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Asymptotic Analysis of the Natural
System Modes of Coupled Bodies in the
Large-Separation Low-Frequency Regime

George W. Hansonylember, IEEE and Carl E. BaumFellow, IEEE

Abstract—in this paper, we examine the natural system modes complex frequencies%}l, wheren denotes thenth pole as

(characteristic frequencies and currents) of two coupled bodies in measured from th&e (s) axis in thelth layer, measured from
the limit of large separation. It is known that when objects are the jw axis

oriented such that they may interact electromagnetically, natural . .
modes of the coupled system occur. These modes differ from, Shortly ?ﬁer the above observations We':e made Concerr_"ng
but may be related to, the natural modes of the isolated bodies. isolated wires, the natural system frequencies of coupled wires
For example, the first antisymmetric and symmetric system fre- were studied. It was found that these system resonances
quencies of two identical bodies separated by some intermediate exhibited some interesting characteristics as wire separation
distance spiral around the dominant natural frequency of the was varied [2]. To simplify the discussion, consider two

isolated body as separation is varied. As separation further identical wi f hich th t be divided
increases, these system resonances tend toward the origin in theldentical wires for whic € System resonances can be divide

complex frequency plane, rather than approaching the isolated iNto symmetric(s;, ;) and antisymmetriq(s;: ;) modes [3],
body-dominant natural frequency. Here we treat an N-body [21]. As observed in [2] for two thin-wire scatterers, the low-
scattering problem in the limit of large separation by replacing order system resonancés]’;) tended to spiral around the
the bodies with equivalent dipole moments. The natural frequen- 4o minant jsolated body resonants) ;) as spacing between
cies are obtained as singular points in the scattering solution. . - = . -

For the special case of two coupled objects, a simple equationthe objgcts was varleq over some intermediate distance. As
for the natural system frequencies is obtained that shows that Separation was further increased, the system resonances moved
the real radian-system frequency approaches the origin as 4/ off toward the origin in the complex frequency plane, and other
independent of the relative orientation and type of the two bodies. system modes from another layer moved in to take their place,
The damping coefficient approaches the origin approximately again spiraling around(f’l. Subsequent to [2], other papers

logarithmically as a function of the body orientation and type. . .
Using this formulation, the natural system modes of two coupled further considered coupled wire scatterers [4]-[5].

wires are investigated for large separation between the wires and ~ The fact that the system frequencies eventually tended
compared to an integral equation solution. toward the origin as spacing is increased beyond some in-
Index Terms—Asymptotic analysis, coupled bodies, natural termeqlia_te distar_wce rather than tending tqward the isqlated-
resonance. body limit was discussed in [2], and explained from a time-
domain perspective in [6]. It was observed that the SEM
system modes are global quantities for the coupled body
system and have no clear physical interpretation prior to
HE electromagnetic response of coupled bodies is times when global modes can be established. Hence, in a
interest in many applications, including target detectiotwo-body system the time period after which the scattered
and identification. In this paper, we consider the frequerey (field from each body has interacted with the other body is
plane) behavior of the system resonances of coupled objedtsignated as late time. During late time, the two objects
in the limit of large separation. interact electromagnetically and global system modes are
In an early paper relating to the singularity expansiogstablished. As spacing between the objects becomes large
method (SEM), it was observed that the SEM frequencieslative to the largest linear dimension of each body, the
of an isolated thin-wire scatterer can be grouped in layesgstem resonances tend toward low frequencies since the time
in the s-plane nearly parallel to th¢w axis [1], [20]. These for a wave to travel between the two bodies becomes long.
resonances are further identified by their position within thegentually, the spacing tends toward infinity, and the system
layers. This observation naturally leads to the notation for thesonances tend toward the origin.
Since the resonances of a coupled system are rigorously
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upon the exact integral-operator description of the coupleghere G(?|?',3) = (ye~¢/4rn¢) is the free-space scaler
system. The first method yields a quasi-analytic formula for ti@reen’s function withy = (s/c),& = vR,¢ = (eopo) ™2,

system frequencies of an object and a mirror object separalggy r — |7 _ 7’|_ The first term in (3) can be written as
by some intermediate distance. The resulting formula involves

a numerically computed coefficient, which only depends upo o — =/

the isolated object’s characteristics multiplied by an expoET_’y VVIG(r]rs)

nential term, which is a function of the separation between  _ ’76_5{[_25—3 _ 25—2]TRTR FER 42487
the objects [7], [22]. This method was extended to model 4

the interaction between an object and a layered medium in .[T _ TRTR]}

[8]. The second method is more numerical in nature, yet e b o - s ) SN -
represents a considerable simplification of the exact IE's and = —?{[31 rlr— 1) +&7)+[1rlr— R]
is applicable to a more general system of coupled bodies [9]. ey )

