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A Finite-Difference Time-Domain Method
for Solving Electromagnetic Problems
with Bandpass-Limited Sources

J. D. PurselMember, IEEE and P. M. Goggansylember, IEEE

Abstract—The complex-envelope representation of bandpass- wherewv,(t) andv,(¢) are the in-phase and quadrature portions
limited signals is used to formulate a bandpass-limited vector of v(t) and fo is the center frequency ofi(t) [1]. The

wave equation and a new finite-difference time-domain (FDTD) pangwidth B and center frequency af(¢) can be expressed
scheme that solves the bandpass-limited vector wave equation is. ¢ f th . f in(+ df.
presented. For narrow-band electromagnetic systems, this new " {€rMS O fmax, the maximum frequency in(t), and fiiy,

method allows the time step to be several orders of magnitude the minimum frequency in(t). FOr fuax > fumin > 0, the
larger than current FDTD formulations while maintaining an  relationships are
amplification factor equal to one. Example results obtained by

this method are presented and compared with analytic solutions. B="f = 2)
Index Terms— Bandpass-limited, complex-envelope, FDTD,

wave equation. and

fma.x + fmin

. @)

Jo

I. INTRODUCTION

HE usual finite-difference time-domain (FDTD) solutiori_he time functionsu,(t) and v,(f) are real and low-pass

of the electromagnetic wave equation uses time and s jited with bandwidth5/2.

tial sampling according to the lowpass-limited (LPL) samplin Haykin [1] mtrodupe_s the_ complex envelope notat|_on to
theorem. For time sampling this means that the time Stggake the bandpass-limited signal and system problem isomor-

must be set in accordance with maximum frequency in i ic to the base-band (LPL) signal and system problem. The

source signal. However, for radar and communication systeﬁ\osmplex envelope of(t) is denoted as(t) and is defined by

problems the source signal is usually bandpass-limited (BPL)
rather than lowpass-limited. The bandpass-limited sampling o(t) = vp(t) + jug(t) 4)
theorem states that using the proper technigues, the signal can
be sampled in accordance with the bandwidth of the sigrahere the function(t) can be recovered frorx(t) using the
source rather than its maximum frequency. This suggests tRxpression
the FDTD method can be modified so that the required time
step for BPL signals is significantly increased compared to u(t) = R{o(t) exp(i27 fot)}. (5)
the conventional FDTD method. .

One way of modifying the FDTD method is to use th‘__;l'he Fourier transform of the complex env_elope can be deter-
complex envelope representation of BPL signals [1], [2]. THEined from the Fourier transform af(t) using
complex envelope representation of a real BPL signal yields a .
complex LPL signal with a maximum frequency equal to one V(D =V + fo) +san(f + fo)V(f + fo) (6)
half the bandwidth of the original signal.

where
[l. COMPLEX-ENVELOPE REPRESENTATION 1, for f>0
N sgn(f) =40, forf=0 (7
A real bandpass-limited signal soureg) can be expressed —1, for f<0

in the form [1], [3]
Here, the standard engineering definition of the Fourier trans-

v(t) = v, (t) cos(2n fot) — vy (t) sin(2r fot) (1) form is used so that
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VD1 space dependent electric field as

E(r, t) = m{E(r, #) exp(j2n fot)} (10)

where the LPL complex-envelope representatioEdf, ¢) is

E(r,¢) =E,(r, t) + jE4(r, t). (11)

max | V() [ — In the expressions above, the position veatddentifies the
field point. The real vector functiorl, (r, ¢) andEq(r, ) are
the in-phase and quadrature partgt, ¢). Vector quantities

i —p»- are printed in boldface. If the system were also spatially
l ¢ f bandpass-limited, a similar transformation could be used to
0 © remove the high spatial-frequency variation. However, the
B spatial-frequency content is dependent on the geometry of the

Fa 1 The f domai ¢ the band imited s electromagnetic system. Hence, electromagnetic systems are
‘I?f) e frequency-domain spectrum of the bandpass-limite S|gnr%t genera“y spatially BPL
) The standard real-valued low-pass-limited (base-band) wave

equation for linear isotropic time-invariant medium is as
follows:

1\ 1
~V2E + [qV(—) + = Vq}
£ £
1

~[@-vav(2)+ (2)vie- v

LV x M+ [Vux <M)}

7
where i1, £, and ¢ are the spatially dependent permeability,
permittivity, and conductivity of the medium and whelfg,

M;, and g are the impressed electric current, the impressed
magnetic source current and the total electric charge. In (12),
a dot above a time function denotes the first partial derivative
with respect to time of the function. Similarly, a double dot
above a time function denotes the second partial derivative

A6

A

2 max | V(f) | —

+ uji + uaE + ueE =0 (12)

B

Fig. 2. The frequency-domain spectrum of the lowpass-limited s@ma‘l).

