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Effective Medium Theories for Artificial Materials
Composed of Multiple Sizes of

Spherical Inclusions in a Host Continuum
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Abstract—This paper presents the application of nonempir-
ical effective medium theories to describe composite mixtures
of spherical inclusions within a host continuum. It is shown
that the most common effective medium theories collapse into
Bruggeman’s asymmetric formula when they are implemented
in an iterative scheme to extend their validity to higher volume
fractions. Comparisons of dc and 4-GHz data show that of
all the formulas Bruggeman’s asymmetric formula corresponds
best with experiment for large differences between the complex
permittivities of the host and inclusion materials. Permeability
values are also formulated and compared with experiment and
a simple scheme is considered to extend the effective medium
theories herein to a description of the diamagnetic effect of
induced current in metal spherical inclusions.

Index Terms—Effective medium, spherical inclusions, synthetic
medium.

I. INTRODUCTION

EFFECTIVE medium theories (EMT’s) describe a com-
posite mixture in terms of a spatially homogeneous

electromagnetic response [1]–[18], [21]–[25]. EMT’s describe
mixtures in the dual limits of a static analysis and a low-
volume fraction of inclusions within a host, neglecting inclu-
sion clustering. In this paper, comparisons are made between
common nonempirical EMT’s with experimental data from
the literature and with measurements of carbonyl-iron powder
(CIP) and rubber mixtures at 4 GHz. Specifically, mixtures
with multiple-sized spherical inclusions mixed in a host con-
tinuum with a process that suppresses stochastic percolation
are considered.

Manuscript received May 24, 1997; revised July 13, 1998.
W. M. Merrill is with the Department of Electrical Engineering, University

of California, Los Angeles, CA 90095 USA.
R. E. Diaz was with the Northrop Grumman Corporation, Military Aircraft

Systems Division, Chandler, AZ. He is now with the Department of Mechan-
ical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287
USA.

M. M. LoRe was with Northrop Grumman Corporation, Military Aircraft
Systems Division, Chandler, AZ. He is now with Lockheed Martin Tactical
Aircraft Systems, Fort Worth, TX 76101 USA.

M. C. Squires was with GEC Marconi Materials Corporation, San Diego,
CA. He is now with Bell Helicopter Textron Inc., Fort Worth, TX 76053
USA.

N. G. Alexopoulos is with the Department of Electrical and Computer
Engineering, University of California, Irvine, CA 92697 USA.

Publisher Item Identifier S 0018-926X(99)02215-2.

Existing EMT’s differ in one of two ways: 1) in the way
they model the averaging effects (such as the formulas of
Clausius–Mossotti and Maxwell–Garnett (MG or C-M), the
formula of Maxwell, the symmetric Bruggeman (S-BG) or
Böttcher formula, the asymmetric Bruggeman (A-BG) for-
mula, and the formula of Looyenga [1], [5]–[10], [12], [13])
or 2) in the way they model polarizability effects (ordered
lattice numerical calculations [2], percolation theory [16]–[18],
[21]–[26], and the Doyle and Jacobs effective cluster model
[4]). In general, set (1) requires that the individual inclusions
be far from each other (neglecting higher order multipole inter-
actions in the low-volume fraction or the “dilute limit”) while
the theories of set (2) rigorously model the approach of the
mixture to the limit in which the inclusions touch each other.
This paper concentrates on the first classification of theories (1)
above, as these tend to provide simple nonempirical formulas
for the effective parameters.

The requirement of the theories of class (1) above to stay
in the dilute limit is a serious hindrance to their utility.
The artificial dielectrics obtained by adding spherical metal
inclusions to an insulating host matrix attain useful high
dielectric constants only for high-volume fractions. Even for
needle like inclusions, the required volume fraction may
appear to be reduced, but the absolute inclusion density
may still be large enough to invalidate the dilute limit. A
simple model that can explain the properties of the spherical
loaded artificial dielectric over its full range of usable volume
fractions with a minimum of empirical correction factors
would be very useful to electromagnetic material designers.

