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Efficient Wide-Band Evaluation of Mobile
Communications Antennas Using| or |Y]
Matrix Interpolation with the Method of Moments
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Abstract—The development of novel antennas for mobile com- FDTD predicts antenna performance over a wide band of
munications often relies on performance simulations. The eval- frequencies in one simulation. A common FDTD formulation
uation of the antenna surface currents for many frequencies g 510ys 4 three-dimensional (3-D) volumetric grid of uniform
using the method of moments (MoM) can take a long time t | lIs that Its | d id with Il cell
since the impedance matrix must be computed for each new rec angu ar ce _S a r_esu S In a dense gn _W' ;ma cells
frequency. This paper investigates and compares two efficient for radiators with detailed features. Geometries with curved
methods for the computation of the broad-band performance of and flared elements are approximated with a stairstep grid. A
mobile communications antennas using frequency interpolation circular helix antenna, for example, must be approximated by
of either the MoM impedance matrix [Z] or admittance matrix an equivalent square helix [6] or requires a grid of extremely

[Y]. In either method, the elements of only a few matrices I . I del th | windi
at relatively large frequency intervals are directly computed. SMall stairstep cells to model the coll windings.

These matrices are then used to interpolate the elements of the The frequency-domain MoM approach based upon the trian-
respective [Z] or [Y] matrices at the intermediate frequencies. gular patch surface model overcomes some of the geometrical
Both methods reduce the time it takes to compute the antenna modeling restrictions of FDTD. The MoM formulation can
performance over a wide frequency band. The implementation ,.,4e a combination of wires of arbitrary shape attached
of each method to evaluate the performance of several different . . .
antennas used for mobile communications is discussed. Examplest© Metallic surfaces of arbitrary shape. The triangular mesh
with both frequency-domain and time-domain results are pre- allows curved and flared geometries to be modeled with a flat
sented and both near-field and far-field quantities are considered. patch (or linear) surface approximation and allows detailed
The accuracy, the simulation run times, and the computational features to be modeled with a locally dense mesh. Piecewise
{ﬁgm;emteerltsogﬁg'rze;:e'\ﬂcoo'\rﬁp[;é drT‘at”X interpolation, and [ Y] jihaar wire elements allow coiled wires to be effectively mod-
eled. The MoM approach computes the antenna performance
Index Terms—Broad-band antennas, helix, method of mo- gne frequency at a time and requires the computation of many
ments, mobile antennas, PIFA, T'] matrix, [ 2] matrix. frequency points for broad-band performance evaluation or for
short-pulse source antenna characterization. The computation
over a wide frequency range can take a long time since
l. INTRODUCTION the elements of the MoMZ] matrix must be recomputed

HE rapidly expanding personal and mobile communfor each new frequency point. Thus, techniques to minimize

cations services have necessitated the developmenttft computation time and significantly speed up the overall
new antenna designs. An important task associated with §igwlation process are highly desirable. Popular methods to
evaluation and comparison of antennas for these applicatiéRguce the computation time of MoM focus either on the use
involves simulations to predict the antenna performance owfrhumerical and geometrical approximations to quickly|#l]
a wide frequency range. A challenge in the design of sué efficient matrix inversion and solution algorithms [7], [8].
antennas is the development of advanced simulation softwarépatial interpolation methods used to efficiently fill the
that allow the characterization of different configurations dmpedance matrix [9]-{11] have been studied. These ap-
perfect conducting wires and surfaces. Two popular electidoaches impose constraints on the structure of the surface
magnetic analysis methods that are often applied to these cl@§sh or the interpolation sampling criteria. A technique that
of antennas are the finite-difference time-domain (FDTD) [1§mploys the method of moments to compute rational function

