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A Finite-Difference Time-Domain Method
for Solving Electromagnetic Problems

with Bandpass-Limited Sources
J. D. Pursel,Member, IEEE, and P. M. Goggans,Member, IEEE

Abstract—The complex-envelope representation of bandpass-
limited signals is used to formulate a bandpass-limited vector
wave equation and a new finite-difference time-domain (FDTD)
scheme that solves the bandpass-limited vector wave equation is
presented. For narrow-band electromagnetic systems, this new
method allows the time step to be several orders of magnitude
larger than current FDTD formulations while maintaining an
amplification factor equal to one. Example results obtained by
this method are presented and compared with analytic solutions.

Index Terms— Bandpass-limited, complex-envelope, FDTD,
wave equation.

I. INTRODUCTION

T HE usual finite-difference time-domain (FDTD) solution
of the electromagnetic wave equation uses time and spa-

tial sampling according to the lowpass-limited (LPL) sampling
theorem. For time sampling this means that the time step
must be set in accordance with maximum frequency in the
source signal. However, for radar and communication systems
problems the source signal is usually bandpass-limited (BPL)
rather than lowpass-limited. The bandpass-limited sampling
theorem states that using the proper techniques, the signal can
be sampled in accordance with the bandwidth of the signal
source rather than its maximum frequency. This suggests that
the FDTD method can be modified so that the required time
step for BPL signals is significantly increased compared to
the conventional FDTD method.

One way of modifying the FDTD method is to use the
complex envelope representation of BPL signals [1], [2]. The
complex envelope representation of a real BPL signal yields a
complex LPL signal with a maximum frequency equal to one
half the bandwidth of the original signal.

II. COMPLEX-ENVELOPE REPRESENTATION

A real bandpass-limited signal source can be expressed
in the form [1], [3]

(1)
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where and are the in-phase and quadrature portions
of and is the center frequency of [1]. The
bandwidth and center frequency of can be expressed
in terms of , the maximum frequency in , and ,
the minimum frequency in . For , the
relationships are

(2)

and

(3)

The time functions and are real and low-pass
limited with bandwidth /2.

Haykin [1] introduces the complex envelope notation to
make the bandpass-limited signal and system problem isomor-
phic to the base-band (LPL) signal and system problem. The
complex envelope of is denoted as and is defined by

(4)

where the function can be recovered from using the
expression

(5)

The Fourier transform of the complex envelope can be deter-
mined from the Fourier transform of using

sgn (6)

where

sgn
for
for
for .

(7)

Here, the standard engineering definition of the Fourier trans-
form is used so that

(8)

and

(9)
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Fig. 1. The frequency-domain spectrum of the bandpass-limited signal
V (f).

Fig. 2. The frequency-domain spectrum of the lowpass-limited signal~V (f).

It is instructional to consider the relationship between
and . Fig. 1 illustrates the Fourier transform of
a real bandpass-limited time function . Because is
real, where the superscript denotes the
complex conjugate. As a result of this relationship, can
be determined from a knowledge of the positive frequency
values of alone. The transformation makes use of this
property by setting the negative frequency portion of to
zero, multiplying by two and then shifting the result to the left
by to yield . If the transformation of to
is viewed in the graphical way described above, it is clear
that can be obtained from by reversing the steps
above. Fig. 2 illustrates the Fourier transform of . It
is apparent from Fig. 2 that is low-pass limited. Because
in general , is in general a complex time
function.

III. COMPLEX-ENVELOPE WAVE EQUATIONS

In electromagnetics, if the sources of the electric and
magnetic fields are bandpass-limited, all of the fields resulting
from the sources are also bandpass-limited (for linear time-
invariant medium). As a result we can write the time and

space dependent electric field as

(10)

where the LPL complex-envelope representation of is

(11)

In the expressions above, the position vectoridentifies the
field point. The real vector functions and are
the in-phase and quadrature parts of . Vector quantities
are printed in boldface. If the system were also spatially
bandpass-limited, a similar transformation could be used to
remove the high spatial-frequency variation. However, the
spatial-frequency content is dependent on the geometry of the
electromagnetic system. Hence, electromagnetic systems are
not generally spatially BPL.