In this paper, the most common models for mixtures of
spherical inclusions in a host continuum are explored. It can
be shown that the low-volume fraction limit of the most
common effective medium theories can be extended iteratively
to converge to one model valid for all volume fractions up to
100% (this is shown analytically for the Clausius–Mossotti
formula in the Appendix). However, Bruggeman introduced
a more elegant approach in his asymmetric model to which
our iterative technique turns out to be equivalent [1], [14].
In this paper, it is shown that this A-BG theory gives the
best fit when compared to collected historical data for the
dielectric constant of solid mixtures of metal spheres in an
insulating host continuum. The use of these EMT’s to describe
the diamagnetic effect of induced current on nonmagnetic
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conducting spheres is also briefly explored. All the EMT’s
presented in this paper, except that of Looyenga, theoretically
should hold for any inclusion or host complex permittivity
values.

II. REALITY FACTORS

The models presented herein apply to the typical composite
materials obtained by dispersing spherical inclusions into
a host matrix. Two factors of reality must be recognized
in the mathematical modeling of this material. First, the
spherical inclusions are never truly monodisperse. Clusters of
inclusions, multiple sizes of inclusions, and the breakup of
inclusions due to grinding between inclusions during mixing
all combine to give a variety of particle sizes [27]. Therefore,
the particles cannot be assumed to have only one typical radius.
This recognition led Doyle and Jacobs [4] to propose their
effective cluster model. In their model it is recognized that
in the resulting mixture there will be both isolated particles
and large semi–spherical clusters of agglomerated particles,
each contributing their own unique polarizability to the final
composite. If the polarizability of the clusters is that of a
body centered cubic (BCC) array of spheres, their model fits
historical data up to volume fractions as high as 40%, much
better than the classical Maxwell, Clausius–Mossotti, and MG,
or the S-BG–B̈ottcher models.

However, the assumption that the polarizability of the
clusters corresponds to that of a BCC array violates the reality
of the behavior of a nonmonodisperse mixture. A randomly
filled BCC array of spheres of a single size reaches a maximum
filling at 63% [4]. Yet, if there are smaller spheres to fill
the interstitial spaces, a nonmonodisperse mixture could be
packed well beyond the 63% limit. In fact, with an appropriate
distribution of particle sizes, the 100% volume fraction limit
can be approached arbitrarily close [27].

The second reality factor is closely related to the last
comment above. Composite materials are typically manufac-
tured through a dynamic mixing process (for instance, three
roll milling). Therefore, the inclusions cannot be assumed
to be located randomly throughout the composite’s volume.
The mixing forces tend to break apart large clusters. For
those clusters that survive, only spherical configurations are
likely. These forces also absolutely prevent the early formation
of stochastic percolation paths as assumed in percolation
theory [16], [17], [21]–[26]. In addition, grinding between
particles as the composite is mixed tends to break up the
individual inclusions (at least at high-volume fractions with the
degree of breakage dependent on the material) creating smaller
inclusions to fill the interstitial spaces [27] and contributing to
the justification for the first of our reality factors.

These two reality factors suggest that unless our inclusions
can be guaranteed to be monodisperse and unless they can
be forced to arrange themselves without any preferential
groupings, the theoretical limit for the percolation threshold of
a typically manufactured composite mixture approaches 100%.

III. COLLECTED EFFECTIVE MEDIUM THEOREIS

EMT’s describe composite mixtures in terms of and
, which characterize a quasi-statically equivalent material.

TABLE I
VARIOUS EMTS AND THEIR DC LIMIT FOR METALLIC INCLUSIONS

The static solution of the potential around one inclusion of
permittivity utilized in the EMT’s requires the assumption
that the scale of the inclusions is much smaller than the electro-
magnetic wavelength in the host material . In addition, the
mixture must be homogeneous on a macroscopic scale. Any
mixing must distribute the particles well, albeit in a somewhat
random fashion, so that for any region of a scale on the order
of the wavelength in the host, there are a constant volume
fraction of inclusions. All permittivities or permeabilities
considered herein are relative complex values, even though
the conventions associated with the meter kilogram second
(MKS) system of units are used.