[2] and the surface-patch method of moments (MoM) [3]-[5pPProximations for the transfer functions of antenna output
performance parameters is discussed in [12]. This method

is used to develop a compact transfer function of a single
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cylinder with a slit. These functions are used to extrapolate [

the broad-band response from narrow-band data. Since the Antenna Geometry ‘

functions represent currents, they must be recomputed for each Direct 1Z] Matrix [Y] Matrix
different angle of incidence or excitation. The coefficients of Evaluation y "merpoation \’”’e”"”a”"’”
the rational functions used in [12] and [13] can be determineqi" 121 Directly Fill (2] Directly at Fil [Z] Directly at
either by many frequency samples of a response or the atEach a Few “Selected” a Few “Selected”
response and its higher order derivatives at a few frequencigsFreauency | |Widely-Spaced Frequencies | | Widely-Spaced Frequencies
The derivatives are computed by actually modifying the MoM + +
analysis program, which not only requires access to the source Fill [Z] by Interpolation Compute [Y]=(Z}"
code, but can become rather difficult when complex basis or ag’:j;’:fgfste at “Selected’ Frequencies
testing functions are used. *
The present work focuses on implementifi§] matrix or Y + TV T———
[Y] matrix interpolation methods that: Compute [Y]=[Z]"! at Each Frequency I [atllnzerrr;gzi‘?zt: o
1) are easily implemented to an existing method of mo- Frequencies
ments computer code, thus require no significant code Y *
modifications; Solve [1]=[Y][V] to Compute

Antenna Performance in Frequency Domain

2) accurately construct the antenna surface currents,
impedance, patterns, etc.;

3) utilize simple interpolation functions that require only a FFT?
few coefficients;
4) apply to a wide variety of antenna configurations; Antenna Performance in Time Domnain
5) impose few restrictions on the antenna geometry mod-
eling; Fig. 1. Comparison ofZ] and[Y'] matrix interpolation methodologies.

6) are independent of antenna excitation.

The [Z] matrix and [Y] matrix interpolation approaches
discussed in this paper are outlined in Fig. 1. Both methods 0.02h
incorporate knowledge of the general frequency characteristics reed * z > -
of the respective matrix elements in a way that reduces the time A/
it takes to compute them at each frequency. THE matrix
interpolation method was originally proposed by Newman and
Forrai [14] for the scattering analysis of a microstrip patch. rﬁ:n
Newman [15] also used it for the impedance analysis of
a straight dipole antenna and flat square plate. The present | 258t
work expands the utilization ofZ] matrix interpolation to mm
the Wide-l_aand performance evaluation of_co_mplex ar?tenn;g\‘s/ﬁmm L Foed i ;
and also investigates a comparalp}§] matrix interpolation
approach. The methods are applied to the triangular surface- (a) (b) (©
patch MoM formulation. The objective is to compare thﬁiig. 2. Antennas for the application %] and[Y"| matrix interpolation. (a)
versatility, accuracy, and computational efficiency between tR&A (527 unknowns). (b) Circular helix (88 unknowns). (c) Forked monopole
two methods and provide implementation guidelines. (22 unknowns).
Mobile communications antennas come in a variety of
configurations but are often small with respect to wavelength,
consist of thin wires, or have low-profile surfacé&] matrix differ_ent mobile_ communications antennas are presgn_ted in
and [Y] matrix interpolation have been applied to the perforS€ction . Secthn IV compares thg compl_Jtat|ona.I eff_|C|ency
mance analysis of the antennas shown in Fig. 2. The plar%erth mterpolapon methods. Section V gives gwdellneg on
inverted F antenna (PIFA) is a compact low-profile antenftge implementation of the methods. Section VI summarizes
that can be readily integrated onto portable and mobile radi@€d concludes the results.
The circular helix is a thin-wire antenna that is suitable for
satellite communications applications. The forked monopole Il. INTERPOLATION METHODOLOGIES
is a unique wire antenna that displays both a monopole
resonance and a high-Q transmission line mode resonarfte Tfiangular Surface-Patch Method of Moments Methodology
The antenna examples have different numbers of unknownsn the triangular surface-patch MoM formulation for antenna
from one another, which provides some useful insight wheadiation problems, the antenna surfaces are partitioned into
comparing computational efficiency. N sufficiently small subsections. From this, one sets up and
Section Il outlines the MoM formulation used in this papesolves the system of equation£][I] = [V] to determine
and describes thgZ] matrix and[Y'] matrix interpolation meth- the N surface currents on the antenna, whéfg is the
ods. The results of applying the method to several distinctly x N impedance matrix/[] is the N x 1 current coefficient