It is instructional to consider the relationship betwééfy)
and V(f). Fig. 1 illustrates the Fourier transfori(f) of
a real bandpass-limited time functiar{¢). Becauseu(t) is
real, V(—f) = V*(f) where the superscrigt)* denotes the
complex conjugate. As a result of this relationshig) can

be determined from a knowledge of the positive frequency
values of V(f) alone. The transformation makes use of this

property by setting the negative frequency portiorVdff) to

zero, multiplying by two and then shifting the result to the left

by fo to yield V(f). If the transformation of/’(f) to V()

is viewed in the graphical way described above, it is clear

that V(f) can be obtained fron'(f) by reversing the steps
above. Fig. 2 illustrate¥ ( f) the Fourier transform o (¢). It
is apparent from Fig. 2 that(¢) is low-pass limited. Because
in generalV (—f) # V*(f), o(t) is in general a complex time
function.

Ill. COMPLEX-ENVELOPE WAVE EQUATIONS

with respect to time of the function.

Using the complex envelope representation of time func-
tions given in (10) and (11), a new complex-valued bandpass-
limited form of the vector wave equation

- VZE+ {qv(é) + évq}
“[(evv (D)« () (e-ve)

£
-V xE-M;
7

Vu><<

+ u[ji +j2r foj} + o [E +j2r fOE}

1

+V xM;+

+ e [E + jdr foE — (27 fO)QE] —0. (13)

can be derived from (12).
In (13), all of the low-pass-limited time functions in (12)

In electromagnetics, if the sources of the electric arate replaced with their complex-envelope representations. We

magnetic fields are bandpass-limited, all of the fields resultimgfer to (13) as the complex-envelope vector wave equation.
from the sources are also bandpass-limited (for linear timBewriting (13) for the case where the impressed magnetic
invariant medium). As a result we can write the time andurrent and the conductivity are zero and the permeability is
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constant yields the following equation: Crank—Nicolson scheme:
2 ~
—V2E + [gv(l) + lvq} - % E™i — 1) + [1 4 (o — 282 fIAL?) + j2r fo At]
£ £ 5
. - E~'Tj+l i O‘_EIZL+1 i1
- {(E~V5)V<1> +<1>V(E~Vs)} X BT - G BT
° E o’ Fn—1/, 2 2 02 A2 .
t+u[di + j2nfod| + pe[B+ janfoB - (2nfo’B] =0. T2 EZ (=) = [l (o7 = 2mfgAr7) = j2m folt]
- 2 . . 2,2
A9 B+ S BT 1) 2B + S

; intly; intly;
IV. FINITE-DIFFERENCE TIME-DOMAIN FORMULATION % {[J%fojz (@) +J3 (L)}

In this paper, we consider a FDTD solution of the complex- + [‘7'27rf0.]~’;*1(i) + .jgfl(i)} } (29)
envelope representation of the wave equation [4]. The initial . ] .
work to develop a numerical method for the solution dfrank-Nicolson schemes are often used in the numerical so-

the complex-envelope wave equation was done using ofidlion of parabolic partial differential equations. A discussion
dimensional (1-D) geometries [5]. A 1-D version of theé®n the use of this type of differencing scheme in the numerical

standard wave equation (whege= 0, M; = 0, and ;¢ is Solution of the heat equation can be found in [7] and [9].

the electric field that has the single Cartesian vector directifdVe constant coefficients, the von Neumann stability con-
# and is a function of a single spatial coordinateThis results dition [7], [10], [11] provides a necessary test of numerical

in the following differential equation: stability. If the scheme is also Hermitian as it is here, the
von Neumann stability condition is also a sufficient test of
. 82 5 . aye . . g
Bue, ) - & B.(o,t) = —ptdu(z, 1), (15) numerical stability [7]. To test (19) for numerical stability,

consider a homogeneous source-free region as the domain of

. . ._interest and assume an initial electric field distribution
Converting (15) to the complex-envelope representation yields R N
EY(i) = P (20)

da?

