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Scattering from Complex Bodies Using
a Combined Direct and Iterative Technique

Anders Sullivan,Member, IEEE, and Lawrence Carin,Senior Member, IEEE

Abstract—An iterative technique is developed for frequency-
domain plane wave scattering from electrically large composite
bodies. An electric field integral equation (EFIE) formulation is
employed in which the submatrices of the moment-method matrix
are uncoupled and the current on each geometrically separable
region of the composite body is solved independently using a
direct method. The currents on the various subcomponents of
the body are then recalculated within an outer iterative loop.
The technique is applied to the case of a multiwavelength body of
revolution (BOR) with two flat-plate attachments. This composite
body iterative technique is shown to preserve the simplicity and
attractiveness of an isolated BOR while maintaining current con-
tinuity across the structure without the use of additional junction
currents. This new formulation also allows simple suppression of
interior resonance effects normally associated with large closed
conducting bodies.

Index Terms—Electromagneric scattering, iterative methods,
large bodies. method of moments.

I. INTRODUCTION

SINCE the publication of Harrington’s classic book on
the method of moments (MoM) [1] almost 30 years ago,

surface integral equations in conjunction with the MoM have
been used extensively for the numerical solution of scattering
from perfectly conducting bodies. This approach, however, is
computationally intensive and requires significant computer
storage for even moderately sized objects. In this paper, we
develop a generalized method to efficiently analyze plane
wave scattering from electrically large complex bodies using a
MoM formulation, where the MoM matrix equation is solved
using a combination of direct and iterative techniques. The
particular configuration considered is a long (with respect to
wavelength) slender body of revolution (BOR) with two flat-
plate attachments (Fig. 1). It is shown that the efficient solution
of the isolated BOR is maintained in this composite body
iterative formulation.

As with the MoM, electromagnetic scattering from BOR’s is
also a relatively old subject. Numerical solutions by Andreasen
[2] appeared as early as 1965. Shortly thereafter, Mautz and
Harrington used the MoM to solve the BOR problem [3],
[4] and recently, very large BOR’s have been solved using a
combined field integral equation approach [5]. An extension of
the early BOR work was investigated by Albertsenet al. [6] for
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Fig. 1. Body of revolution with two flat-plate attachments.

a composite BOR and thin wire configuration using a coupled
magnetic field integral equation (MFIE) and electric field
integral equation (EFIE) formulation. Shaeffer and Medgyesi-
Mitschang [7], [8], looked at the problem of radiation and
scattering from thin wires attached to BOR’s using an EFIE
formulation. More recently, investigators have looked at the
problem of scattering from structures consisting of BOR’s
with arbitrary surface attachments. In work by Durham and
Christodoulou [9], [10], the arbitrarily shaped attachments
were modeled using triangular surface patches. This allowed
greater flexibility in choosing the shape of the attachments.

As is well known in the BOR formulation, when the current
is expressed as a Fourier series in azimuthal angle, each mode
of the current can be evaluated separately. An unfortunate
consequence of the composite body formulation is the loss of
the block diagonal BOR MoM matrix. Instead, the composite
body matrix equation is partial block diagonal. The added
complexity of the impedance matrix occurs regardless of
whether the attachment is a thin wire or an arbitrary surface.
In all the work mentioned previously [7]–[10], the composite
body matrix was solved using partitioning [11]. This method
takes advantage of the partial block diagonal nature of the
impedance matrix to reduce the size of the largest matrix that
must be inverted, but requires cumbersome matrix operations.
A new scheme, with general utility, is developed here that
preserves the simplicity and attractiveness of the original
BOR formulation. In this approach, the fields incident on
the BOR are modeled as the usual incident plane wave plus
the fields radiated by the induced currents on the surface
attachment, while the fields incident on the attachment are
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modeled as the incident plane wave plus the fields radiated
by the induced currents on the BOR. Each of these two
problems is solved independently, using the currents of one to
update the fields incident on the other. Iterations are continued
until convergence is achieved. While somewhat indirect, this
procedure maintains the block diagonal efficiency associated
with isolated BOR’s.