ne13mm g 0.5h 0.466h
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matrix to be determined, anfl’] is the N x 1 voltage or 0.6
excitation matrix. Alternatively, theV surface currents can
be determined usingl] = [Y][V], where[Y] is the N x N 0.4+

admittance matrix that is computed By] = [Z]~L.
The formulation described in this paper uses the electric
field integral equation (EFIE) for perfect electric conductors

Real (Zmn)
o
o

(PEC). Using this condition and expressing the total radiated 0.0 S =
field in terms of potential functions allows one to write 0.2 e
S o 2.0 4.0 8.0 8.0
[wA(R) + VO (Mian = Ein(?) (1)
0
where -
e H N c 17°% 3
Ay == [ T s @ £ I
> N
and E 1500 =
B() = —— v 0 Tl e @)
o gdrwe Js 7 R 0% 40 6.0 8.0°0%°
where R = |7 — #'| is the distance between the observa- Frequency (GHz)
tion point and source point on the PEC surfage\ is the (@
wavelengthk = 27 /A, ande and i, are the permittivity and 0.010
permeability, respectively, of the medium. In this formulation ’
ane’“* time convention is used, wheke= 27 f and f denotes 0.005 |
the frequency. ’g
In the triangular surface-patch methodology three differ- > oo & /¢
ent linearly independent vector basis functions are used to'g .
represent the currents on the antenna. The basis functiond™ -0.005 |
depend only upon the geometrical parameters of the particular
subsection under consideration. The details of the efficient -0-0102.0 20 50 8.0
numerical implementation of the method are discussed in [4] Frequency (GHz)
and [5]. Significant computational effort is required to fill the 0.010
N? elements of thdZ] matrix. This effort increases when
techniques such as higher order basis functions [16]-[17], are . 0.005
used. £ .
Equations (1)—(3) and the form of the basis and testing func- % 0.000 g~
tions determine the frequency characteristics of the elements g
of the [Z] matrix. These equations reveal that the term*# — 0.005
dominates the frequency behavior of the€] elements. For -0.010 ‘ ‘
matrix elementZ,,,,,, R equalsr,,,, = |#n — 7| Wheres,, is 20 4.0 6.0 8.0
the observation location (or subsection) afdis the source Frequency (GHz)
location (or subsection.) When the observation and source
are close to each other,,,, is small ande 7% == varies _ . a
slowly with frequency. When they are far from each other, _ _ E;]O] ;’"”; 2'9 om - Hgg% :’"” ;Sg 22
rmn 1S large ande=7*=+ fluctuates rapidly with frequency. ' o
The behavior of the elements fif] is not directly discernible ()

from (1)—(3) since thgY] matrix elements for a particular Fig. 3. Comparison of varioJs?] and[Y'] matrix elements for circular helix.
antenna configuration are only determined after inverting t&@ [£] matrix elements. (b]y’] matrix elements.
overall [Z] matrix.

B. Characteristics ofZ] Matrix and [Y'] Matrix Elements ~ of the antenna and ground plane consecutively to 88, located

Some[Z] matrix and[Y] matrix elements for the helix havet the open end of the wire. _
been plotted as a function of frequency. Fig. 3 gives a close!N€ [£] matrix elements in Fig. 3(a) vary slowly with
look at the behavior of some of t&] matrix and[Y'] matrix ~frequency while théY’] matrix elements in Fig. 3(b) fluctuate
elements for the helix for a 4:1 frequency bafd] matrix rapidly with frequency. While the elements of th&] matrix
and[Y] matrix elements for small, medium, and large valugdre practically unaffected by the resonant characteristics of
of 7., are considered. The circular helix has 88 subsectioffie antenna, the elements of thiE] matrix are strongly
that are numbered from one, located at the attachment pdirftuenced by the resonant behavior. An individi&] matrix
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element depends only upon the relative spacing between tlo[Y] Matrix Interpolation with Ratio of

subsections, whereas the elementgdfstrongly depend upon Polynomials Interpolation Functions

the overall behavior of the entire antenna structure. Each element of thi¢’] matrix is approximated by the ratio

