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Scattering from Complex Bodies Using
a Combined Direct and Iterative Technigque

Anders Sullivan,Member, IEEE and Lawrence CarinSenior Member, IEEE

Abstract—An iterative technique is developed for frequency- z
domain plane wave scattering from electrically large composite ¥ A
bodies. An electric field integral equation (EFIE) formulation is
employed in which the submatrices of the moment-method matrix
are uncoupled and the current on each geometrically separable
region of the composite body is solved independently using a
direct method. The currents on the various subcomponents of
the body are then recalculated within an outer iterative loop. 1
The technique is applied to the case of a multiwavelength body of
revolution (BOR) with two flat-plate attachments. This composite
body iterative technique is shown to preserve the simplicity and
attractiveness of an isolated BOR while maintaining current con-
tinuity across the structure without the use of additional junction
currents. This new formulation also allows simple suppression of
interior resonance effects normally associated with large closed
conducting bodies.

Index Terms—Electromagneric scattering, iterative methods, y

large bodies. method of moments.
9 Fig. 1. Body of revolution with two flat-plate attachments.

. INTRODUCTION a composite BOR and thin wire configuration using a coupled

INCE the publication of Harrington’s classic book orimagnetic field integral equation (MFIE) and electric field
he method of moments (MoM) [1] almost 30 years agdtegral equation (EFIE) formulation. Shaeffer and Medgyesi-
surface integral equations in conjunction with the MoM hawiitschang [7], [8], looked at the problem of radiation and
been used extensively for the numerical solution of scatterifgattering from thin wires attached to BOR'’s using an EFIE
from perfectly conducting bodies. This approach, however, figrmulation. More recently, investigators have looked at the
computationally intensive and requires significant computgfoblem of scattering from structures consisting of BOR's
storage for even moderately sized objects. In this paper, Wéh arbitrary surface attachments. In work by Durham and
develop a generalized method to efficiently analyze plaféristodoulou [9], [10], the arbitrarily shaped attachments
wave scattering from electrically large complex bodies usingégre modeled using triangular surface patches. This allowed
MoM formulation, where the MoM matrix equation is solveddreater flexibility in choosing the shape of the attachments.
using a combination of direct and iterative techniques. TheAs is well known in the BOR formulation, when the current
particular configuration considered is a long (with respect {& expressed as a Fourier series in azimuthal angle, each mode
wavelength) slender body of revolution (BOR) with two flatof the current can be evaluated separately. An unfortunate
plate attachments (Fig. 1). Itis shown that the efficient solutiéi®nsequence of the composite body formulation is the loss of
of the isolated BOR is maintained in this composite bodijpe block diagonal BOR MoM matrix. Instead, the composite
iterative formulation. body matrix equation is partial block diagonal. The added
As with the MoM, electromagnetic scattering from BOR’s isomplexity of the impedance matrix occurs regardless of
also a relatively old subject. Numerical solutions by Andreas#yhether the attachment is a thin wire or an arbitrary surface.
[2] appeared as early as 1965. Shortly thereafter, Mautz aiidall the work mentioned previously [7]-{10], the composite
Harrington used the MoM to solve the BOR problem [3]pody matrix was solved using partitioning [11]. This method
[4] and recently, very large BOR’s have been solved usingtakes advantage of the partial block diagonal nature of the
combined field integral equation approach [5]. An extension #npedance matrix to reduce the size of the largest matrix that
the early BOR work was investigated by Albertsaral.[6] for must be inverted, but requires cumbersome matrix operations.
A new scheme, with general utility, is developed here that
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A. Sullivan is with the Air Force Research Laboratory, Eglin Air ForceBOR formulation. In this approach, the fields incident on

Base, FL 32542 USA. _ . ___the BOR are modeled as the usual incident plane wave plus
L. Carin is with the Department of Electrical Engineering, Duke Unlversltyh field diated bv the ind d h £

Durham, NC 27708 USA. the fields ra |aFe y t e induce currents on the surface
Publisher Item Identifier S 0018-926X(99)02216-4. attachment, while the fields incident on the attachment are

U.S. Government work not protected by U.S. copyright.



