equation solution.

Index Terms—Asymptotic analysis, coupled bodies, natural
resonance.

I. INTRODUCTION

T HE electromagnetic response of coupled bodies is of
interest in many applications, including target detection

and identification. In this paper, we consider the frequency (-
plane) behavior of the system resonances of coupled objects
in the limit of large separation.

In an early paper relating to the singularity expansion
method (SEM), it was observed that the SEM frequencies
of an isolated thin-wire scatterer can be grouped in layers
in the -plane nearly parallel to the axis [1], [20]. These
resonances are further identified by their position within these
layers. This observation naturally leads to the notation for the
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complex frequencies , where denotes the th pole as
measured from the axis in the th layer, measured from
the axis.

Shortly after the above observations were made concerning
isolated wires, the natural system frequencies of coupled wires
were studied. It was found that these system resonances
exhibited some interesting characteristics as wire separation
was varied [2]. To simplify the discussion, consider two
identical wires for which the system resonances can be divided
into symmetric and antisymmetric modes [3],
[21]. As observed in [2] for two thin-wire scatterers, the low-
order system resonances tended to spiral around the
dominant isolated body resonance as spacing between
the objects was varied over some intermediate distance. As
separation was further increased, the system resonances moved
off toward the origin in the complex frequency plane, and other
system modes from another layer moved in to take their place,
again spiraling around . Subsequent to [2], other papers
further considered coupled wire scatterers [4]–[5].

The fact that the system frequencies eventually tended
toward the origin as spacing is increased beyond some in-
termediate distance rather than tending toward the isolated-
body limit was discussed in [2], and explained from a time-
domain perspective in [6]. It was observed that the SEM
system modes are global quantities for the coupled body
system and have no clear physical interpretation prior to
times when global modes can be established. Hence, in a
two-body system the time period after which the scattered
field from each body has interacted with the other body is
designated as late time. During late time, the two objects
interact electromagnetically and global system modes are
established. As spacing between the objects becomes large
relative to the largest linear dimension of each body, the
system resonances tend toward low frequencies since the time
for a wave to travel between the two bodies becomes long.
Eventually, the spacing tends toward infinity, and the system
resonances tend toward the origin.

Since the resonances of a coupled system are rigorously
obtained from a complicated (usually integral) system of equa-
tions, simple approximate formulas, which describe the system
resonance behavior as a function of body separation, are of
interest. For intermediate separations, perturbation formulas
have been obtained which relate the natural system frequencies
to the natural frequencies of the isolated bodies. Two related
classes of perturbation solution have been obtained, both based
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upon the exact integral-operator description of the coupled
system. The first method yields a quasi-analytic formula for the
system frequencies of an object and a mirror object separated
by some intermediate distance. The resulting formula involves
a numerically computed coefficient, which only depends upon
the isolated object’s characteristics multiplied by an expo-
nential term, which is a function of the separation between
the objects [7], [22]. This method was extended to model
the interaction between an object and a layered medium in
[8]. The second method is more numerical in nature, yet
represents a considerable simplification of the exact IE’s and
is applicable to a more general system of coupled bodies [9].
The formulation described in [9] was subsequently applied to
a variety of coupled objects [6], [10], [11].

In this paper, we present a scattering formulation for
coupled objects valid in the limit of large separation between
all objects. The system of scatterers are replaced by interacting
dipole moments, which is a suitable approximation for large
separations. A simpler formulation is provided for two objects
coupled in a mirror symmetric configuration. Singularities of
the scattering solution are identified as natural frequencies
leading to the characteristic equation for natural frequencies of
the coupled system. The example of two coupled wires is con-
sidered to demonstrate the accuracy of the asymptotic method,
where the natural system frequencies from the asymptotic
formulation are compared to those generated from a full-wave
integral equation solution. Some results for the natural currents
are provided to examine their behavior in the corresponding
limit.