Collected in Table I are the Maxwell EMT as attributed
in Lord Rayleigh’s work [2] and derived in [13], MG EMT,
which, for dc conductor dielectric mixtures, corresponds to
the Claussius–Mossotti formulation and is also known as the
Lorentz–Lorentz or Poisson’s formula [4]–[9], [21], the S-
BG formula [1], [3], [8], [11], [15], [16], [21], [23], which
corresponds to the B̈ottcher formula [14], the A-BG formula
[10], [14], and the Looyenga formula [10]. Also shown in
Table I are the EMT’s predictions in the metallic inclusion
limit . The formulation of Looyenga is only valid
for low contrast between inclusion and host permittivity
and, thus, is not appropriate in the metallic limit. The S-BG
formula is so named since it is symmetric in the sense that if
the host and inclusion parameters are interchanged the resul-
tant effective permittivity is unchanged. For a nonsymmetric
morphology such as a host continuum surrounding spherical
inclusions the S-BG EMT can be only expected to hold for
low-volume fractions of inclusions.

These EMT’s may lead to a unified model which overcomes
the low-volume fraction restriction if an iterative procedure is
applied as described in the Appendix. The iterative technique
is illustrated in Fig. 1 and generalizes any of the EMT’s be-
yond their low-volume fraction limit. This iterative technique,
however, is inherent to the derivation of the A-BG model
and like that model is appropriate specifically for discrete
noncontacting inclusions within a host continuum.

Of all the theories presented, the A-BG theory appears to
have the best agreement with published data for spherical
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Fig. 1. The iterative technique to extend EMT’s to high-volume fractions.

Fig. 2. Comparison of various EMT’s and expermental data from Doyle
and Jacobs.

inclusions within a host continuum. It extends the low-volume
fraction limit of the EMT’s up to a high-volume fraction
validity range. In fact, since in the low-volume fraction limit
all the theories give about the same results it can be shown that
when they are iterated or considered in the differential limit
of the iterative process, they all (except that of Looyenga)
converge to the A-BG equation. The A-BG or iterative model
appears to be a fundamental model for mixtures of mul-
tiple sized spheres in which mixing suppresses stochastic
percolation allowing a maximum packing up to a volume
fraction of one. The formula of Looyenga has been reported
to give a slightly better correspondence with the published
experiments for dielectric–dielectric mixtures in [9] and in
[14], however, it breaks down as the magnitude of the host
and inclusion permittivities become very different as a result
of its somewhat arbitrary assumption that the small amount
of inclusion material added has a permittivity only slightly
different from the effective permittivity for that iteration.

Fig. 2 summarizes how the EMT’s of Table I model the
dc limit of metallic spheres in an insulating host. This figure
shows a comparison between the EMT models for the metallic
limit and experimental results taken from Fig. 5 of
Doyle and Jacobs [4]. The simplicity of the A-BG result for
the metallic limit (Table I) is especially pleasing considering
how well it matches the trend of published data. It clearly
fits the data better than the other EMT expressions considered
herein, and even better than the Doyle–Jacobs effective cluster
model of [4] from to . Since is close
to the practical limit for the filling of a host medium, that still

Fig. 3. Ref�e�g from various EMT’s at 4 GHz for�h = 2:43 � j0:029
and �i = 1:0 � j�=(!�0) with � = 104: Also shown are measurements
made on mixtures of CIP in a rubber host(� � �) and measurements from
the paper by Olmedoet al. (� � �).

guarantees physical integrity of these composites, we have a
theory that spans their entire useful design range.

The successful comparison of the A-BG model with ex-
periment suggests that the mathematical iteration procedure
correctly models the dynamics involved in mixing particle
filled composites. In fact, when the mixing mechanisms that
invalidate the monodisperse assumption [27] are removed such
as in the vibrating bed Aetna oil and mercury experiments of
Guillen (presented in [4]), the measured data agrees with the
Doyle–Jacobs [4] rather than the A-BG model. Therefore, we
assume that in those cases the mixture behaves as an ordered
array of equal sized spheres with a maximum packing and
complete percolation at the randomly filled BCC
limit.

IV. DISPERSIVE PROPERTIES OF

PARTICLE FILLED COMPOSITES

Comparisons with measurement at 4 GHz of a CIP rub-
ber mixture’s complex and and the various EMT’s
predictions are considered in this section.