The formulation described in [9] was subsequently applied to
a variety of coupled objects [6], [10], [11]. . VY o s s oo
In this paper, we present a scattering formulation for Where lp = (v — 7 /[r —r)and1l = 1,1+ 1,1, +
coupled objects valid in the limit of large separation between, 1 . is the identity dyadic. For later convenience, define

all objects. The system of scatterers are replaced by interacting

dipole moments, which is a suitable approximation for large < ,——=/ | _ O I < 1 sZg
separations. A simpler formulation is provided for two objects eelrlr,8) = {[31 rlr = 11(@ + ﬁ)
coupled in a mirror symmetric configuration. Singularities of N o 8% g

the scattering solution are identified as natural frequencies +[1rlr— 1] R } 8
leading to the characteristic equation for natural frequencies of

the coupled system. The example of two coupled wires is con-
sidered to demonstrate the accuracy of the asymptotic meth\%‘,h Zo =
where the natural system frequencies from the asymptofie
formulation are compared to those generated from a full-wave -

\/ o/ €0, such that the?, . term can be expressed

NN -1 < S N
integral equation solution. Some results for the natural currents Ge,e(7 |7 ,5) IPVSQ—MFe,e(7’|7’ ,8)+y 2 L(r)
are provided to examine their behavior in the corresponding o
limit. 6(r — ). 9)
Il. PRELIMINARY RELATIONS The magnetic Green’s dyad@. ,, can be expressed as
Consider Maxwell's curl equations for free-space in the - S’ -
two-sided Laplace transform domain Gem(r|r ,s) ==VG(r|r ,s)x 1
- - -~ e R s o
VX E(r,s)y=—sB(r,s)— J"(r,s) =i ﬁ‘f‘% 1rx 1 (10)
V x H(7,s) =sD(7,s) + J(7,5). 1 . .
(ry8) =sD(r,5) + J*(r, ) @ where upon defining for later convenience
The relationships between fields and currents are given in on )
terms of four Green’s dyadics as [12] (7 == € SHo | STHo 11
em( T 8) = dn R2 RC (11)

IRV

E(7,s) = —sug(Geo (7|7, 5): T, 5)

— =/

= = the magnetic Green’s dyadic can be written as
+(Gem(r|r ) J" (1, 8))

= - — > - - — — 1 — — - -
H(7,5) = —seo(Grm(7 |7, 8); (T, 5)) Gem(T|7,5) = %F€7n,,(7’|7’/,3)1}3 x 1. (12)
hd pu— - =/
+(Gre(rlr ,s); J(r ,s)) (2)

In (3), the PV notation indicates that the corresponding term
where the bracket notation indicates a real inner produsiiould be integrated in the principal value sense [13], where
with integration over common spatial coordinates (typically,

IRV

volume or surface integration). The Green’s dyadics are A 1 ]’ st I’ N
R - , L= L [ Ll g g
Ge (7|7 ,8) =PV[1 =4 2VV|G(F|7 , 5) N
- = — —/
+AT2L(T)S(r — 1) (3) is the depolarizing dyadic integral evaluated over the surface

ae,mﬁ)l?/, 5) = —VG(7|7/, 5) x ‘I 4) S;s of the_)ech_l)Js_l)(/)n volu_r)né{s_)eitlzludeg m_t)rlle_)Pv mtggraﬂon.
In(13), L (r|r)=—=1gr(r|r )= 1gr(r |r)andls(r)

— N —
f"eh " /’S) _;Ge’m( i %) ®) s the unit normal vector tc5 at 7. Note that theG : -
G (7|7 ,8) =G (7|7, 5) (6) terms are properly interpreted as distributions. ’

— s/
r|r

,e
2 &
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/(m SO Inserting (17) into (2) leads to the fields at, maintained by
ETeH electric and magnetic dipoles IocatedTa@ as

E(a,,@)(?(ﬂ S) = FWe,e(;)a|;),ﬁv S) ) ;(’8)(8)
+ Fe,nl(?a|?,ﬁv 5)( 1 R, s x 1 )
P (s)

—

1 = - =
P N(Tars) =——Fem(Tal7 s 8)(Lr, , x 1)
Ho '

PO(S) + P o7 al70.5)
(s) 4o

where

Fig. 1. Configuration ofV interacting dipoles.