II. PRELIMINARY RELATIONS

Consider Maxwell’s curl equations for free-space in the
two-sided Laplace transform domain

(1)

The relationships between fields and currents are given in
terms of four Green’s dyadics as [12]

(2)

where the bracket notation indicates a real inner product
with integration over common spatial coordinates (typically,
volume or surface integration). The Green’s dyadics are

(3)

(4)

(5)

(6)

where is the free-space scaler
Green’s function with

and . The first term in (3) can be written as

(7)

where and

is the identity dyadic. For later convenience, define

(8)

with , such that the term can be expressed
as

(9)

The magnetic Green’s dyadic can be expressed as

(10)

where upon defining for later convenience

(11)

the magnetic Green’s dyadic can be written as

(12)

In (3), the PV notation indicates that the corresponding term
should be integrated in the principal value sense [13], where

(13)

is the depolarizing dyadic integral evaluated over the surface
of the exclusion volume excluded in the PV integration.

In (13), and

is the unit normal vector to at . Note that the
terms are properly interpreted as distributions.
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Fig. 1. Configuration ofN interacting dipoles.

III. SCATTERING FORMULATION

Consider an -body scattering problem, which can be
analyzed by formulating a coupled set of integral equations
for the current (surface or volume polarization) induced on/in
the objects by an incident field. When the separation between
all objects becomes large compared to the largest linear
dimension of each object and in the limit of low frequency,
the formulation can be considerably simplified by replacing
each object with equivalent dipole moments. This follows
from the fact that the electric and magnetic dipole moment
terms dominant the fields due to a given current (as in a
multipole expansion of the current) for large distances and
low frequencies [14]. To formulate the desired set of equations,
the scatterers, which are assumed to reside in free-space, are
replaced with dipole moments for
corresponding to object , respectively, as shown in
Fig. 1. The dipoles are considered to be generated by fields
via polarizability dyadics as

(14)

where the fields are the total fields due to all dipoles
not located at plus any externally impressed field. The
polarizability dyadics are symmetrical for reciprocal media

(15)

and as [14]

(16)

The currents associated with the dipole moments are

(17)

Inserting (17) into (2) leads to the fields at maintained by
electric and magnetic dipoles located at as

(18)

where

(19)

with being the unit vector
from to and . The total field at
due to dipoles located at is

(20)

Considering the scatterers to be as shown in Fig. 1, a
coupled system of equations for the induced dipole moments
can be written down as

(21)

where the fields are externally impressed
fields. Defining

(22)
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the set of (21) can be written as

(23)

It is convenient to write the above in block dyadic form

...
...

...
...

...

...
...

(24)

where (25) (shown at the bottom of the page)

(26)

Providing that the left-hand dyadic matrix is nonsingular (24)
can be inverted to yield (27), shown at the bottom of the
page. Equation (27) provides a formal solution to the scattering

problem for configurations and frequencies such that the dipole
moment approximation is valid. Scattered fields are obtained
by substituting (27) into (20).

Each dyadic block, with the exception of the identity blocks,
is a function of complex frequency. In this paper, we are
primarily interested in determining the natural frequencies
such that the left-hand block-dyadic matrix is singular. At a
natural frequency

...
...

...
...

...

(28)

which forms the fundamental characteristic equation for nat-
ural system frequencies of interacting objects in the large-
separation low-frequency regime.

For the special case of two interacting dipoles

(29)

where [15]

(30)

with

(31)

(25)

...
...

...
...

...
...

...

(27)
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For two interacting dipoles, (28) becomes

(32)

IV. CHARACTERISTIC EQUATION FOR THIN WIRES

At this point, it is instructive to examine a special case of

(32). Consider two nonidentical objects with

. In this case, the two nontrivial block-dyadics are

(33)

leading to

(34)

As an example, consider thin perfectly conducting wires

oriented along the direction for which
and the magnetic polarizability dyadic is negligible. A prolate
spheroid model of a wire with semi-major axis and semi-
minor axis results in [16]

(35)

Now, consider three different orientations of the wires. For
simplicity, in each case, the wires will be located at

such that .
Case A—Parallel Wires:Consider the wires to be oriented

parallel to the axis of Fig. 1 such that
with defined by (35). The governing (34) becomes

(36)

Making the substitution yields

(37)

which is the characteristic equation for the natural system
frequencies of two nonidentical parallel wires in the large-
separation limit. The solution of (37) for the special case of
two identical wires will be considered in Section VII. If we
further assume the same length-to-radius ratio for both wires

, then with
(37) can be written more directly in

terms of the three parameters as

(38)

Case B—Colinear Wires:Consider two colinear wires
aligned parallel to the axis of Fig. 1 such that

with defined by (35). The governing
characteristic (34) becomes

(39)

resulting in

(40)

which is the characteristic equation for the natural system
frequencies of two nonidentical colinear wires in the large-
separation limit. For such that

with as defined previously, (40) can
be written as

(41)

Case C—Perpendicularly Oriented Wires:To analyze two
wires oriented perpendicularly to each other, one may take,

for instance, and . The
characteristic (34) becomes

(42)

so that no frequency exists to yield a singular matrix.