EZ ’ t 74 E‘Z ’ t)— (2 2EZ ’ t . .
(2, 8) + jar foE-(w, ) = (2 fo) Bx(@, 1) where 3 is a real-valued wave number. Now substitute an

92 . )

2

— ¢ @Ez(a:, t) assumed solution ) o
~ 2 NN YAy G0ty

= —pc? [j2n o, 1) + T (). (16) Bi) = emre (21)
into (19). Doing so yields
It is interesting to note that (16) is very similar to the telegrap, 9\ 2
; : : wiA )
equation given in [6]. —a? cos(BA,) +14a? — 2L _,_ijAt} VA
There are many differencing schemes that can be usedLto 2

approximate (15) and (16). In addition to possessing some _
specified level of accuracy, the scheme must also be numer-—
ically stable. Some schemes will be unconditionally stable, (22)

some will be unstable, and some will be conditionally stable.

An explicit second order differencing scheme that approX- (19) is @ numerically stable FD scheme, the von Neumann
imates (15) is [7] condition requires that the amplification factor, which is the

magnitude of the roots of (22), must always be less than
E"Ui) =21 — B (i) + *[E"(i — 1) + E"(i+1)]  (implies that the scheme is dissipative), or equal to one.
— E"L() (17) After rewriting (22) in a simpler form

ae?"®t 4+ beP7B 4 gteT YR = 0 (23)

2 2 WOAF | —yA
24 |a” cos(BA) — 1 —« —i—T—i—]wOAt e 7o,

where the Courant—Friedrichs—Lewy (CFL) number [8] is
denoted by« and where
a =2+ a4 sin(BA,/2) — wi A + j2uwol,

a = cAt/Az. 18
/ 18) .

In the equations above, the superscriptionndicates that? 5.4 .+ is the complex conjugate of, (22) becomes easily

is evaluated at an integer multiple of the time step (that is F’écognizable as quadratic i+, Therefore, the roots of (23)
t = nAt where At is the time step). Similarly, the argumen

of E indicates thaf is evaluated at an integer multiple of the

spatial step (that is at = ¢Azx where Ax is the spatial step). ry = —b+ Vb — daa*
This difference scheme is conditionally stabi€ (< 1). 2a
After considerable experimentation, we discovered that VA e 0 (24)

(16) can be approximated by the following second-order 2a
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While |r£| < 1 has not been analytically proven for anywave equation. This and an amplification factor of one are

range of center frequency, frequency bandwidth, time step, ahe principle advantages of the complex-envelope formulation.
spatial step; numerical computations have shown|thdt=1 Some of the time-step advantage is lost when the complex-
for a wide range of center frequency, frequency bandwidtanvelope formulation is compared to the standard explicit

time step, and spatial step. Furthermore, the amplificati® TD method because of the additional calculations that

factor |rL| = 1 for every parameter combination testedmust be performed at each time step in the complex-envelope
This also indicates that this method does not suffer from tfiemulation.

numerical dispersion that is inherent in any multidimensional The comparison of the relative time step required in the

or multigridded explicit finite-difference scheme. standard wave- and the complex-envelope wave-equation so-
Implicit (Crank—Nicolson) finite-difference solutions can béutions assumes that choosimy to be the same in both
written in the following matrix form: formulations results in similar accuracy. Our initial results
_ _ gntl 4 gn-1 confirm this. A fair comparisons betwgc_an implicit and explic@t
AE"" =BE" ! 4+ 2E® + — (25) methods is difficult because for explicit methods, the spatial

sampling rate and the time sampling rate are not independent
where A and B are constant, symmetric, and banded (tridand requirements for spatial sampling often fo¥eto be
agonal in the 1-D case) matrices, and whEreis a column much larger than is needed for an implicit solution method.
vector made up of the values & at all the spatial nodes atAdditionally, numerical dispersion decreases the accuracy of
the timenAt. Similarly, S™ is a column vector made up of multidimensional and multigridded explicit finite-difference
source-related terms at all the spatial nodes at the tideé Schemes. However, one can conservatively state that in all
Equation (25) is used to determilikat all of the spatial nodes Cases
at time(n+1)At using the previously determined valueskf 200
at all spatial nodes for time@: — 1)At andnAt. BecauseA Atcrwr 2 [% + 1} Atswi. (30)
and B are constant and banded (tridiagonal in the 1-D case)