— IR e "/R(\ﬂ — — —
Fe,e(7’a|7’,873) = 4 [31Ra,ﬁ 1Ra,ﬁ - 1]

w
[ll. SCATTERING FORMULATION
Consider an/N-body scattering problem, which can be <#3 +82ﬁ>
analyzed by formulating a coupled set of integral equations oftis  Hap
for the current (surface or volume polarization) induced on/in = = o s2u
the objects by an incident field. When the separation between + 1R, s 1Ro s — 1]R
all objects becomes large compared to the largest linear 0
dimension of each object and in the limit of low frequency, - = e Rap | pgs 1os>
the formulation can be considerably simplified by replacing Fem(ralrs,8) = b {Ri 3 + RaﬂgC} (19)

each object with equivalent dipole moments. This follows
from the fact that the electric and magnetic dipole moment
terms dominant the fields due to a given current (as in"4
multipole expansion of the current) for large distances af@®m 7310 7o andRag = |7 a7 7 5|. The total field atr,,
low frequencies [14]. To formulate the desired set of equatiorfiiie toN — 1 dipoles located at 5,3 = 1,2,---, N, 8 # a is
the scatterers, which are assumed to reside in free-space, are

lRa o= (Ta=Ta)/|Ta - 73| being the unit vector

replaced with dipole momentg?, m? for g = 1,2,---, N G ZE(a (7 s)
corresponding to object, 2,- - N, respectively, as shown in o @
Fig. 1. The dipoles are considered to be generated by fields B;éa
via polarizability dyadics as _ N (a,8)
~ - H(ra,s)=> H (7as). (20)
PO) =P B(T59) o=l
mD(s) = M) (s) - H(7 5, 5) (14)

Considering the scatterers to be as shown in Fig. 1, a

! = = ) . coupled system of equations for the induced dipole moments
where the fleldiE H) are the total fields due to all dipoles.,, be written down as

not located atr 8, plus any externally impressed field. The
polarizability dyadics are symmetrical for reciprocal media

“(a)ay . ple) (mc) e, e
PR o p¥(s) =Py’ - | E )+ L ,8)
P@"(5) =PP(s) ’ Z
— — B#Oé
M@ (s) = M) (s) (15)
_ > —>(inC) _ N — _
and ass — 0 [14] m(s) =M |H  (Fa,s)+ S HED(M,5)|,
=1
PO (5) =P fta
— (8) <—>0 +O(S) = 1727"'7N (21)
MP(s) =M +O(s). (16) S
where the fields(E( H)) are externally impressed
The currents associated with the dipole moments are fields. Defining
JO = sp D7 — 7 ) F@D ZF,  (FalT o)

TD = sugmDs(r - 7 ). (17) ESD =Fon(ralv 5,8) = Fom(r gl 7ars)  (22)

€, m
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the set of (21) can be written as

D (@)

p

+ Fe(,::#@)(TRa,ﬂ
<(a)
= 60P0

N

B=18+%a

N

m®(s) = M S
=1

. E(inc)(?ou S)

[_ L e

e,m

B#a

=N

_ JHM(()Q) . ﬁ(inc)(;’a’ S),
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() —eorg? 30 T

x 1) -m@]

(1R(\,ﬂ X 1)

60}&3@) @

a=12--,N
(23)

It is convenient to write the above in block dyadic form

problem for configurations and frequencies such that the dipole
moment approximation is valid. Scattered fields are obtained
by substituting (27) into (20).