The elem_ents diZ] can be evalqated overa freque_ncy rangss two polynomials given as

by rather simple and low-order interpolation functions, such

as a quadratic polynomial. The interpolation of the eIementsY ~a0mn F 0mn S 2 mn f2 A G /7

of [Y'] over a frequency range requires interpolation functions mn(f) = L4 by mnf + b2 mnf2 4+ + bamn f?

such as the ratio of twath order polynomials to accurately (6)

capture the frequency behavior of tfi] matrix elements. ~ where f denotes frequencyp denotes the order of the
numerator polymonial,d denotes the order of the de-

C. [Z] Matrix Interpolation with Quadratic nominator - polynomial, andagmn, @1,mn, -, ap.mn and
. . b1 mns 02.mns * 5 ba.mn a@re themnth elements of the complex
Interpolation Functions ST T e
coefficient matricegag], [a1], - - -, [ap] and [b1], [b2], - - -, [bal,

The [Z] matrix interpolation process begins by partitioningespectively. When the numerator and denominator have the
the entire frequency band of interest into steps and definiggme or nearly the same degree, the ratio of polynomials
several “selected” frequencies. The interval between adjaC?é\Sresentation of matrix elemedt,,,, is often better than a
“selected” frequencies defines the interpolation frequency steBlynomial approximation [19]. In this approach+ d + 1
size. The[Z] matrices for the first three selected frequenciggefficient matrices are computed.
are directly computed by evaluating the potential integrals (2) The [y'] matrix interpolation process begins by defining the
and (3) as prescribed by the MoM. The element§4)f for  order of the polynomials in (6). From thig+d+1 “selected”
the intermediate frequencies are approximated by a quadrfiGyuencies within the frequency range are identified. An
function N x N [Y] matrix, determined byY] = [Z]~! is computed

for each “selected” frequency. The elements of these matrices

Zmn(f) = Amn 2+ Bun f + Coun (4) are then used to determine ther d + 1 complex coefficient

matrices. Thennth element of each coefficient matrix is then
where f denotes frequency and,..,,, Binn, and C,,,,, are the Substituted i_nto (6) to compute _the corresponding element of
mnth elements of the complex coefficient matridet], [B], the [Y'] matrix at each intermediate frequency.
and [C]. Equation (4) can be cast into a system of three The [Y'] matrix elements are highly dependent upon the
equations and three unknowns. These equations along with fiigonant characteristics of the antenna. The method of im-
elements of the directly computdé] matrices calculated at Proving the interpolation by factoring out the™?*™ term
three selected frequencies are used to determine the coeffic#afs not apply tgY’] matrix interpolation. The choices of the
matrices. If the frequency band of interest is especially wide Rplynomial orders in the numerator and denominator depend
may be necessary to divide the band into several interpolatigROn the proximity of adjacent antenna resonances and the
frequency ranges and implement a process of stepping thro@ygrall evaluation frequency range. Since one typically does

them. Quadratic interpolation works best for antennas wiftpt know the location of the resonances beforehand, there
surfaces that are smaller than .5 is no convenient way to quickly determine the order of the

The interpolation function can be improved upon by indumerator and denominator polynomials. In this paper, the
corporating the frequency behavior of the elements[zf Same polynom|al order is used for the numerator and the
into the process [15], [18]. This is done to increase tté€nominator.
accuracy in evaluating the terms pf] at the intermediate
frequencies or allow larger interpolation frequency ranges..  [|I. A PPLICATION OF INTERPOLATION METHODS
For large antennas, the rapid frequency variation of the factor TO ANTENNA PERFORMANCE ANALYSIS
e~J¥ == dominates the frequency variation of tfig] matrix

elements with large:,... The quantity This section compares the results of employing[thipma-

trix and [Y] matrix interpolation methods to the performance
z evaluation of complex antennas. The methods are applied to an
Zh = (5) antenna composed primarily of surfaces (a PIFA), a long wire
e—Jkrmn . . .
antenna (a circular helix), and a short wire antenna (a forked
monopole). These antennas were chosen since they represent
a diverse variety of complex antenna configurations with
Cintricate geometries of wires or wires connected to surfaces.