A. Complex Permittivities

The CIP was represented with a bulk permittivity of
with . The host dielectric

was measured at 4 GHz as
for the rubber material used in mixtures we manufactured
and measured at GEC Marconi Materials Corporation, San
Diego, CA. For this measurement, fluctuated between small
positive and negative values in measurements from 2 to 18
GHz, indicating that the imaginary part of the permittivity
was below the measurement error threshold. Results for the
real part of the effective permittivity are shown in Fig. 3
and results for the imaginary part are shown in Fig. 4. These
two figures also include data taken from Fig. 3 of Olmedo
et al. [3] in which the real part of permittivity of the host
material was and the imaginary part was too small
to read off the scale of the figure (i.e. . To match
the data in [3] was increased slightly to
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Fig. 4. �Imf�e�g for various EMT’s at 4 GHz for�h = 2:43 � j0:029
and �i = 1:0 � j�=(!�0) with � = 104. Also shown are measurements
made on mixtures of CIP in a rubber host(� � �) and measurements from
the paper by Olmedoet al. (� � �).

Fig. 5. �Imf�e�g when �h = 2:43 � j0:129 compared with data from
Olmedoet al. (� � �) and for the CIP rubber mixture(� � �).

resulting in a much better match of the imaginary part of
effective permittivity shown in Fig. 5 and resulting in virtually
no change in the real part of the permittivity on the scale of
Fig. 3. For the CIP rubber mixture, the quasi-static limit should
hold as the wavelength in the host material is
GHz cm, much larger than the inclusion size
of m. In Fig. 3, the real part of the permittivity
approaches one as , for
all the formulas except Maxwell’s.

B. Complex Permeabilities

The A-BG theory was also used to compare with the
permeability measured for the same CIP rubber mixtures. For
the EMT predictions the host was considered nonmagnetic

, however, values were not available for the
bulk properties of the carbonyl iron. As a result a single
Debye relaxation was used to match the dispersive behavior
predicted for Kittel’s model of a single-domain iron particle
[28] with a dc relative permeability of 100, a high-frequency
limiting permeability of zero (due to the diamagnetic effect
of conducting currents) and a single relaxation frequency of

Fig. 6. Ref�e�g for the A-BG and the Looyenga formulas compared with
data measured for the CIP rubber mixture at 4 GHz.

Fig. 7. �Imf�e�g for the A-BG and the Looyenga formulas compared with
data measured for the CIP rubber mixture at 4 GHz.

0.9 GHz [18]. Using this single-domain iron model for the
CIP, the inclusions bulk permeability was calculated to be

at 4 GHz. The comparison between
measured and calculated effective permeability is shown in
Fig. 6 for the real part and in Fig. 7 for the imaginary part
versus the volume fraction of CIP.

C. Diamagnetic Effects Predicted with EMT’s

Finally, the permeability predictions of the EMT’s of Table I
and an extension of Lord Rayleigh’s analysis of arrays of metal
spheres from Lam [2] are considered to describe the diamag-
netic effects of nonmagnetic metal spheres in an insulating host
material. The magnetic polarizability of a metal sphere (in the
limit that the skin depth in the sphere goes to zero) becomes

that of its corresponding electric polarizability. Since
the polarizabilities of spherical inclusions are proportional
to volume fraction in the EMT’s, the EMT formulas that
incorporate the diamagnetic effect of current in metal spheres
can be written by setting to for the inclusion volume
fractions or, to be more precise, by setting in any
of the EMT theories and replacing the epsilons withs. For
the Maxwell, Claussius–Mossotti or MG, and A-BG formulas
the diamagnetic effect yields a renormalized permeability of,
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Fig. 8. The diamagnetic effect of nonmagnetic metal spheres in a non-
magnetic host dielectric. The effective permeability normalized to the host
permeability is plotted versus volume fraction of metal spheres.

respectively,

- - - (1)

- (2)

- (3)

The S-BG or B̈ottcher formula in this diamagnetic limit
that gives the same result as the Maxwell EMT of
(1). To compare these predictions, of the diamagnetic effects
of metallic spheres, the formula derived in Lam [2] was
considered in the same limit. In Fig. 8 a comparison is made
between Lam’s prediction and the EMT’s of equations (1)–(3).
The formula from Lam is based on an expansion in powers of
and is calculated up to terms with. Since the formula of Lam
was formulated for an infinite, simple cubic lattice of identical
spheres, it is only valid up to . As can
be seen from Fig. 8 both the Claussius–Mossotti formula and
the A-BG formula converge to this expected limit of complete
field exclusion at The A-BG formula and
the Claussius–Mossotti formula both agree well with Lam’s
formula from [2] for . This diamagnetic case displays
the versatility of the A-BG formula to again provides an
accurate description of mixtures of nonpercolating spherical
inclusions in a host continuum.