34 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 1, JANUARY 1999

modeled as the incident plane wave plus the fields radiated
by the induced currents on the BOR. Each of these two
problems is solved independently, using the currents of one to
update the fields incident on the other. Iterations are continued
until convergence is achieved. While somewhat indirect, this
procedure maintains the block diagonal efficiency associated
with isolated BOR's.
The iterative approach presented here is conceptually similar single Body
to that described in [12], but differs in implementation and
detail. In this recent work by Hodges and Rahmat-Samii
[12], an iterative method coupling the MFIE and the EFIE
was developed for radiation and scattering problems, whefe
the integral equations were applied to geometrically distinct
regions of a complex structure in a manner similar to what
was done in [6]. The application of the MFIE to certain
regions of a complex body, however, necessarily restricts
those regions to be closed. In the work presented here, an
EFIE formulation is used. The restriction to closed bodies is, y
therefore, not imposed as in this other work [6], [12]. For
the example given in [12], a generalized triangular surfaté&
patch representation was used to model the current on the
conducting BOR, rather than the highly efficient specialize#tandard MoM procedure [14], using the currents of one body
BOR currents we use. The method of [12] was also shown&§ a source term to update the fields incident on the other
be generally more efficient for radiation problems rather th&rody. Iterations are continued until convergence is achieved.
scattering problems because the entire iterative procedure haotice that for the composite body, a nonphysical interior
to be repeated for each incidence angle. In this paper, we she@ge has been formed. This is illustrated in the figure by
that due to the “partially direct” nature of the composite bodipe dashed line. This is a mathematical artifact that results
iterative technique, our approach is ideally suited for boflom modeling a single large body by two or more smaller
radiation and backscatter calculations. Finally, the issue lpgdies. This nonphysical edge can introduce errors into the
interior resonances, which was not discussed in the previouflymulation because the boundary condition states that current
referenced work on composite bodies [6]-[10], [12], will bélowing normal to an edge must go to zero at that edge,
addressed here. but these edge currents are not necessarily zero. We can,
In Section I, the composite body iterative technique is préowever, take advantage of the iteration technique by using
sented. The technique is validated for a simple composite bdéi¢ neighboring currents that are computed at each iteration to
configuration. Convergence of the method is demonstratestimate the boundary currents normal to the attachment point.
and results are compared with traditional MoM solutions. I the current is expanded in terms of two-dimensional pulse
Section lll, the iteration technique is applied to a composifgnctions, and they directed current coefficients on body 1
body consisting of a BOR with two flat-plate attachments. 1and 2 in Fig. 2 are given, respectively, @), » and(J2); k.,

Composite Body

2. Flat-plate geometry for a single and composite body.

lieu of a direct MoM solution comparison, convergence resulgherej = 1,---, N, andk = 1,---, N, the boundary currents

are given. Conclusions are given in Section IV. normal to the interior attachment point can be expressed as
(J5)1x and(J7 )y fork =1,---, N. To estimate the interior
boundary currents, the procedure is as follows. When solving

II. COMPOSITE BODY ITERATION TECHNIQUE for the current on body 2, assume
A generalized technique is presented to reduce the large 1 (Jyl)g,k + (J,yQ)N’k
body scattering problem into smaller, subcomponent level (Jy)iw = 3
scattering problems. This technique is similar to the multiple (J;)N,k _ (Jj)l,k 1)

reflection approach described in [13]. Consider the infinitesi- . . .
mally thin, perfectly conducting flat plates in the— ~ plane Where the current terms on the right-hand side of the first
shown in Fig. 2. The upper plate represents a single largguation are obtained from the previous iteration. For the next
body. The lower plates, which can be attached or separatéération, when solving for the current on body 1, assume

constitute a composite body. When attached, the composite (T N—1 e+ (51

body has the same overall dimensions as the large plate. In (Jj)N,k = ’2 S

h i f lati he fields inci

the composite body formulation, the fields incident on body (Jj)l,k =(J§)N,k @)