Each dyadic block, with the exception of the identity blocks,
is a function of complex frequency. In this paper, we are
primarily interested in determining the natural frequencies
such that the left-hand block-dyadic matrix is singular. At a
natural frequency

rT (1,2 ~(1,3 2(AL,N §
122 826 Q%P (s) 8 (s)
(2,1 < (2,3 S(2,N
Q02 ()  lae Q25 o Q%)
det | QS)(s) Q32(s)  Tawo S5 (s)
> ]\,7: > ]\,7: > ]\,7: >
Q55 QS5 QS (s) Loz |
—-0 (28)

which forms the fundamental characteristic equation for nat-

[ T1gus Hg];g)(s) ‘—’glx,:;)(s) Hglx:g’)(s)' ural system frequencies d¥ interacting objects in the large-
‘—’(2,1)(8) 7 ‘—’(2,3)(8) ‘—’(Q,N)(S) separation low-frequency regime.
52x2 o) 22 2x2 S2x2 For the special case of two interacting dipoles
52 Q5 Laxe 52 (s)
— > > —1 >
z 5 5 : [dé&(s)] _ [ Loy é&%)] | Fé&(s)] (29)
(N1 (N2 (N3 s e T Ree b 2
(@5 (5) Q5 (5) Q53)(s) Laxe d5(s) 52() 1o F\(s
- 1 - — 1 -
ﬁ%;;l(s) 1_:,%2%1(5) where [15]
12><1(3) 52x1(3) o e . o
dé?;)l s)| = [F$.(s) (24) [i?;f Qa2 ] _ |Azx2 Baxe (30)
: : 5;2) 1aso Caxa Daxa
— N OON
_dgx?L(S)_ _ng%(s)_ with
where (25) (shown at the bottom of the page) o - C9) Tl o)1
o e () Azya =[1axa = Q35 - Laxa - Qs |
Towo=|& 2 :l)éa)l(s) = |27 - < L2 T-1 A1 A2 -1
0 1 x m(a)(S) Boxo =—[loxo — Q55 - Loy Q557 - Q55 - 1o
7 (o = |ole - BT, s) = —Azcr - QY
FQXI(S) = A;—)w(a) ﬁ(in(‘,) — . (26) — — <—>(2 1) — 1 <—>(1 2) 1
o - (7a9) Daxa =[1lax2 = Q355 + 122 Qaxy ]
Providing that the left-hand dyadic matrix is nonsingular (24)8 _ —[T 3@, _‘I’_l ) H(1,2)],1 3@ T—l
can be inverted to yield (27), shown at the bottom of the  **? — 1 2X2 w2x2 7 22x2 7 %2x2 Ixz T2
page. Equation (27) provides a formal solution to the scattering =—Doyo- Qgi? (32)
et |2 Y ans T, -
s %Fﬁf:;;@Mg@ (1m,,x 1) —eoM§) . Fl?
S T o 21,2 21,3 <Ny, 17 TRe T
dgx)l(s) Toxo éxQ)(S) ng)(S) g><2 )(3) Féx)l(s)
(2 2,1 < (2,3 ~(2,N (2
i{gx)l(s) ng2) (_)12><2 g><2)(3) (_)g><2)(3) ljgx)l(s)
dfh(s) | = | Q5n Q82 Lae 52’ (s) F32:(s) (27)
=~ 1\ P N,:l s N,:2 P N,:3 o o 1\
L) ] o5 (s) 05 (s) Q557 (s) Lo F5(s) ]
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For two interacting dipoles, (28) becomes which is the characteristic equation for the natural system
- < (1.2) frequencies of two nonidentical parallel wires in the large-

det i2x2 v2x2 separation limit. The solution of (37) for the special case of
l g(;) 12X2] two identical wires will be considered in Section VII. If we

further assume the same length-to-radius ratio for both wires
LW/a® = L® /@ = L,, then P"? = K[L12]3 with

- =(2,1) «(1,2) —17-1 ; ; ;
_ _ K = (n/6)[In(L,)~"]~" (37) can be written more directly in
=det |1 — . 32

[L2x2 = Quiz - Qe (32) terms of the three parametersL®), L(® as

= det [1axo]det [Laxo — Q525 - 135 - Q553)]

IV-. CHjARA-C‘I'-ER-ISTIC E(?UATION FOR-THIN WIRE-S (T T = i(L)3/2(L)3/24_7r' 8
At this point, it is instructive to examine a special case of L3 L k
(32). Consider two nonidentical objects with® = M® =  Case B—Colinear WiresConsider two colinear  wires
0. In this case, the two nontrivial block-dyadics are aligned parallel to thez axis of Fig. 1 such that?{™ =
_ Sy ged) o TZTZP(E“? yvith Péa) defined by (35). The governing
(o) — —coPo - Fe . g (33) characteristic (34) becomes
. 0 " aes (I — 2P FED . PY 50
leading to o ' . R
des [T — PP FEO. PO Fa2 Zo (e —1-arPr | (50 ) (o + )]
=0 (39)