the computational burden of solving (25) is relatively smaN/, ANALYTIC SOLUTION OF THE COMPLEX WAVE EQUATION

compared to obtaining a solution of (25) £ and B were g gjution of the 1-D LPL wave equation foradirected

dense matrices. _ _ surface current/,. atz = z, in an unbounded homogeneous
Although the numerical solution of the standard wave eq“?e'gion is as follows [12]:

tion and complex-envelope formulation of the wave equation
can both pe obtamed using (25),_the required time _step forEZ(x’ £ = — 7 g (- T —Z, w( — )
the numerical solution of the two different wave equations are 2 c

very different. For both equations, the selection of the time -z,
step is based on the sampling theorem requirements. For the + Js-z <t+ . )U(ﬂfo - 37)} (31)
standard wave equation (SWE)

1 1 where 5 is the characteristic impedance of the medium and

Atswg = = (26) wu(z) is the unit step function. It is convenient to use a
Nfwmax  N(fo+B/2) bén)dpass—limited time function with a Gaussian envelope for
where N is the number of samples per period. The samplirte source current. The source current used here is
theorem states thaV > 2, however, numerical solutions 9
usually requireN ~ 20. For the complex-envelope wave Joo(t) = —g(t)<—) cos(27 fot) (32)
equation (CEWE) K

1 where the Gaussian envelope function is
AtcEWE = 775+ (27) 2
NB2) 9(t) = exp {7‘“ —To) } (33)
If in the solution of both wave equation® is the same then 202 '
A _ [200 1 A (28) In (32), J,.(¢) is scaled so that the peak value Bf(z, t)
CEWE ™ %6 + SWE is one. Note that the Gaussian-shaped envelope is a low-pass

limited time function with bandwidttB = 4/7 . For reasons
related to the numerical solution of the wave equation, the
%5 = 100 E (29) time d(7elay is set ad, = 40_—\/5 SO tha_tg(O) is on the order

fo of 10~ ‘. Substituting (32) into (31) gives

For problems with small percent bandwidth sources, the T — T, T — T
. (z, t)zg(t——) COS<27Tf0|:t— })

where the percent bandwidth

time step for the complex-envelope wave equation can be
several orders of magnitude greater than the time step for

r—x
the standard wave equation. As a result, the total number of X u(x — ,) +g<t + . 0)
time steps required to obtain a solution to some maximum
time using the c'omplex—envelope wave equatiop can be several % oS <27rf0 [t L P -To:| )u(xo _2). (34)
orders of magnitude less than that required using the standard ¢
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Rewriting the cosine terms in (34) as the real part of complex 1s
exponential terms and then manipulating the result to obtain

1.6 |

the form of (10) yields Finite Diferenco Method
wt | 3.0 microseconds
— 4.5 microseconds
~ T — Xy .
L. (x, t) :g<t — —) exp(—j27 fo(x — z,)/¢) 12 f
C
- B0 1
xu(a:—a:o)—i—g(t—i— 0)
[# 0.8 |-
x exp(j2n fo(x — z,)/)u(z, — ). (35) s s
\
Equation (35) is the solution of the 1-D complex-envelope °4t \\
wave equation for az directed complex-envelope surface — ,,f ,
current.J,. atx = z, in an unbounded homogeneous region \\,,\«"""
where T m 2
~ 2
Jo. () =—g®) = ). 36
54( ) g( )<77> (36) Fig. 3. The BPL FDTD solution of the 1-D cavity problem.