The iterative approach presented here is conceptually similar
to that described in [12], but differs in implementation and
detail. In this recent work by Hodges and Rahmat-Samii
[12], an iterative method coupling the MFIE and the EFIE
was developed for radiation and scattering problems, where
the integral equations were applied to geometrically distinct
regions of a complex structure in a manner similar to what
was done in [6]. The application of the MFIE to certain
regions of a complex body, however, necessarily restricts
those regions to be closed. In the work presented here, an
EFIE formulation is used. The restriction to closed bodies is,
therefore, not imposed as in this other work [6], [12]. For
the example given in [12], a generalized triangular surface
patch representation was used to model the current on the
conducting BOR, rather than the highly efficient specialized
BOR currents we use. The method of [12] was also shown to
be generally more efficient for radiation problems rather than
scattering problems because the entire iterative procedure has
to be repeated for each incidence angle. In this paper, we show
that due to the “partially direct” nature of the composite body
iterative technique, our approach is ideally suited for both
radiation and backscatter calculations. Finally, the issue of
interior resonances, which was not discussed in the previously
referenced work on composite bodies [6]–[10], [12], will be
addressed here.

In Section II, the composite body iterative technique is pre-
sented. The technique is validated for a simple composite body
configuration. Convergence of the method is demonstrated
and results are compared with traditional MoM solutions. In
Section III, the iteration technique is applied to a composite
body consisting of a BOR with two flat-plate attachments. In
lieu of a direct MoM solution comparison, convergence results
are given. Conclusions are given in Section IV.

II. COMPOSITE BODY ITERATION TECHNIQUE

A generalized technique is presented to reduce the large
body scattering problem into smaller, subcomponent level
scattering problems. This technique is similar to the multiple
reflection approach described in [13]. Consider the infinitesi-
mally thin, perfectly conducting flat plates in the plane
shown in Fig. 2. The upper plate represents a single large
body. The lower plates, which can be attached or separated,
constitute a composite body. When attached, the composite
body has the same overall dimensions as the large plate. In
the composite body formulation, the fields incident on body
1 are modeled as the usual incident plane wave plus the the
fields radiated by the induced currents on body 2, while the
fields incident on body 2 are modeled as the incident plane
wave plus the fields radiated by the induced currents on body
1. Each of these two problems is solved separately with a

Fig. 2. Flat-plate geometry for a single and composite body.

standard MoM procedure [14], using the currents of one body
as a source term to update the fields incident on the other
body. Iterations are continued until convergence is achieved.

Notice that for the composite body, a nonphysical interior
edge has been formed. This is illustrated in the figure by
the dashed line. This is a mathematical artifact that results
from modeling a single large body by two or more smaller
bodies. This nonphysical edge can introduce errors into the
formulation because the boundary condition states that current
flowing normal to an edge must go to zero at that edge,
but these edge currents are not necessarily zero. We can,
however, take advantage of the iteration technique by using
the neighboring currents that are computed at each iteration to
estimate the boundary currents normal to the attachment point.
If the current is expanded in terms of two-dimensional pulse
functions, and the directed current coefficients on body 1
and 2 in Fig. 2 are given, respectively, as and ,
where , and , the boundary currents
normal to the interior attachment point can be expressed as

and for . To estimate the interior
boundary currents, the procedure is as follows. When solving
for the current on body 2, assume

(1)

where the current terms on the right-hand side of the first
equation are obtained from the previous iteration. For the next
iteration, when solving for the current on body 1, assume

(2)

where the current terms on the right-hand side of the first
equation are again obtained from the previous iteration. In this
manner, the boundary currents normal to the attachment point
are recomputed after each iteration. Thedirected currents



SULLIVAN AND CARIN: SCATTERING FROM COMPLEX BODIES USING COMBINED DIRECT AND ITERATIVE TECHNIQUE 35

at the attachment point are treated as unknowns and solved
for in the usual manner since these currents are parallel to
the interior edge. As can be seen by the first equation in (1)
and (2), the currents normal to the interior edge are calculated
by taking the average value of the current from either side,
while the second equation simply enforces current continuity
across the fictitious edge. It is important to recognize that this
manipulation of the normal interior edge boundary current is
the key to the effectiveness of the composite body iterative
solution. This will be demonstrated in the following example.