1 are modeled as the usual incident plane wave plus the the
fields radiated by the induced currents on body 2, while thehere the current terms on the right-hand side of the first
fields incident on body 2 are modeled as the incident plaeguation are again obtained from the previous iteration. In this
wave plus the fields radiated by the induced currents on boghanner, the boundary currents normal to the attachment point
1. Each of these two problems is solved separately withaae recomputed after each iteration. Thalirected currents
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at the attachment point are treated as unknowns and solved iy
for in the usual manner since these currents are parallel to i
the interior edge. As can be seen by the first equation in (1)3
and (2), the currents normal to the interior edge are calculated2
by taking the average value of the current from either side,
while the second equation simply enforces current continuity 1
across the fictitious edge. It is important to recognize that thisO I
manipulation of the normal interior edge boundary current is
the key to the effectiveness of the composite body iterative
solution. This will be demonstrated in the following example. g
The single body and composite body configurations of
Fig. 2 are used as a test case. The large plate has dimensions y 50
of 4\ x 2. The smaller plates have dimensions of:2 2\ @)
and they are attached. The upper section in Fig. 3 shows the
normalizedy-directed current density on the large plate using JH
an “exact” MoM formulation for a plane wave incident in the
z-z plane atd™™ = 135°, where§ is measured from the 8
axis. To make the currents somewhat asymmetric, the plane| :
wave electric field had both & and ¢ component. For this
solution, the entire plate was modeled in the usual manner' [ !
(see [14]), and the solution was obtained using a direct methodo
Also shown in the lower section of the figure is the iterative
solution, where the large plate was modeled as two smaller
plates and the boundary currents at the attachment point wefe
recomputed after each iteration using (1) and (2). Ten iterations
were used in the iterative solution. As can be seen in the figure, 270
the iterative solution appears to have converged quite nicely (b)
to the exact solution, particularly at the attachment point. (Tir&. 3. Normalizedy directed current density on4 by 2 flat plate for a
attachment point corresponds to the= 1 coordinate line in plane wave incident in the — =z plane at¢'™¢ = 135 degrees. Comparison

-

the iterative solution figure.) Although not shown (see [1§]1cident electric field has both @ and ¢ component.
for details), using the composite body iteration technique and

enforcing current continuity at the attachment point pmduc?\?otice the governing equation has been divided into two major

very good backscatter results, even at the difficult graZi'%Qchomponents: the BOR part and the flat-plate part. The
angles.

etween (a) direct MoM solution and (b) composite body iteration technique.

solution for the BOR has been well documented [3], [4] and the

flat-plate problem was solved in the previous section. Testing

lll. BOR FLAT-PLATE COMPOSITE BODY with the complex conjugates of the BOR basis functions on

In this section, the application of the iteration technique € BOR surface and using razor blade testing functions on
a BOR flat-plate composite body is considered. The particulée flat plate attachments [14], the integral equation in (6) can

configuration is show in Fig. 1. This configuration, consistinge reduced to a matrix equation given by

of a BOR with two flat-plate attachments, represents a generic : : : . ©
missile shape. The EFIE for this body can be written as " BB . ) ' BP
. VA 0 0o - zZ5
L(J) = E; 3) o0 ZPB0 ) 2P0
o 0 ZBB ... | zBr
wherelL is the well-known integrodifferential operator [3], [7]. ) ) . )
For the composite body considered here
J = JPOR 4 P () e B R A
and JB EB,
JP =t J? (5) gy E§
| JB| = |EP ()
where JBOR represents the usual BOR surface current ex- . .
panded in terms of a Fourier series in azimuthal angle and o
JT represents the surface currents on the two flat-plate attach- L J" | ET |

ments. Substituting (4) into (3), and using the linearity of tr\?fhere
operator L. gives

L(TPOR) 1 L(J7) = Fine (6) ®)

tan-
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and current expansion coefficients. The least squares solution to
7 o this over determined system is given by [17]
JP = [ } E" = [ } 9
72 B2 O gz oonl) = 2E o] @