varies quite slowly with frequency. Whe,,,, is large with
respect to\, the improved computation aof,,,, is evaluated
in two steps. First, &/, element is computed by quadrati
interpolation using the corresponding elements of the directly i _

computed[Z’] matrices. The matrix element,,, is then A Frequency-Domain Analysis of PIFA Antenna

determined by multiplying the resultant value by the known The [Z] matrix and[Y] matrix interpolation schemes have
factor e —7*"=» The interpolation function can also be cast itbeen applied to the computation of the input impedance of the
a form that accurately models the behavior of the singular aR#FA. Some design details for PIFA’s are given in [20]-[22].
closely spaced terms ¢¥]. This has been implemented forThe PIFA, shown in Fig. 2(a), consists of an air-suspended
thin wire antennas [15]. rectangular patch element, a small ground plane, and a shorting



VIRGA AND RAHMAT-SAMII: EVALUATION OF MOBILE COMMUNICATIONS ANTENNAS 69
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Fig. 5. Comparison of ratio of polynomials representation of matrix element
(@) Yis27 for PIFA.
800 .
- —— Direct MoM
@« - -
E 600 e itnhdé)r:jdeerré?.(());. MHz. The fourth-order case uses nine selected frequencies
5 .O.P.
= 0 computed at every 62.5 MHz.
§ Fig. 4(a) shows that théZ]-matrix interpolation results
£ 200 agree well with the direct MoM results. The results for nearly
K] a 2:1 frequency range are accurately determined by directly
T 9 computing the MoM[Z] matrix at only three frequenciegz]
' matrix interpolation predicts the resonant behavior at 780 MHz
600 — even though there is no selected frequency specifically located
= 400 at this point. QuadratifZ] matrix interpolation works well for
£ this antenna because it primarily consists of surface elements
o 2% and the largest antenna dimension is only 3.481.1 GHz.
8 0 Fig. 4(b) shows that th¢}Y] matrix interpolation results
§ 200 computed with fourth-order polynomials agree well with the
g direct MoM results, while the interpolation results computed
T A0 57 E TSI T4 with second-order polynomials do not. To understand and ex-
Frequency (GHz) plain these results, the ratio of polynomials representation was

) used to investigate how accurate it can compute a sifigle
matrix element. Fig. 5 shows matrix eleméft;.; computed

Fig. 4. Comparison of PIFA input impedance computed [BY and [Y] ; . : ; ; ;
matrix interpolation (in both cases, the data for the dashed and solid lines tah]gee different ways: 1) by directly inverting the entif2]

superimposed). (d)Z] matrix interpolation. (b)Y] matrix interpolation. matrix and extracting th&} ;.7 element at each frequency; 2)

by approximating the value df; 527 by the ratio of second-
order polynomials; and 3) by approximating the valué&'of+
plate. The overall mesh consists of 527 unknowns. The anterf) athe ratio of fourth.—order polynomlals. The coefficients for
: . e second-order ratio of polynomials were computed by the
is fed by a delta-gap source that is placed between the base of ~ . : X ) .
. évaluating[Y] (via the computation and inversion @f]) at
the feed wire and the ground plane.