The standard real-valued low-pass-limited (base-band) wave
equation for linear isotropic time-invariant medium is as
follows:

(12)

where , , and are the spatially dependent permeability,
permittivity, and conductivity of the medium and where,

, and are the impressed electric current, the impressed
magnetic source current and the total electric charge. In (12),
a dot above a time function denotes the first partial derivative
with respect to time of the function. Similarly, a double dot
above a time function denotes the second partial derivative
with respect to time of the function.

Using the complex envelope representation of time func-
tions given in (10) and (11), a new complex-valued bandpass-
limited form of the vector wave equation

(13)

can be derived from (12).
In (13), all of the low-pass-limited time functions in (12)

are replaced with their complex-envelope representations. We
refer to (13) as the complex-envelope vector wave equation.
Rewriting (13) for the case where the impressed magnetic
current and the conductivity are zero and the permeability is
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constant yields the following equation:

(14)

IV. FINITE-DIFFERENCETIME-DOMAIN FORMULATION

In this paper, we consider a FDTD solution of the complex-
envelope representation of the wave equation [4]. The initial
work to develop a numerical method for the solution of
the complex-envelope wave equation was done using one-
dimensional (1-D) geometries [5]. A 1-D version of the
standard wave equation (where , , and is
constant) can be obtained from (12) by assuming a solution for
the electric field that has the single Cartesian vector direction

and is a function of a single spatial coordinate. This results
in the following differential equation:

(15)

Converting (15) to the complex-envelope representation yields

(16)

It is interesting to note that (16) is very similar to the telegraph
equation given in [6].

There are many differencing schemes that can be used to
approximate (15) and (16). In addition to possessing some
specified level of accuracy, the scheme must also be numer-
ically stable. Some schemes will be unconditionally stable,
some will be unstable, and some will be conditionally stable.

An explicit second order differencing scheme that approx-
imates (15) is [7]

(17)

where the Courant–Friedrichs–Lewy (CFL) number [8] is
denoted by and

(18)

In the equations above, the superscript onindicates that
is evaluated at an integer multiple of the time step (that is at

where is the time step). Similarly, the argument
of indicates that is evaluated at an integer multiple of the
spatial step (that is at where is the spatial step).
This difference scheme is conditionally stable ( ).

After considerable experimentation, we discovered that
(16) can be approximated by the following second-order

Crank–Nicolson scheme:

(19)

Crank–Nicolson schemes are often used in the numerical so-
lution of parabolic partial differential equations. A discussion
on the use of this type of differencing scheme in the numerical
solution of the heat equation can be found in [7] and [9].

For initial-value problems whose finite-difference schemes
have constant coefficients, the von Neumann stability con-
dition [7], [10], [11] provides a necessary test of numerical
stability. If the scheme is also Hermitian as it is here, the
von Neumann stability condition is also a sufficient test of
numerical stability [7]. To test (19) for numerical stability,
consider a homogeneous source-free region as the domain of
interest and assume an initial electric field distribution

(20)

where is a real-valued wave number. Now substitute an
assumed solution

(21)

into (19). Doing so yields

(22)

If (19) is a numerically stable FD scheme, the von Neumann
condition requires that the amplification factor, which is the
magnitude of the roots of (22), must always be less than
(implies that the scheme is dissipative), or equal to one.

After rewriting (22) in a simpler form

(23)

where

and is the complex conjugate of, (22) becomes easily
recognizable as quadratic in . Therefore, the roots of (23)
are

(24)
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While has not been analytically proven for any
range of center frequency, frequency bandwidth, time step, and
spatial step; numerical computations have shown that
for a wide range of center frequency, frequency bandwidth,
time step, and spatial step. Furthermore, the amplification
factor for every parameter combination tested.
This also indicates that this method does not suffer from the
numerical dispersion that is inherent in any multidimensional
or multigridded explicit finite-difference scheme.