The self-impedance terms for the BOR are represented Where [Z] is the usual MoM impedance matrix and]
ZBB  where the subscript represents theth Fourier mode represents the usual incident plane wave excitation. Hhe

of the current expansion function [4]. The new terms in (7puperscript indicates taking the Hermitian. Due to the orthog-
ZBT and ZI'B, describe the mutual interactions between thenality of the testing functions, the isolated BOR MoM matrix
BOR and flat plates. The column vector on the right-haritias said to be block diagonal, where each mode of the current
side of (7) contains the usual information about the plaéas solved independently. Using similar testing functions, the
wave excitation of the structure and the column vector on tiOR supplemental matrix equation (10) is also block diagonal.
left-hand side contains the current coefficients for the BORubstitution of the BOR matrix equation and the supplemental
and flat plates. Matrices similar to (7) were developed iatrix equation into (11) produces a matrix equation, which is
all the previously mentioned references dealing with BOR&S0 block diagonal so the “resonance free” current can still be
in conjunction with wires and arbitrary surfaces [7]-[10]s0lved one mode at a time. What remains now is to determine
These matrix equations were solved using partitioning [1%jhat happens to the composite body matrix equation (7) when
to take advantage of the partial block diagonal nature of tHee supplemental equations are included in the formulation.
impedance matrix. Using this method, the largest matrix thatFor the composite body considered here (Fig. 1), the sup-
must be inverted is the larger 87" or ZEB. Itis this feature Plemental equations can be expressed in matrix form as

that allows analysis of much larger structures than would be

possible using a generalized surface-patch representation of

the entire composite body [9]. - CBP gB U C]_;i
At this point, the composite body iteration technique could 0 Gy gB C%P
be used to solve (7) in lieu of performing the extensive e 0 0 corF - | O

matrix operations from partitioning. Either method would .
be premature at this time, however, because the effect of -
interior resonances on the solution has yet to be addressed. :

For electromagnetic scattering problems, the MoM solution Jf;l V:B
of a surface integral equation can produce inaccurate surface Jo e

currents at frequencies associated with the interior cavity
resonance problem [16]. In the earlier work [6]-[10], [12], :
resonances were not treated because only low frequency cases —
were examined and, as long as the excitation stayed below LJP

cutoff frequency, resonances did not become a problem.\m|ere CPP and VP represent the impedance terms and the
this investigation, electrically large bodies are considered, §9citatiorrl1 vectorsn of the interior testing body, respectively.

additional constraints on the problem must be imposed The B submatrices represent the interactions of the flat-

order to suppress the resonance effects. An extremely robgf ‘
I

I

hod S hich fits | e currents and the interior testing body. The left-hand side
method o suppress interior resonances which fits in Wil 1y vector is the same as in (7). As stated previously, (12)

with Fhe current EFIE formulation is given by annmg [17]results from the imposition of the null interior field boundary
In this mgthqd, supplemental bounda'ry clond|.t|0n5 Of. Z€%ndition. Using shorthand notation, (7) can be expressed as
total electric field are enforced at multiple interior locations.

In MoM terminology, this amounts to introducing additional ZBB ZBr [JB EB

testing points in the interior of the closed conducting body. 7 PB PP J_p E

This results in an over determined system of equations which

can be solved using a least squares solution. Excellent reswitere Z?%, ZB”, and Z"”? represent block diagonal, block
have been obtained using this technique for a variety of shapetumn, and block row matrices, respectively, and (12) can

and frequencies [15]. be expressed as
To compliment the generalized MoM matrix equation 1B
[Z][7] = [FE], a supplemental equation utilizing the null [CBB | ¢BP] . = [v? (14)
interior field boundary condition can be written as Jr
[C][J] = [V] (10) where CB® and CP” represent block diagonal and block

column matrices, respectively. Using (11), it can be shown
where[C] is anM x N matrix whose elements are found bythat the least squares solution to the over determined system
introducingM additional testing functions in the body interior.in (13) and (14) produces a matrix equation thahas partial
[V]is a vector of length/ whose elements represent the inneslock diagonal [15]. This is due to theZ]” [Z] term in (11).
product of the incident field and the interior testing function¥he least squares impedance matrix [denoted by the curly
and[J] is a vector of lengthV whose elements represent thdraces in (11)] is, in general, extremely large, containing all the
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impedance submatrices for the two flat plates and the BOR.
Partitioning is of no use in this instance because it would
require taking the inverse of the now completely filled matrix
in the upper left quadrant [see (7)]. For all practical purposes
then, the governing matrix equation given by the least squares
solution can no longer be solved in-core using a direct method.
Even indirect methods such as Gauss—Seidel [18] or conjugat
gradient [19] may require out-of-core storage of the entire
composite body-least squares impedance matrix. A modified z
form of the iteration technique is needed to efficiently handle
this case. If the submatrices in (13) and (14) are multiplied
through, the following coupled set of equations result;