V. CONCLUSIONS

The A-BG formula was applied to describe a mixture of
multiple sizes of metal spheres in a dielectric host, both to
formulate the dc effective dielectric constant of this mixture
versus volume fraction of metal inclusions and to describe the
effective permittivity and permeability of a mixture of CIP and
rubber at 4 GHz with a powder dispersion of sizes from 1–10

m before mixing. For both the DC and 4 GHz cases the A-
BG formula permittivity predictions, coincided qualitatively as
well as quantitatively with experiment and corresponded more
accurately with experiment than the other EMT’s considered.
Since the bulk permeability of CIP was not available, the
permeability comparisons only demonstrate that this EMT

results in values that are physically reasonable. When single-
domain iron was used to model the inclusion the A-BG theory
appeared to match the trend in the experimental data at least
in describing the imaginary permeability, while the theory of
Looyenga seemed to match the real permeability trend. Each
of these theories predicted reasonable values, however, for
a more concrete comparison intrinsic permeability values for
carbonyl-iron are required. A more complete model of the CIP
incorporating multiple relaxation frequencies as in [16], [19],
and [20] could provide a more definitive statement about the
accuracy of each EMT for the permeability. In addition, an
extension of the EMT’s considered was presented to describe
diamagnetic effects in conductor dielectric mixtures.

Overall the A-BG formula matches well with experimental
results and provides the best fit for predicting the effective
permittivity of artificial dielectric mixtures of multiple sized
spheres within a host material in which the percolation thresh-
old of the spheres is suppressed. In addition most (all those
presented except Looyenga’s) of the other EMT’s collapse into
the A-BG theory when their low-volume fraction behavior is
extended in an iterative approach. Only quasi-static EMT’s are
presented in this paper, with the only account of stochastic
effects being phenomenological. Future work will consider
extending the iterative technique of the A-BG EMT to describe
ellipsoidal inclusions as well as consideration of this iterative
extension to describe full-wave theories.

APPENDIX

In this Appendix an iterative technique is presented to
show how the EMT of Clausius–Mossotti converges to the
Bruggeman asymmetric formula when describing the dielectric
constant of metal spheres in an insulating host. This iterative
technique was first considered by the authors to extend the
Claussius–Mossotti EMT before its correspondence with the
A-BG formula was determined.

To apply the iterative technique for the Claussius–Mossotti
description of metallic spheres in an insulating host, first
consider a continuous host material. Then incrementally add
a volume fraction of the inclusive material as illustrated in
Fig. 1. Next, use the Clausius–Mossotti relation to calculate
the effective permittivity of the mixture with volume .
This new effective permittivity then represents a homogeneous
material to which another incremental volume of inclusions is
added. Through this iterative procedure the Clausius–Mossotti
equation’s high accuracy at low-volume fractions should be
extended to higher volume fractions as long as the inclusions
effects can be well represented with effective parameters.

For a volume fraction of inclusive (metal) material with
total volume considering an initial host material with volume
one, then

(4)

is the constant volume fraction of inclusions considered in
the th iteration.
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After iterations of the Claussius–Mossotti formula of
Table I

(5)

Equation (5) can be rewritten in the limit

(6)

Each term in the sum in (6) is then considered. With
, the first term is

(7)

The higher order terms in the sum of (6) all converge to
zero in their summation under the limit that as can
be seen by examining the second term

(8)

The same limit holds for the sums of all the higher order terms
in (6). As a result, the effective permittivity can be written as
the following for the A-BG theory in Table I:

(9)

Any of the EMT’s except that of Looyenga can be evaluated
numerically for complex inclusion and host permittivities in
this iterative procedure to give the same result as the A-BG
EMT. This was done numerically for 5000 and 100 000 itera-
tions; all of the theories (except that of Looyenga) converged
to the A-BG EMT, the theory of Looyenga converged to itself
as a result of its own iterative derivation.
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