. ) . . five “selected” frequencies. The coefficients for the fourth-
Fig. 4 compares the input impedance computed by dirgghye o p. approximation were computed by evaluafifig

MoM, [Z] matrix interpolation, andY'] matrix interpolation. o4 nine “selected” frequencies. This figure shows that second-

The input impedance in each case is computed at evejer R.0.P. captures the behavior of the real par¥ghs

10 MHz. The input impedance computed by quadrafi¢ pyt does not model the imaginary part very well. The fourth-

matrix interpolation uses three selected frequencies locatechader R.0.P. accurately determines both the real and imaginary

0.6, 0.85, and 1.1 GHz. The input impedance computed B4rts of this matrix term. Detailed plots of othf] matrix

[Y'] matrix interpolation uses either the ratio of second-ordefements show similar comparisons.

polynomials (second-order R.O.P.) or the ratio of fourth-order Fig. 6 compares the radiation patterns at 0.85 GHz

polynomials (fourth-order R.O.P). The second-order R.Od®mputed directly from MOM]Z] matrix interpolation, and

case uses five selected frequencies computed at every $28ond-order ratio of polynomial$}] matrix interpolation
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Direct MoM

[Y] Matrix "
Interpolation , vy W4 V Z

@) (b) (©

Fig. 6. Comparison of far-field patterns of PIFA at 0.85 GHz computedAjyand [Y'] matrix interpolation. (a)E| dB versuseg, § = 90°. (b) |E| dB
versusé, ¢ = 90°. (c) |E| dB versust, ¢ = 0°. Selected frequencies f¢Z] matrix interpolation are 0.53, 0.78, and 1.03 GHz. Selected frequencies
for [Y] matrix interpolation are 0.6, 0.8, 0.9, 1.0, and 1.1 GHz.

using second-order ratio of polynomials. The selectageneral design details for helix antennas are discussed in [23].
frequencies for[Z] matrix interpolation are 0.53, 0.78, andThe helix is an excellent candidate to test the interpolation
1.03 GHz, while the selected frequencies faf] matrix strategies, since the input impedance of this antenna changes
interpolation are 0.6, 0.8, 0.9, 1.0 and 1.1 GHz. The pattergsite rapidly at frequencies when additional modes propagate
computed by the direct MoM an{lz] matrix interpolation on the antenna. The model for this antenna uses 88 wire
agree very well, while the patterns computed ugigmatrix gypsections and is fed by a delta-gap source located at the
interpolation do not. WherjY’] matrix interpolation is used pase of helix.

to compute the radiation patterns at 0.90 GHz (a selectedro input impedance computed by direct MoM and[BY}

frequency), there is good agreemen_t With the direCt_MoMatrix and [Y] matrix interpolation is compared in Fig. 7.
results as expected. These results indicate [&atmatrix te the rapidly changing input impedance behavior from

interpolation can accurately compute near-field and far-fieﬁO g ;
o . e additional modes that propagate on the helical structure.

antenna parameters. They also indicate that higher or re inbut impedance in each case is computed and plotted

polynomials must be used whdi] matrix interpolation is P P P P

employed for near-field (input impedance) as well as far-fief} V&Y 20 MHz. The[Z] matrix interpolation frequency
(radiation patterns) quantities. step size is 150 MHz. The selected frequencies usedZpr

matrix interpolation are denoted by the five stars”“The
impedance computed Hy/] matrix interpolation is calculated
B. Frequency-Domain Analysis of Circular Helix by interpolation over the entire 4:1 frequency band using
The [Z] matrix and[Y] matrix interpolation schemes wereonly five directly computed”] matrices, i.e., three subbands
used to the compute the input impedance of a four tusfe used. The input impedance computed [bj] matrix
circular helix antenna on an infinite ground plane shown interpolation uses either the ratio of fourth-order polynomials
Fig. 2(b). The helix is in the axial mode near 3 GHz. Som@ourth-order R.O.P.) or the ratio of tenth order polynomials
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. — Direct MoM Fig. 8. Comparison of ratio of polynomials representation of matrix element
2 600 == 4th Order R.O.P Y7 60 for helix.
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g 400 \
é j ’ orders or an efficient scheme to determine different polynomial
K 200, A orders each for the numerator and denominator are needed to
T 7 accurately predict the input impedance for the entire 4 : 1 band.
) A close look at the accuracy ¢¥] matrix interpolation for
% 400 a single helix matrix element for the helix is shown in Fig. 8.
£ This plot compares element, ¢p as a function of frequency
% 200 computed three different ways: 1) by directly inverting the
e 0 entire [Z] matrix and extracting thé&: ¢o element at each
] . .
g it frequency; 2) by approximating the value &f g9 by the
£ 200 ratio of fourth-order polynomials; and 3) by approximating
; the value ofY] go by the ratio of tenth-order polynomials,
-409! 4*o L 50 80 The coefficients for the ratio of fourth-order polynomials.
' E ' éH ' were computed by evaluatinly’] at nine different frequencies.
requency (GHz) The coefficients for the ratio of tenth-order polynomials were