V. SCATTERING FROM A DIPOLE IN

THE PRESENCE OF AMIRROR OBJECT

In this section, we will specialize the preceding formulation
to the case of two interacting dipoles, which are mirror images
of each other, as shown in Fig. 2. For simplicity, each dipole
is located at so that dipole one is located at

and dipole two is located at

such that , where [3], [21]

(43)
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Fig. 2. Two mirror-symmetric dipoles, upper sign depicted.

The incident fields can be decomposed into symmetric and
antisymmetric parts as [16]

(44)

From the equation above, it is easily seen that

(45)

With the relations

(46)

the scattered fields are related by

(47)

With (45)–(47), (23) becomes

(48)

which can be written in matrix form as

(49)

Equation (49) is naturally decomposed into block dyadic form
as

(50)

where

(51)

such that each block is a single dyadic expression rather than
a matrix of dyadics as in (24). Providing that the left-hand
dyadic matrix is nonsingular, (50) can be inverted in the same
manner as (29) to yield

(52)

where

(53)

with

(54)

Equation (52) provides a formal solution to the mirror-
symmetric scattering problem for configurations and frequen-
cies such that the dipole moment approximation is valid. As
in Section III, we are primarily interested in determining the
natural frequencies such that the left-hand dyadic matrix is
singular, leading to

(55)
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which forms the fundamental characteristic equation for nat-
ural system frequencies of two interacting mirror-symmetric
objects in the large-separation low-frequency regime. In the
following section, mirror-symmetric configurations of wires
and loops will be considered. It should be noted in all of the
results to follow, the upper and lower signs correspond to the
symmetric and anti-symmetric modes, respectively.

VI. CHARACTERISTIC EQUATION FOR

MIRROR-SYMMETRIC WIRES AND LOOPS

Consider a thin perfectly conducting wire with .
Equation (55) reduces to

(56)

which can be written in matrix form as (57), shown at the
bottom of the page, where

(58)

Now consider three different wire orientations.
Case A—Parallel Wires:Consider two parallel wires ori-

ented along the axis of Fig. 2 such that
with defined by (35). Equation (57) then becomes

(59)

With as defined before, we get

(60)

which is the characteristic equation for the natural system fre-
quencies of two identical parallel wires in the large-separation
limit. Although this is merely a special case of (37) with

, it should be noted that the mirror-
symmetric formulation leading to (60) is simpler than the
general scattering formulation, justifying the usefulness of the
separate derivation outlined in this section. The solution of
(37) for the special case of two identical wires, i.e., (60), will
be considered in Section VII.

Case B—Colinear Wires:Consider two colinear wires
aligned along the axis of Fig. 2, such that
with defined by (35). The governing characteristic equation
(57) reduces to

(61)

which can be written as

(62)

Fig. 3. Trajectory of lowest order antisymmetric mode of two identical paral-
lel wires parameterized by separation distance, which varies fromd=L = 220

to d=L = 0:01. Solid box is the location of the isolated-wire dominant natural
resonance.

which is the characteristic equation for the natural system fre-
quencies of two identical colinear wires in the large-separation
limit. Note that (62) is merely a special case of (40) with

although derived under the simpler mirror-
symmetric formulation.

Case C—Mirror-Symmetric Wires Arbitrary Oriented in the
- Plane: Consider one of the wires to lie in the- plane in

Fig. 2 at an angle measured from the axis, with the other
wire in mirror-symmetric fashion. The polarizability dyadic
for this case is

(63)

with defined by (35). The relevant characteristic equation
(57) then becomes

(64)

(57)
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Fig. 4. Trajectory of lowest order symmetric mode of two identical parallel
wires parameterized by separation distance, which varies fromd=L = 220 to
d=L = 0:01. Solid box is the location of the isolated wire-dominant natural
resonance.

leading to

(65)

Note that (65) reduces to (62) for and to (60) for
, as expected.