A 1-D cavity with perfect electric conducting (PEC) walls
and a plane wave source centered between the walls is used as 15

an example problem in the following section. The PEC walls At45 microseconds
are atz = —L/2 andz = L/2 and the source is located at "  Finite Difference

x = x, = 0. Using image theory and (35), the analytic solution 4,4
of the complex envelope wave equation can be determined. For

the plane wave source current of (36), the solutionB6e, t) 2

between the cavity walls is E. (0] 1
o 0.8
E(a, )= (-1 [Ef(x, #) + ER(z, t)] (37) y
n=0
0.4
where
0.2
-~ L 1 1 Il I
E'i (z,t) =u(nL +z)g <t _r4n ) % 24.2 244 246 248 25
C Xho

X eXp(—j27rf0 (x + nL)/c) (38) Fig. 4. Comparison of the BPL FDTD and analytic solutions at4s5

and

c

. —nL
ER(z, 1) zu(nL—x)g<t+ rn ) _
(N = 66.6) and temporallf{ N = 40). Note that the complex-

x exp(j27 fo(x — nL)/c) (39) envelope formulation is not particularly computationally ad-
vantageous for this combination of parametefscrwr =
are the fields to the left and right of the cavity due to théAtswr), however, these values were used so that the spatial

source and its images. oscillations of the solution can be displayed clearly.
Fig. 3 illustrates the FDTD solution of the 1-D scalar
VI. EXAMPLE RESULTS complex-envelope wave equation. Because the cavity is sym-

A 1-D free-space filled cavity with perfect electric conductmet_ric’ the field distribution is only given for one half of the
ing (PEC) walls and a plane wave source centered between $A¥IY- At 1.5 and 3.0us the traveling waves have not yet
walls is used as an example problem. The PEC walls areP4ppagated to the walls of the cavity. The rapid variation in
x = —25) andz = 25\ where)q = ¢/ fy. The plane wave the field strength at 4.;s is due to the backward traveling
source is simulated numerically by applying the impresséfpﬂected) wave interfering with the forward traveling wave.
current at the single spatial node corresponding to the positigi#ven that Fig. 3 is a plot of the magnitude of the envelope of
z = 0. In the standard wave-equation solution, the impressadadio frequency (RF) signal, this rapid variation is expected.
electric current is given by (32). In the complex-envelope A comparison of the analytic and BPL FDTD solutions is
wave equation, the impressed current is the complex-envel&®wn in Fig. 4. The field distributions for 4,z at the edge
representation ofls.(xo, t) as given in (36). of the cavity are plotted. The largest error is observed in this

The following example results have been computed witiegion of the cavity. The BPL FDTD solution is in excellent
(19), a center frequencyf, = 10 MHz and a bandwidth, agreement with the analytic solution. The maximum observed
B = 4 MHz. The continuous signals were sampled spatialgrror in the complex-valued solution is less than 2%.
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1.8 1.8
Finite Difference Method H T
16 | — — 11.5 microseconds 16 | Finite Difference Method
,,,,,, 13 microseconds —-15 m!cruseconds
[ —— 14.5 microseconds 3.0 microseconds
1.4 | i | ta | 4.5 microseconds
1.2 1.2 |
‘Ez(x,t)‘ 1 ﬂl ‘E,(x,t)[ 1k
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0.6 06 |-
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0 0 Lol
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Fig. 7. The BPL FDTD solution of a region with a dielectric interface.

VIl. CONCLUSIONS

: /’ ™~ 1;\1_1"45 micr_oseconds /,\\ ) .
16 Analytic \ Using the complex-envelope representation of bandpass-

— — Finite Difference
limited signals, a new bandpass-limited formulation of the
vector wave equation was formulated and presented here. A
new bandpass-limited FDTD scheme that solves the bandpass-
limited vector wave equation has been developed and pre-
sented. An amplification factor of one and the ability to set
the time-step size based solely on the bandwidth of the system
are the principle advantages of this new method. For narrow-
band (small percent bandwidth) systems, the time step can
be several orders of magnitude larger than the time step in
conventional FDTD methods.
Results that illustrate the accuracy of this new method
%2 242 244 28 28 2 were presented. While these results were for a 1-D cavity,
Who the formulation is valid in two and three dimensions as
Fig. 6. Comparison of the BPL FDTD and analytic solutions at 345  Well. Preliminary two-dimensional (2-D) results indicate that
the method is numerically stable and accurate. The authors

The field distributions at later times are illustrated in Figs. 8¢ currently working on a comprehensive error analysis of
and 6. In Fig. 5, the field distribution at 14 has propagated the 1-D formulation, application of an absorbing boundary
more than 125 m and is in the process of completing its thif@ndition, and the verification of 2-D results.
reflection. A comparison with the analytic solution at 14%
is shown in Fig. 6. While the error in the BPL FDTD solution REFERENCES
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