Fig. 7. Comparison of helix input impedance computed [B} and [Y]
matrix interpolation. (a)Z] matrix interpolation. (b]Y] matrix interpolation.

(b)

computed by the computingt] in the same way at 21
different frequencies. Fig. 8 shows that the ratio of fourth-
order polynomials does a rather poor job of reconstructing the
real and imaginary parts of this matrix element. The ratio of
tenth-order polynomials models most of the detailed features

(tenth-order R.O.P ). Nine selected frequencies are used @bithe real part oft g0, yet still does not capture many of the
the fourth-order R.O.P case, while 21 selected frequencies fgatures of the imaginary part af;, ¢o. A ratio of tenth-order
used for the tenth-order R.O.P case. The selected frequengieynomials representation for each element[Xf requires
in each case were chosen by dividing the 2-8 GHz frequeri®¢ computation and inversion ¢%] at 21 frequencies as

range in equal frequency i

ncrements.

well as the storage of more than 21 [88 88] coefficient

The input-impedance behavior of the helix is well modMatrices. Only five [88«< 88] coefficient matrices are required

eled with [Z] matrix interpolation. Even the rapid impedancd® accurately compute the antenna performance j#tmatrix
variations between 4 and 5 GHz only slightly differ from thdterpolation.

directly computed results. This is significant since the closest

selected frequencies are at 3.5 and 5 GHz, which lie outsidle Frequency-Domain Analysis of Forked Monopole

this range. The[Y] matrix interpolation results show that The third comparison pertains to the computation of the
neither the fourth-order ratio of polynomials nor the tenthinput admittance of a forked monopole antenna on an infinite
order ratio of polynomials accurately reconstruct the diregtound plane shown in Fig. 2(c). The forked monopole con-
MoM input impedance behavior. Higher order polynomialsists of two “fork” wire segments that are connected together
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by a short common segment at the base of the antenna. The 40.0 .
forked monopole antenna consists of a basid monopole - Eui:rgféo'}g?%
antenna with an added “forked” element that is slightly shorter 800 '
than A/4. The resultant structure has both a normal mode @ 20.0 |
monopole resonance and a hightransmission line mode =
resonance. This antenna is derived from the bottom-fed fan § 100
antenna used by the U.S. Navy for shipboard communications E o0 ‘L-T#
[24]. The MoM geometry model for this antenna consists = (//’
of two subsections for the short common segment and ten -10.0 ;
subsections for each “fork” segment. The antenna is fed by 200 Susceptance
a delta-gap source at the base of the common segment. The 02 04 o8 0 10
frequency of the higl resonance is determined by the length (@)
of the section that is slightly shorter thar/4. To resolve the
high-@2 resonance behavior accurately with discrete frequency 40.0 - 5 " Direct MoM
samples requires a very small frequency step, thus this antenna 30,0 " { - - 4thOrderRO.P
is an excellent example to test how weli] and [Y] matrix ‘ (
interpolation predict very narrow-band resonances. @ 200} \\

Fig. 9 compares the input admittance computed by direct g i
MoM and by [Z] matrix interpolation [using (5)] and bj}’] g 10'0, J \\“
matrix interpolation. The input admittance in each case is § 0.0} f \j*;tjﬁ/ﬁ
computed at increments 6f001%2/A. The selected frequencies \ // -
used in each method are denoted by The input admittance oo \
computed by[Z] matrix interpolation is calculated over the 209 =2 5 =5 o
entire 3: 1 frequency band using only three directly computed ' ' h/lambda ' '
[Z] matrices. The input admittance computed [B§] matrix (b)

interpolation uses the ratio of fourth-order polynomials. Sin . , .
. . . . ig. 9. Comparison of forked monopole input admittance computed by