Implicit (Crank–Nicolson) finite-difference solutions can be
written in the following matrix form:

(25)

where and are constant, symmetric, and banded (tridi-
agonal in the 1-D case) matrices, and where is a column
vector made up of the values of at all the spatial nodes at
the time . Similarly, is a column vector made up of
source-related terms at all the spatial nodes at the time.
Equation (25) is used to determineat all of the spatial nodes
at time using the previously determined values of
at all spatial nodes for times and . Because
and are constant and banded (tridiagonal in the 1-D case)
the computational burden of solving (25) is relatively small
compared to obtaining a solution of (25) if and were
dense matrices.

Although the numerical solution of the standard wave equa-
tion and complex-envelope formulation of the wave equation
can both be obtained using (25), the required time step for
the numerical solution of the two different wave equations are
very different. For both equations, the selection of the time
step is based on the sampling theorem requirements. For the
standard wave equation (SWE)

(26)

where is the number of samples per period. The sampling
theorem states that , however, numerical solutions
usually require . For the complex-envelope wave
equation (CEWE)

(27)

If in the solution of both wave equations is the same then

%
(28)

where the percent bandwidth

% (29)

For problems with small percent bandwidth sources, the
time step for the complex-envelope wave equation can be
several orders of magnitude greater than the time step for
the standard wave equation. As a result, the total number of
time steps required to obtain a solution to some maximum
time using the complex-envelope wave equation can be several
orders of magnitude less than that required using the standard

wave equation. This and an amplification factor of one are
the principle advantages of the complex-envelope formulation.
Some of the time-step advantage is lost when the complex-
envelope formulation is compared to the standard explicit
FDTD method because of the additional calculations that
must be performed at each time step in the complex-envelope
formulation.

The comparison of the relative time step required in the
standard wave- and the complex-envelope wave-equation so-
lutions assumes that choosing to be the same in both
formulations results in similar accuracy. Our initial results
confirm this. A fair comparisons between implicit and explicit
methods is difficult because for explicit methods, the spatial
sampling rate and the time sampling rate are not independent
and requirements for spatial sampling often forceto be
much larger than is needed for an implicit solution method.
Additionally, numerical dispersion decreases the accuracy of
multidimensional and multigridded explicit finite-difference
schemes. However, one can conservatively state that in all
cases

%
(30)

V. ANALYTIC SOLUTION OF THE COMPLEX WAVE EQUATION

The solution of the 1-D LPL wave equation for a-directed
surface current at in an unbounded homogeneous
region is as follows [12]:

(31)

where is the characteristic impedance of the medium and
is the unit step function. It is convenient to use a

bandpass-limited time function with a Gaussian envelope for
the source current. The source current used here is

(32)

where the Gaussian envelope function is

(33)

In (32), is scaled so that the peak value of
is one. Note that the Gaussian-shaped envelope is a low-pass
limited time function with bandwidth . For reasons
related to the numerical solution of the wave equation, the
time delay is set as so that is on the order
of 10 . Substituting (32) into (31) gives

(34)
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Rewriting the cosine terms in (34) as the real part of complex
exponential terms and then manipulating the result to obtain
the form of (10) yields

(35)

Equation (35) is the solution of the 1-D complex-envelope
wave equation for a directed complex-envelope surface
current at in an unbounded homogeneous region
where

(36)

A 1-D cavity with perfect electric conducting (PEC) walls
and a plane wave source centered between the walls is used as
an example problem in the following section. The PEC walls
are at and and the source is located at

. Using image theory and (35), the analytic solution
of the complex envelope wave equation can be determined. For
the plane wave source current of (36), the solution for
between the cavity walls is

(37)

where

(38)

and

(39)

are the fields to the left and right of the cavity due to the
source and its images.