As an example, consider thin perfectly conductlng wires

oriented along thex direction for which Po = Pol 1 resulting in
and the magnetic polarizability dyadic is negligible. A prolate 5
spheroid model of a wire with semi-major axig2 and semi- T(140) = rU2m

e e
minor axis a results in [16] /PSQ)PSI)

which is the characteristic equation for the natural system
4 (L\] 2a\1) 1 20\’
Po=nl=)|[1-(= K =|1- (=
() -2 - (%)

(40)

—1/2 . . . . . .
frequencies of two nonidentical colinear wires in the large-

separation limit. ForL™™ /o) = L /4? = L, such that
P = K[LO2)P with & as defined previously, (40) can
be written as

211/2 -t 7 N2, 7 \3/22x
2 -r = _— _— _—
1+ 1—<f“) TarD=%(m) (zm) 7 @
In 12 -1 Case C—Perpendicularly Oriented Wire3o analyze two
-1 <2_a> wires oriented perpendicularly to each other, one may take,
L for instance, P = 1,1, and P = 1.1.P?. The
4 /L\3 L -1 a characteristic (34) becomes
@ det[1 — &P - FEY . PP D] = det[1 — 0] =1
Now, consider three different orientations of the wires. For (42)

simplicity, in each case, the wires will be IocatedTaE =
ola 4901y + (r/2)1. such thatFZY = 712,

Case A—Parallel Wires:Consider the W|res to be oriented
parallel to thex axis of Fig. 1 such thaP = 71, P V. SCATTERING FROM A DIPOLE IN
with P{*) defined by (35). The governing (34) becomes THE PRESENCE OF AMIRROR OBJECT

so that no frequency exists to yield a singular matrix.

2 <o) o1 S Lo In this section, we will specialize the preceding formulation
det [1 oFo F( ) P F( 2] to the case of two interacting dipoles, which are mirror images

) o) r 1 Zos oS 2 of each other, as shown in Fig. 2. For simplicity, each dipole
— Py By 47r is located atr = y = 0 so that dipole one is located atl =

7‘360 7,2 r -
-0 (36) 47/2 and dipole two is Iocated aty = — 147 /2=R,-r;
Making the substitutiod” = ~r yields such thathl z 1 1R2 o where [3], [21]
7,2471_ o 1 0 0 -
TAHT4T?) = e (37) R.=|0 1 o] =R (43)
VRO PY 00 -1
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/E)(inc)’ g (inc)

Py L
my
N
r/2 7
r/2
iRz'Eﬁ
N

Fig. 2. Two mirror-symmetric dipoles, upper sign depicted.

The incident fields can be decomposed into symmetric and

antisymmetric parts as [16]

BT ,5) = 4 [EO(71,5) + Be - B (75, 9)

B (7,5) = § [E)(73,5)  Be - BO(7, )

H(mC)( ,s) =1 [FI(‘“C)(F);L, S)F EZ . ﬁ(inc)(?m s)]
(mC)( 7o) =1 [FI(‘“C)(TQ, S)F EZ . ﬁ(inc)(?h s)].

(44)
From the equation above, it is easily seen that
E@)(F o) =R, . E@(7, )
E@9(7, 5) =£R, - E®I(7,5)
ﬁ(inc)(717 5) ::FE .ﬁr(im)(?27 s)
FI(inC)(727 s) IZFE .ﬁ(inc)(;’l7 s). (45)

With the relations

> > > >
Fe,e EF@,@(?OJ?,@’S) = Rz . Fe G(T,@|T(X7S) 'Rz

2

B R, B R,
S R R,

P 4R p =4O R

P =R, m®D =@ R, a#p (46)
the scattered fields are related by
E©@O(7, s) =+R, - BP9 (T 4 5)
HOD (0 s) =FR, - HE(7 5, 5). (47)
With (45)—(47), (23) becomes
pP(s)F GOF(()I) . [Fe,e 'Ez - Fe,m(TZ X Ez)
@] = PV B (7 )
ﬁm@iﬁyiiﬂﬂixiyﬁWﬂﬁm
R m(l):| 0 5 s
(48)

which can be written in matrix form as

?:F 60.(;)(()1) . ;e,e . EZ :|:60F€ nl;;(()l) (T X EZ)
_Fe,mMgU (T.xR.) T+eMV.F.. . R,
PN H(IHC)
[NMW=EW9E (49)
m(l)( ) JHW(()I) . E(inc) (8)