The single body and composite body configurations of
Fig. 2 are used as a test case. The large plate has dimensions
of 4 2 . The smaller plates have dimensions of 2 2
and they are attached. The upper section in Fig. 3 shows the
normalized -directed current density on the large plate using
an “exact” MoM formulation for a plane wave incident in the

- plane at , where is measured from the
axis. To make the currents somewhat asymmetric, the plane
wave electric field had both a and component. For this
solution, the entire plate was modeled in the usual manner
(see [14]), and the solution was obtained using a direct method.
Also shown in the lower section of the figure is the iterative
solution, where the large plate was modeled as two smaller
plates and the boundary currents at the attachment point were
recomputed after each iteration using (1) and (2). Ten iterations
were used in the iterative solution. As can be seen in the figure,
the iterative solution appears to have converged quite nicely
to the exact solution, particularly at the attachment point. (The
attachment point corresponds to the coordinate line in
the iterative solution figure.) Although not shown (see [15]
for details), using the composite body iteration technique and
enforcing current continuity at the attachment point produced
very good backscatter results, even at the difficult grazing
angles.

III. BOR FLAT-PLATE COMPOSITE BODY

In this section, the application of the iteration technique to
a BOR flat-plate composite body is considered. The particular
configuration is show in Fig. 1. This configuration, consisting
of a BOR with two flat-plate attachments, represents a generic
missile shape. The EFIE for this body can be written as

(3)

where is the well-known integrodifferential operator [3], [7].
For the composite body considered here

(4)

and

(5)

where represents the usual BOR surface current ex-
panded in terms of a Fourier series in azimuthal angle and

represents the surface currents on the two flat-plate attach-
ments. Substituting (4) into (3), and using the linearity of the
operator gives

(6)

(a)

(b)

Fig. 3. Normalizedy directed current density on a4� by 2� flat plate for a
plane wave incident in thex � z plane at�inc = 135 degrees. Comparison
between (a) direct MoM solution and (b) composite body iteration technique.
Incident electric field has both a� and� component.

Notice the governing equation has been divided into two major
subcomponents: the BOR part and the flat-plate part. The
solution for the BOR has been well documented [3], [4] and the
flat-plate problem was solved in the previous section. Testing
with the complex conjugates of the BOR basis functions on
the BOR surface and using razor blade testing functions on
the flat plate attachments [14], the integral equation in (6) can
be reduced to a matrix equation given by

...
...

...
...

. . .
...

. . .
...

...
...

. . .
...

...

...

...

...

(7)

where

(8)
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and

(9)

The self-impedance terms for the BOR are represented by
, where the subscript represents the th Fourier mode

of the current expansion function [4]. The new terms in (7),
and , describe the mutual interactions between the

BOR and flat plates. The column vector on the right-hand
side of (7) contains the usual information about the plane
wave excitation of the structure and the column vector on the
left-hand side contains the current coefficients for the BOR
and flat plates. Matrices similar to (7) were developed in
all the previously mentioned references dealing with BOR’s
in conjunction with wires and arbitrary surfaces [7]–[10].
These matrix equations were solved using partitioning [11]
to take advantage of the partial block diagonal nature of the
impedance matrix. Using this method, the largest matrix that
must be inverted is the larger of or . It is this feature
that allows analysis of much larger structures than would be
possible using a generalized surface-patch representation of
the entire composite body [9].

At this point, the composite body iteration technique could
be used to solve (7) in lieu of performing the extensive
matrix operations from partitioning. Either method would
be premature at this time, however, because the effect of
interior resonances on the solution has yet to be addressed.
For electromagnetic scattering problems, the MoM solution
of a surface integral equation can produce inaccurate surface
currents at frequencies associated with the interior cavity
resonance problem [16]. In the earlier work [6]–[10], [12],
resonances were not treated because only low frequency cases
were examined and, as long as the excitation stayed below
cutoff frequency, resonances did not become a problem. In
this investigation, electrically large bodies are considered, so
additional constraints on the problem must be imposed in
order to suppress the resonance effects. An extremely robust
method to suppress interior resonances which fits in well
with the current EFIE formulation is given by Canning [17].
In this method, supplemental boundary conditions of zero
total electric field are enforced at multiple interior locations.
In MoM terminology, this amounts to introducing additional
testing points in the interior of the closed conducting body.
This results in an over determined system of equations which
can be solved using a least squares solution. Excellent results
have been obtained using this technique for a variety of shapes
and frequencies [15].