As another example, consider two parallel thin-wire loops
with axes aligned along the axis of Fig. 2 separated by a
distance , each having loop radius and wire radius . The
polarizability dyadics are

(66)

which from (55) leads to (67), shown at the bottom of the
page. Since the determinant will vanish if any diagonal entry
is zero, (67) leads to

(68)

Fig. 5. Radian frequency of lowest order antisymmetric mode of two iden-
tical parallel wires versus separation distance.

which are essentially the same as (60) with a sign change and

(69)

which is similar to (62) with a sign change and replaced
with . The polarizability terms in (66) are related by

[17], with

(70)

VII. N UMERICAL RESULTS

In order to demonstrate the accuracy of the presented formu-
lation, the example of two identical thin perfectly conducting
parallel wires separated by a distance is considered,
as depicted in the insert of Fig. 3. The wires are in a mirror-
symmetric configuration, which admits pure symmetric and
antisymmetric modes. In all results to follow, both wires have

and the natural frequencies in the upper-half-
plane will be considered. For one such wire when isolated, the
dominant resonance is at ,
computed from a rigorous electric field integral equation (IE)
using a pulse basis and point matching [18]. Other resonances
are available in the literature, e.g. [1], [20].

det
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Fig. 6. Damping coefficient of lowest order antisymmetric mode of two
identical parallel wires versus separation distance.

Fig. 7. Radian frequency of lowest order symmetric mode of two identical
parallel wires versus separation distance.

For the coupled wire configuration described above, the
asymptotic formulation (60) becomes s

(71)

for . The migration of the lowest order
antisymmetric and symmetric mode as a function of spacing

is shown in Figs. 3 and 4, respectively. The solution
from an integral equation formulation [18], the perturbation
method [6], and the asymptotic formulation (71) are shown.
The solid box is the location of the isolated body resonance

. It can be seen that the spiraling behavior is
essentially well described by the perturbation solution for
intermediate spacings and the asymptotic solution agrees
very well for larger spacings, as expected.

Figs. 5–8 show the radian frequency and damping coeffi-
cient for the lowest order antisymmetric and symmetric mode

Fig. 8. Damping coefficient of lowest order symmetric mode of two identical
parallel wires versus separation distance.

Fig. 9. Real part of symmetric natural mode current versus normalized wire
length for the first four system modes atd=L = 10.

versus spacing . For the modes considered in these figures,
the asymptotic formulation (71) agrees very well with the exact
(IE) solution for . Further results, and discussion of
modal behavior and classification for many higher order modes
are included in [19]. For all of the IE solutions presented, 20
pulses were used to generate the natural frequencies.

For the results in Figs. 3–8, (71) was solved numerically us-
ing a secant method root solver with initial guesses generated
from an approximate solution of (71) [19]

(72)

for .



110 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 1, JANUARY 1999

Fig. 10. Imaginary part of symmetric natural mode current versus normal-
ized wire length for the first four system modes atd=L = 10.

Fig. 11. Real part of symmetric natural mode current versus normalized wire
length for the first four system modes atd=L = 100.

The natural mode current distribution of the first four
symmetric modes are shown in Figs. 9 and
10 for and in Figs. 11 and 12 for ,
obtained from an IE solution. It can be seen that all of the
modes have associated dominant-like current distributions for
large separations (which lead to low system frequencies), as
would be expected. As , the current becomes nearly
real and identical for each natural mode.

VIII. C ONCLUSION

In this paper, we have examined the natural system frequen-
cies of coupled bodies in the limit of large separation between
all bodies. The general -body problem is treated in the limit
by replacing the bodies with equivalent dipole moments and
solving the relevant scattering problem. Singular solutions of
the scattering formulation lead to a transcendental equation,

Fig. 12. Imaginary part of symmetric natural mode current versus normal-
ized wire length for the first four system modes atd=L = 100.

which may be solved to obtain the natural system frequencies
of the coupled bodies. It has been found for two coupled wires
that the real radian system frequency approaches the origin as

, independent of the relative orientation and type of the
two bodies, and that the damping coefficient approaches the
origin approximately logarithmically as a function of the body
orientation and type. The asymptotic formulation is applied to
the example of two parallel-coupled wires and a comparison
between the asymptotic formulation and an integral equation
solution is made, indicating the accuracy of the asymptotic
formulation in the appropriate range.
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