Equation (49) is naturally decomposed into block dyadic form
as

QPP(S) me(s) . |:§(1)(8):| _ fOHP(()l) .__)E'(im)(s)
Q) Q)] LMV [ H ()
(50)
where
5])})(8) = T + 60-(;)(()1) : FWe,e : EZ

5])771(8) = iEOFe,nzF(()l) - (T X Ez)

= 1 = — >

Qmp(s) = i%Fe,mMél) (1., x R,)

5771771(8) = T =+ 6O-Z(\}(()l) . ;e,e . EZ (51)

such that each block is a single dyadic expression rather than
a matrix of dyadics as in (24). Providing that the left-hand
dyadic matrix is nonsingular, (50) can be inverted in the same
manner as (29) to yield

{E(l)(ﬂ _ [?zm,@) E}pm(s) ] -
m(s) Qup(8)  Qrum(5)

PO Fline) (]
ff(ol) B s) (52)
M - F0s))
where
«— «— —1 — — _
anp anrn ¢ D]
with
A= [Qpp - Qp’rn ) Q;lin ) anp]_l
B= _[Qpp - Qp’rn . ;lin . anp] ' Qprn . ;l:bn
=-A- Qprn ) ;zin
D= [anrn - anp . Q;pl . Qprn]_l
C= _[anrn - anp ) Q;Pl ) Qprn] L anp ) ;pl
= _D anp ppl (54)

Equation (52) provides a formal solution to the mirror-

symmetric scattering problem for configurations and frequen-
cies such that the dipole moment approximation is valid. As
in Section 1ll, we are primarily interested in determining the

natural frequencies such that the left-hand dyadic matrix is
singular, leading to

oo [8 8]
anp anrn

7n m
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which forms the fundamental characteristic equation for nat-r—m———————F———7————7 "7

ural system frequencies of two interacting mirror-symmetric | 5 K\\ T g1
objects in the large-separation low-frequency regime. In thef <[} | e T g
following section, mirror-symmetric configurations of wires | / ]

and loops will be considered. It should be noted in all of the | L / 108
results to follow, the upper and lower signs correspond to thef Jo7
symmetric and anti-symmetric modes, respectively. 3 ;é = P

VI. CHARACTERISTIC EQUATION FOR
MIRROR-SYMMETRIC WIRES AND LOOPS

|
o
o
Im (sL/¢c )

104

Consider a thin perfectly conducting wire with ™ = 0. o
Equation (55) reduces to | 1
o - o0y e o L +-- asymptotic (71) o002
det [Qpp] = det [1 F Gopé ) . F€7€ . Rz] =0 (56) I perturbation {73 d/LZZZOE
5 401
which can be written in matrix form as (57), shown at the | ]
— N U S S S N S S R D Y S S T N S S BN SRS R S 0.0
bottom of the page, where ~0.50 -0.42 -034 -026 -018 -010 -0.02
1 Zys 52 L/
e = Oy (58) Re(st/c )
co ! ! Fig. 3. Trajectory of lowest order antisymmetric mode of two identical paral-
Now consider three different wire orientations. lel wires parameterized by separation distance, which varies dgoin= 220
Case A—Parallel Wires:Consider two parallel wires ori- :gélo/rgnzcg.[)l. Solid box is the location of the isolated-wire dominant natural

ented along the: axis of Fig. 2 such tha?él) - 1,1,P

with Fy defined by (35). Equation (57) then becomes . . )
which is the characteristic equation for the natural system fre-

r P, <L Zos? " u082> —0. (59 guencies of two identical colinear wires in the large-separation

4m e 7? 7 limit. Note that (62) is merely a special case of (40) with

With I' = vr as defined before, we get PO(Q) = Pél) = F, although derived under the simpler mirror-
symmetric formulation.