VI. EXAMPLE RESULTS

A 1-D free-space filled cavity with perfect electric conduct-
ing (PEC) walls and a plane wave source centered between the
walls is used as an example problem. The PEC walls are at

and where . The plane wave
source is simulated numerically by applying the impressed
current at the single spatial node corresponding to the position

. In the standard wave-equation solution, the impressed
electric current is given by (32). In the complex-envelope
wave equation, the impressed current is the complex-envelope
representation of as given in (36).

The following example results have been computed with
(19), a center frequency, MHz and a bandwidth,

MHz. The continuous signals were sampled spatially

Fig. 3. The BPL FDTD solution of the 1-D cavity problem.

Fig. 4. Comparison of the BPL FDTD and analytic solutions at 4.5�s.

and temporally . Note that the complex-
envelope formulation is not particularly computationally ad-
vantageous for this combination of parameters

, however, these values were used so that the spatial
oscillations of the solution can be displayed clearly.

Fig. 3 illustrates the FDTD solution of the 1-D scalar
complex-envelope wave equation. Because the cavity is sym-
metric, the field distribution is only given for one half of the
cavity. At 1.5 and 3.0 s the traveling waves have not yet
propagated to the walls of the cavity. The rapid variation in
the field strength at 4.5 s is due to the backward traveling
(reflected) wave interfering with the forward traveling wave.
Given that Fig. 3 is a plot of the magnitude of the envelope of
a radio frequency (RF) signal, this rapid variation is expected.

A comparison of the analytic and BPL FDTD solutions is
shown in Fig. 4. The field distributions for 4.5s at the edge
of the cavity are plotted. The largest error is observed in this
region of the cavity. The BPL FDTD solution is in excellent
agreement with the analytic solution. The maximum observed
error in the complex-valued solution is less than 2%.
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Fig. 5. The BPL FDTD solution of the 1-D cavity problem..

Fig. 6. Comparison of the BPL FDTD and analytic solutions at 14.5�s.

The field distributions at later times are illustrated in Figs. 5
and 6. In Fig. 5, the field distribution at 14.5s has propagated
more than 125 m and is in the process of completing its third
reflection. A comparison with the analytic solution at 14.5s
is shown in Fig. 6. While the error in the BPL FDTD solution
has increased, it is still less than 5%. This cumulative error
is due to the finite-difference approximations of the temporal-
and spatial-derivatives.

A dielectric interface is used as a second example problem.
To the left of the interface is free space. To the
right the relative permittivity is two. Note that the
spatial dimension of the 1-D cavity was extended so that dur-
ing the times of interest, there would be no reflection from the
PEC walls. The frequency and sampling parameters remain the
same as in the first example. Fig. 7 illustrates the BPL FDTD
computed field distributions for various times in the region of
the interface. At 1.5 s, the field has not yet propagated to
the interface. The field is in the process of being transmitted
through and reflected from the interface at 3.0s. At 4.5 s,
the reflected field is propagating to the left, while the transmit-
ted field is propagating to the right. The reflection and trans-
mission coefficients are within 0.1% of the analytic values.

Fig. 7. The BPL FDTD solution of a region with a dielectric interface.

VII. CONCLUSIONS

Using the complex-envelope representation of bandpass-
limited signals, a new bandpass-limited formulation of the
vector wave equation was formulated and presented here. A
new bandpass-limited FDTD scheme that solves the bandpass-
limited vector wave equation has been developed and pre-
sented. An amplification factor of one and the ability to set
the time-step size based solely on the bandwidth of the system
are the principle advantages of this new method. For narrow-
band (small percent bandwidth) systems, the time step can
be several orders of magnitude larger than the time step in
conventional FDTD methods.

Results that illustrate the accuracy of this new method
were presented. While these results were for a 1-D cavity,
the formulation is valid in two and three dimensions as
well. Preliminary two-dimensional (2-D) results indicate that
the method is numerically stable and accurate. The authors
are currently working on a comprehensive error analysis of
the 1-D formulation, application of an absorbing boundary
condition, and the verification of 2-D results.
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