[ZPP)[TP) + (25717 = [EP] !
[ZPB][JB] + [ZPP] [JP] _ [EP] Fig. 4. Subsectional view of the current flow at the attachment point between

BB1r +B BP1r 7P B BOR and flat plate.
[CPPITP+ (e T =[V7] (15)

If the current on the flat-plate attachments is initially given blipcation. Thez-directed current at the boundary is solved as
physical optics (PO), the BOR currents can be evaluated usivefore.
the first and third equation in (15) The BOR current is the sum of all the Fourier modes.
In order to obtain the necessary fidelity in the BOR current
BB By _ B BP Py _ B
(27 W71 =[E7] - (27717 = (BT near the attachment point, a sufficient number of Fourier
[CPPIIP] =[VP] - [CBP|J7) = [VPY. (16) modes are required, even for the case of axial incidence. To

Th . dentical he isolated BOR bl test the validity of the composite body iteration technique,
ese equations are identical to the isolate Ogi(e effect of the total number of Fourier modes on solution

diagonal mat_rlx equat|9r_15 exgept that the right-hand si 8nvergence was examined. The number of iterations versus
vectors are slightly modified to include the effects of the flai:

plate currents. Using the procedure described earlier, the B
currents[---JB, JE JB...|T can be evaluated one mode ag
a time. The flat-plate currenfg! .72]¥ can then be found by
utilizing the second equation in (15) and the BOR curren
that were just computed

vergence was also examined. The composite body in Fig. 1
as illuminated with ap-polarized plane wave #™° = 90°
nd ¢ = 0° (broadside incidence). The length of the BOR
gas 1\ and the diameter wasA\1 Each flat-plate attachment
was 1Ax 1 A and the BOR nose was elliptically shaped. The
BOR generating curve was discretized itl0 subsections,

[JP] = [ZPP|~Y{[ET] - [ZPB][T5]}. (17) and the flat plate subdomains had dimensions\GE0 x A/
10. In the two remaining figures, the current is plotted against

Since the BOR attachments are open surfaces, it is guarantgednormalized BOR arc length coordinateFig. 5 is a plot
that[Z”"] is stable and well conditioned. Equations (16) angf the t-directed current along the = 90° coordinate of
(17) are solved repeatedly, where the most recently computgg BOR portion of the composite body for different values
currents are used to update the right-hand sides. At convgfthe maximum FEourier mode numb&f AX. These results
gence, all three equations in (15) are satisfied simultaneousiére computed for eight iterations and show that the solution

Current continuity can be applied at the attachment poirdgnverges for/ AX = 6. The influence of the flat plates can
between the BOR and the two flat plates. As shown in Fig. Be seen in the current by the two spikes in the data where
plate 1 is attached to the BOR in tile= 90° plane, while pjate 1 would be attached. While not plotted for the sake
plate 2 is attached to the BOR in the = 270° plane. To of previty (see [15] for details), the current on the fins (flat
examine the flow of currents near the attachment point,pqaates) was shown to converge fof AX = 3. The same
magnified subsectional view is provided in Fig. 4. Notice th%nﬁguration was run again, but with/ AX = 6—and the
the t-directed current on the BOR is parallel to thelirected number of iterations varied. Results showed the current to be
current on the flat plate. Using the notation from the previoysirly well converged after eight iterations. For this case, each
section, the boundary current normal to the attachment poi¥ditional iteration required 0.25 s of CPU on a CRAY-YMP