e T4 T4+T?) =F—— (60) Case C—Mirror-Symmetric Wires Arbitrary Oriented in the

Fo z-z Plane Consider one of the wires to lie in thez plane in

which is the characteristic equation for the natural system freig. 2 at an anglé measured from the axis, with the other

guencies of two identical parallel wires in the large-separatiavire in mirror-symmetric fashion. The polarizability dyadic

limit. Although this is merely a special case of (37) withfor this case is

PéQ) = Pél) = P,, it should be noted that the mirror- _ N

symmetric formulation leading to (60) is simpler than the P((Jl) =111

1:|:€OC

347

general scattgnng formullat|on., Jusgfymg t.he usefulness.of the _ [TZTZ cos? (8) + Tj’w cos (6) sin (8) + Txi
separate derivation outlined in this section. The solution of RN )

(37) for the special case of two identical wires, i.e., (60), will cos (#)sin () + 1,1.sin” (0)]F

be considered in Section VII. _ TZTZPZZ + TZTme + TxTZPM + TacTa;Pacac

Case B—Colinear WiresConsider toncoIine_a}r_)wires
aligned along the: axis of Fig. 2, such thaPél) =1.1.F,
with P, defined by (35). The governing characteristic equati(with B,
(57) reduces to

(63)

defined by (35). The relevant characteristic equation
(57) then becomes

- 1 Zos?
14 e 2P0<3— + 22 ) -0 61) - o
v T2€0 T 1+ €0 4 wa (al + bl) 0 iéo 4—sz2a1
7 7r
which can be written as det . 0 1 9,
€ e
3 +eo—— P b)) 0 1d+e—2>P.2
e T(14T) = :':7 27 (62) 0 »(a1 +b1) 0 a1
PO =0 (64)
e "
1+ GO?PJH}(Gl =+ bl) ieOPmy(al =+ bl) ieoPm2a1
e
det +e¢p ym(a1 + bl) 1+¢ 64—7rPyy (a1 + bl) :ECOPyZ2CL1 =0 (57)

—yr
:I:conm(al + bl) :I:coPZy(al + bl) 1+ C?PZZ2CL1
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@ L N - perturbation {73
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105
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S ] 0.2 | — ]
. 0.2 ]
[ —— asymptotic (71) r 1
} ‘‘‘‘ perturbation {73 101
E 1 0 ! L 1 I | . !
S R S S SRR R B I o P 4 5 o i 12 1< 6 220
—-0.50 -0.42 —0.34 —-0.26 -0.18 —-0.10 -0.02

Re(sl/c )
Fig. 5. Radian frequency of lowest order antisymmetric mode of two iden-
Fig. 4. Trajectory of lowest order symmetric mode of two identical parallelcal parallel wires versus separation distance.
wires parameterized by separation distance, which varies fobn= 220 to
d/L = 0.01. Solid box is the location of the isolated wire-dominant natural

resonance. which are essentially the same as (60) with a sign change and
leading to ST o) = jE7>:”27r (69)
‘ T ML
e Hsin? (0)(1 +T +1?) + cos? (A) + 2(1 4+ 1)}
34 which is similar to (62) with a sign change ai@ replaced
=+ P, (65) with M... The polarizability terms in (66) are related by

e = Pyy = —2M_. [17], with
Note that (65) reduces to (62) f&t = 0 and to (60) for

6 = = /2, as expected. b -1
As another example, consider two parallel thin-wire loops M.. = - [ln <;) - 2} . (70)

with axes aligned along the axis of Fig. 2 separated by a

distancer, each having loop radius and wire radiusz. The

polarizability dyadics are VIl. NUMERICAL RESULTS
oqy T 7 - = In order to demonstrate the accuracy of the presented formu-
P =l1elolee + 1y 1y Py lation, the example of two identical thin perfectly conducting
MO :TZ 1.M., (66) parallel wires separated by a distance= d is considered,

as depicted in the insert of Fig. 3. The wires are in a mirror-
which from (55) leads to (67), shown at the bottom of theymmetric configuration, which admits pure symmetric and
page. Since the determinant will vanish if any diagonal entgntisymmetric modes. In all results to follow, both wires have
is zero, (67) leads to L/a = 200 and the natural frequencies in the upper-half

F3dr plane will be considered. For one such wire when isolated, the
T+ +T1% = iP— dominant resonance is &t} ; L/Cr) = —0.0865 + j0.9386,
ot computed from a rigorous electric field integral equation (IE)
e T14+T+1?) = +7 Am (68) Using a pulse basis and point matching [18]. Other resonances
Fyy are available in the literature, e.g. [1], [20].
1+e 647; Poo(as +b) 0 0 0 :I:eo%Fe,mZALZ 0
—Tr —r
0 1+ GUCTPyy(al +b1) 0 te—F.n2M.. 0 0
det 0 "o 1 "0 0 0 =0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1F e M..2a,
L 47 4