To compliment the generalized MoM matrix equation
, a supplemental equation utilizing the null

interior field boundary condition can be written as

(10)

where is an matrix whose elements are found by
introducing additional testing functions in the body interior.

is a vector of length whose elements represent the inner
product of the incident field and the interior testing functions
and is a vector of length whose elements represent the

current expansion coefficients. The least squares solution to
this over determined system is given by [17]

(11)

where is the usual MoM impedance matrix and
represents the usual incident plane wave excitation. The
superscript indicates taking the Hermitian. Due to the orthog-
onality of the testing functions, the isolated BOR MoM matrix
was said to be block diagonal, where each mode of the current
was solved independently. Using similar testing functions, the
BOR supplemental matrix equation (10) is also block diagonal.
Substitution of the BOR matrix equation and the supplemental
matrix equation into (11) produces a matrix equation, which is
also block diagonal so the “resonance free” current can still be
solved one mode at a time. What remains now is to determine
what happens to the composite body matrix equation (7) when
the supplemental equations are included in the formulation.

For the composite body considered here (Fig. 1), the sup-
plemental equations can be expressed in matrix form as

...
...

...
...

. . .
...

. . .
...

...
...

. . .
...

...

...

...

...

(12)

where and represent the impedance terms and the
excitation vectors of the interior testing body, respectively.
The submatrices represent the interactions of the flat-
plate currents and the interior testing body. The left-hand side
column vector is the same as in (7). As stated previously, (12)
results from the imposition of the null interior field boundary
condition. Using shorthand notation, (7) can be expressed as

(13)

where , , and represent block diagonal, block
column, and block row matrices, respectively, and (12) can
be expressed as

(14)

where and represent block diagonal and block
column matrices, respectively. Using (11), it can be shown
that the least squares solution to the over determined system
in (13) and (14) produces a matrix equation that isnot partial
block diagonal [15]. This is due to the term in (11).
The least squares impedance matrix [denoted by the curly
braces in (11)] is, in general, extremely large, containing all the
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impedance submatrices for the two flat plates and the BOR.
Partitioning is of no use in this instance because it would
require taking the inverse of the now completely filled matrix
in the upper left quadrant [see (7)]. For all practical purposes
then, the governing matrix equation given by the least squares
solution can no longer be solved in-core using a direct method.
Even indirect methods such as Gauss–Seidel [18] or conjugate
gradient [19] may require out-of-core storage of the entire
composite body-least squares impedance matrix. A modified
form of the iteration technique is needed to efficiently handle
this case. If the submatrices in (13) and (14) are multiplied
through, the following coupled set of equations result:

(15)

If the current on the flat-plate attachments is initially given by
physical optics (PO), the BOR currents can be evaluated using
the first and third equation in (15)

(16)

These equations are identical to the isolated BOR block
diagonal matrix equations except that the right-hand side
vectors are slightly modified to include the effects of the flat-
plate currents. Using the procedure described earlier, the BOR
currents can be evaluated one mode at
a time. The flat-plate currents can then be found by
utilizing the second equation in (15) and the BOR currents
that were just computed

(17)

Since the BOR attachments are open surfaces, it is guaranteed
that is stable and well conditioned. Equations (16) and
(17) are solved repeatedly, where the most recently computed
currents are used to update the right-hand sides. At conver-
gence, all three equations in (15) are satisfied simultaneously.

Current continuity can be applied at the attachment points
between the BOR and the two flat plates. As shown in Fig. 1,
plate 1 is attached to the BOR in the plane, while
plate 2 is attached to the BOR in the plane. To
examine the flow of currents near the attachment point, a
magnified subsectional view is provided in Fig. 4. Notice that
the -directed current on the BOR is parallel to the-directed
current on the flat plate. Using the notation from the previous
section, the boundary current normal to the attachment point
on the two plates can be approximated by

(18)

where is an arbitrarily small constant. It is understood that
the index on the flat plate (running in thedirection), and the

coordinate on the BOR correspond to the same physical

Fig. 4. Subsectional view of the current flow at the attachment point between
BOR and flat plate.

location. The -directed current at the boundary is solved as
before.