on the two plates can be approximated by or an increase of 0.2% in CPU time per iteration. Obviously,
(I = JBOR(p, 2. 6 = 90 — 6) the cost of iterating is minimal compared with the initial
v ¢ BO}; ’ computations. The normalized current on the BOR described
—Jg (0, 2,0 =90+ 6) above, with and without the flat-plate attachments, is shown
(JDnp =I5 (p, 2, = 270+ 6) in Fig. 6 for a¢-polarized plane wave @™ = 180° (axial
_ JqlSBOR(p’Z’d) =270 — §) (18) incidence). The total composite body solution is denoted by

the curve “BOR-FINS,” and the isolated BOR solution is
whereé is an arbitrarily small constant. It is understood thalenoted “BOR.” Thet-directed current along the side of the
thek index on the flat plate (running in thedirection), and the BOR (¢ = 90°) is plotted. Also shown for reference is the
(p, z) coordinate on the BOR correspond to the same physicatiirected current, “FIN,” on plate 1 of the composite body
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12 ; , . : . . . . . iteration process via (1), (2), and (18) that makes the technique
so effective for these smaller bodies.

Along with these size considerations, shadowing effects on
the body were also examined. Several cases were run where the
fin shadowed the rear section of the BOR, and other cases were
run where the BOR shadowed an entire fin. The shadowing
effects were clearly seen in all cases and there was no problem
with solution convergence.

Current Magnitude

IV. CONCLUSIONS

A robust generalized technique has been developed to model
large complex bodies with several smaller simpler bodies using
the composite body matrix formulation. In this technique, the
submatrices of the system impedance matrix are multiplied
Fig. 5. Normalizedi-directed current densityI2°% (see Fig. 4) on BOR through and the current on various subcomponents of the body
portion of a 10-long composite body (see Fig. 1) foraapolarized plane are evaluated separately. Taking advantage of the “iterative”
wave atf'® = 90° and ¢ = 0° (broadside incidence). Current plotted t f th uti th ted t di
along thes = 90° coordinate of the BOR. nature of the solution process, the computed currents adja-

cent to the attachment point can be used to better estimate
the normal boundary currents and enforce current continuity

12 . ; ; - ‘ - T — across the structure. On the other hand, the “partially direct”
sor, 208 — nature of the solution algorithm leads to efficient backscatter
10l RN {  calculations. This is evidenced in (16) and (17), where it

can be seen that the inverse of the self-impedance terms
for the various subcomponents of the complex structure are
computed once and then stored in memory. The composite
body iteration technique was validated for a simple flat-plate
test case. The general development of the iteration technique
was then applied to the specific case of a BOR with two flat-
plate attachments (our generic missile model). Traditionally,
this problem has been solved using a method based on
partitioning. This method takes advantage of the partial block
diagonal nature of the composite body MoM matrix to reduce
the size of the largest matrix that must be inverted. It was

Current Magnitude

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 . . .
i observed, however, that the composite body matrix equation

was no longer partial block diagonal when the null field
lated BOR and on BOR portion of ) A-long composite body (see Fig. 1) for INt€rior _boundary .condmons were included in the matrix
a ¢-polarized plane wave a'"< = 180° (axial incidence). Current plotted formulation. For this case, where the method of partitioning
along the¢ = 90° coordinate of the BOR. Also shown is thedirected  proyided limited utility, the composite body iteration technique

Fig. 6. Normalizedt-directed current density/PO" (see Fig. 4), on iso-

current density/! (see Fig. 4) on plate 1 at the attachment point. . . . .
¥ ( g-4)onp P preserved the block diagonal matrix formulation of the original

BOR scheme. The flat-plate results showed that the iteration

: . . chnique provided traditional MoM quality results (while
at the attachment point. As can be seen, the spikes in ru%ning in half the time [15]). The BOR flat-plate results

current line up properly on the BOR and flat-plate portlonsShowed that an efficient in-core solution was still possible for

of the composite body. The magnitude of the peaks are Ic—iﬁs .
) . . is electrically large complex structure.
important because they are a function of the subdomain size

of the current expansion functions. Again, the effects of the
flat-plate current on the BOR at and near the attachment point REFERENCES
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