(67)
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0.1 — IE = 01 F —— asymptotic (71) ]
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Fig. 8. Damping coefficient of lowest order symmetric mode of two identical

Fig. 6. Damping coefficient of lowest order antisymmetric mode of tW%araIIeI wires versus separation distance

identical parallel wires versus separation distance.
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Fig. 9. Real part of symmetric natural mode current versus normalized wire

Fig. 7. Radian frequency of lowest order symmetric mode of two identiciingth for the first four system modes &t = 10.
parallel wires versus separation distance. ] ] ] ]
versus spacing/ L. For the modes considered in these figures,

For the coupled wire configuration described above, thlee asymptotic formulation (71) agrees very well with the exact

asymptotic formulation (60) becomes s (IE) solution ford/L > 10. Further results, and discussion of
. ) d\? modal behavior and classification for many higher order modes
e 1+ +1%) = :F103-1596<z> (71)  are included in [19]. For all of the IE solutions presented, 20

. . ulses were used to generate the natural frequencies.
for L/a = 200. The migration of the lowest orderP g ]

. . : : . _For the results in Figs. 3-8, (71) was solved numerically us-
antisymmetric and symmetric mode as a function of SloaC”i}%]g a secant method root solver with initial guesses generated
d/L is shown in Figs. 3 and 4, respectively. The solutio 9 g

from an integral equation formulation [18], the perturbationrorn an approximate solution of (71) [19]

method [6], and the asymptotic formulation (71) are shown. i sg,iy) d

The solid box is the location of the isolated body resonance o ¢

s?le/(cw). It can be seen that the spiraling behavior is (L 3 o
essentially well described by the perturbation solution for =In [0.02392m 7) | ti5

intermediate spacings and the asymptotic solution agrees

very well for larger spacin-gs, as expected. . . = <4787 12, ) (72)
Figs. 5-8 show the radian frequency and damping coeffi- 2,6,10,---

cient for the lowest order antisymmetric and symmetric moder L/a = 200.
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Fig. 10. Imaginary part of symmetric natural mode current versus normdig. 12. Imaginary part of symmetric natural mode current versus normal-

ized wire length for the first four system modesdgtL = 10.

ized wire length for the first four system modesddtZ. = 100.

which may be solved to obtain the natural system frequencies
of the coupled bodies. It has been found for two coupled wires

09 \ 1 that the real radian system frequency approaches the origin as

. g 1 1/r, independent of the relative orientation and type of the
T ] two bodies, and that the damping coefficient approaches the

0.7 ] origin approximately logarithmically as a function of the body

orientation and type. The asymptotic formulation is applied to
the example of two parallel-coupled wires and a comparison

Real Current a.u.
(@]
U

i d/L=1CC
C.4f / \ B
[ N\ ]
C3F — m=4 \ B
F - n=8& ]
oz n=12 1
[ mn=16 \;
ot F A
. P I W NI
0.0 G Jz 03 04 05 06 07 083 08 o]
X//<L//2>

Fig. 11. Real part of symmetric natural mode current versus normalized wirkLl
length for the first four system modes &tL = 100.

2
The natural mode current distribution of the first four[]
symmetric modegm = 4, 8,12, 16) are shown in Figs. 9 and
10 for d¢/L = 10 and in Figs. 11 and 12 fod/L = 100, [3]
obtained from an IE solution. It can be seen that all of the
modes have associated dominant-like current distributions f%
large separations (which lead to low system frequencies), as
would be expected. Ag/L — ~c, the current becomes nearly
real and identical for each natural mode. [5]

VIIl. CONCLUSION (6]

In this paper, we have examined the natural system frequen-
cies of coupled bodies in the limit of large separation betwee
all bodies. The generaV-body problem is treated in the limit
by replacing the bodies with equivalent dipole moments anﬁB
solving the relevant scattering problem. Singular solutions o
the scattering formulation lead to a transcendental equation,

E between the asymptotic formulation and an integral equation
. solution is made, indicating the accuracy of the asymptotic
formulation in the appropriate range.
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