The BOR current is the sum of all the Fourier modes.
In order to obtain the necessary fidelity in the BOR current
near the attachment point, a sufficient number of Fourier
modes are required, even for the case of axial incidence. To
test the validity of the composite body iteration technique,
the effect of the total number of Fourier modes on solution
convergence was examined. The number of iterations versus
convergence was also examined. The composite body in Fig. 1
was illuminated with a -polarized plane wave at
and (broadside incidence). The length of the BOR
was 10 and the diameter was 1. Each flat-plate attachment
was 1 1 and the BOR nose was elliptically shaped. The
BOR generating curve was discretized into10 subsections,
and the flat plate subdomains had dimensions of10
10. In the two remaining figures, the current is plotted against
the normalized BOR arc length coordinate. Fig. 5 is a plot
of the -directed current along the coordinate of
the BOR portion of the composite body for different values
of the maximum Fourier mode number . These results
were computed for eight iterations and show that the solution
converges for . The influence of the flat plates can
be seen in the current by the two spikes in the data where
plate 1 would be attached. While not plotted for the sake
of brevity (see [15] for details), the current on the fins (flat
plates) was shown to converge for . The same
configuration was run again, but with —and the
number of iterations varied. Results showed the current to be
fairly well converged after eight iterations. For this case, each
additional iteration required 0.25 s of CPU on a CRAY-YMP
or an increase of 0.2% in CPU time per iteration. Obviously,
the cost of iterating is minimal compared with the initial
computations. The normalized current on the BOR described
above, with and without the flat-plate attachments, is shown
in Fig. 6 for a -polarized plane wave at (axial
incidence). The total composite body solution is denoted by
the curve “BOR FINS,” and the isolated BOR solution is
denoted “BOR.” The -directed current along the side of the
BOR ) is plotted. Also shown for reference is the
-directed current, “FIN,” on plate 1 of the composite body
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Fig. 5. Normalizedt-directed current density,JBOR
t

(see Fig. 4) on BOR
portion of a 10�-long composite body (see Fig. 1) for a�-polarized plane
wave at�inc = 90

� and�inc = 0
� (broadside incidence). Current plotted

along the� = 90
� coordinate of the BOR.

Fig. 6. Normalizedt-directed current density,JBOR
t

(see Fig. 4), on iso-
lated BOR and on BOR portion of a10�-long composite body (see Fig. 1) for
a �-polarized plane wave at�inc = 180

� (axial incidence). Current plotted
along the� = 90

� coordinate of the BOR. Also shown is thez-directed
current densityJ1

z
(see Fig. 4) on plate 1 at the attachment point.

at the attachment point. As can be seen, the spikes in the
current line up properly on the BOR and flat-plate portions
of the composite body. The magnitude of the peaks are less
important because they are a function of the subdomain size
of the current expansion functions. Again, the effects of the
flat-plate current on the BOR at and near the attachment point
is clearly seen in the composite body curve. For the composite
body solution, the maximum Fourier mode was nine. For the
isolated BOR, only the 1 modes needed to be computed for
this case of axial incidence.

While the original intent for developing the composite body
iterative technique was for modeling intractable, electrically
large complex structures where the current has largely local
dependence, results have shown that subcomponents of the
complex body can have dimensions on the order of a single
wavelength. It is by enforcing current continuity during the

iteration process via (1), (2), and (18) that makes the technique
so effective for these smaller bodies.

Along with these size considerations, shadowing effects on
the body were also examined. Several cases were run where the
fin shadowed the rear section of the BOR, and other cases were
run where the BOR shadowed an entire fin. The shadowing
effects were clearly seen in all cases and there was no problem
with solution convergence.

IV. CONCLUSIONS

A robust generalized technique has been developed to model
large complex bodies with several smaller simpler bodies using
the composite body matrix formulation. In this technique, the
submatrices of the system impedance matrix are multiplied
through and the current on various subcomponents of the body
are evaluated separately. Taking advantage of the “iterative”
nature of the solution process, the computed currents adja-
cent to the attachment point can be used to better estimate
the normal boundary currents and enforce current continuity
across the structure. On the other hand, the “partially direct”
nature of the solution algorithm leads to efficient backscatter
calculations. This is evidenced in (16) and (17), where it
can be seen that the inverse of the self-impedance terms
for the various subcomponents of the complex structure are
computed once and then stored in memory. The composite
body iteration technique was validated for a simple flat-plate
test case. The general development of the iteration technique
was then applied to the specific case of a BOR with two flat-
plate attachments (our generic missile model). Traditionally,
this problem has been solved using a method based on
partitioning. This method takes advantage of the partial block
diagonal nature of the composite body MoM matrix to reduce
the size of the largest matrix that must be inverted. It was
observed, however, that the composite body matrix equation
was no longer partial block diagonal when the null field
interior boundary conditions were included in the matrix
formulation. For this case, where the method of partitioning
provided limited utility, the composite body iteration technique
preserved the block diagonal matrix formulation of the original
BOR scheme. The flat-plate results showed that the iteration
technique provided traditional MoM quality results (while
running in half the time [15]). The BOR flat-plate results
showed that an efficient in-core solution was still possible for
this electrically large complex structure.
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