[Y'] matrix interpolation with the ratio of lower order polyno-jz] and [v'] matrix interpolation. %" denotes selected frequencies. (a)
mials did not accurately compute the input impedance of ti#gect MoM and[Z] matrix interpolation. (b) Direct MoM andlY’] matrix
PIFA for a 2: 1 frequency band and since the PIFA has mulJigrpolation.
simpler characteristics over the frequency of observation than
the forked monopole, lower order polynomials were not used
in the [Y] matrix interpolation of the forked monopole. The input voltage source is the time derivative of a Gaussian

The input admittance results are similar to the resulmilse. The temporal behavior of the source voltage impressed
obtained in Fig. 3 of [24]. The very sharp resonance behaviat the connection between the base of the helix wire and the
near0.72h /) is accurately predicted in each case even thougffinite ground plane is
no selected frequency is located at this resonaficg.ma-
trix interpolatior::1 comgutes the admittance beha{;/ﬁ?r slightly Va(t) = 20°(f — tuan)” expl=a’(t — fuax)”]  vOlts (7)
more accurately thafZ] matrix interpolation, yefZ] matrix wherea = 1.5 x 10° and ¢,,.. = 1.43 x 10~2 s. The
interpolation only requires the direct MoM matrix solution fokemporal step size ig\t = 6.26 x 10~*! s. Fig. 10 shows

three frequencies. the input admittance of the helix as a function of the scaled
frequencyF/c, wherec = 3 x 10% m/s. Fig. 10(a) compares
) ) ] ) . the input admittanc&i, at 256 frequency points computed
D. Time-Domain Analysis of Input Current of Circular Helix by the direct MoM and[Z] matrix interpolation. Fourteen
One significant advantage of using interpolation to compuselected frequencies, denoted by"“are used to interpolate
the matrix elements is the significant reduction in computatighe elements ofZ]. The input admittance computed ]
time required to compute the antenna characteristics at thatrix interpolation agrees well with the values computed by
many frequencies needed to calculate the time-domain antediract MoM since there is a high density of selected frequen-
performance. The flow diagram in Fig. 1 shows how acies at the lower frequency range. The selected frequencies
antenna parameter such as input impedance, computed at maese chosen by comparing just a few of the elements of the
frequencies can be used with an inverse Fourier transform[#] matrix computed by interpolation and the direct MoM.
determine the time-domain antenna behavior. Since only a few elements were compared and no matrix
The [Z] matrix interpolation method has been appliethversion was involved, this was a quick process. The addition
to the analysis of the source current of the circular helisf selected frequencies at the lower frequencies resulted in
antenna shown in Fig. 2(a) for short-pulse excitatipri] very good agreement between the directly computed and
matrix interpolation was not employed for this case becauseerpolated matrix elements. The imaginary parts of the
of the difficulty in obtaining a high degree of accuracy irelements of[Z] for the self and small,,,, terms have a
computing the input impedance v[&] matrix interpolation logarithmic variation, rather than a quadratic variation, with
over such a large frequency band. frequency. Many selected frequencies were needed at the lower
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25 ‘ _ TABLE |
| - Direct MoM TIMING COMPARISON OF [Z] AND [Y] MATRIX INTERPOLATION FOR
1 ---- [Z] Matrix Interp. PIFA (N CPU S=conpsk). 527 LNKNOWNS AND 51 FREQUENCIES
20 xSelected Fregs.
© [Z]Fll  [Y]Fill [ZIFill [Y]Fill
g Directly Directly Cocfhs. Interp.  Interp. Solve Total
~ 15 1
X g | .
= i ! Direct —
a ! ! o 3050 mmem 943 | 3993
.sE: 10} |
o j” ZIMatix || 1795 —— 365 826 —— 943 |1208.65
[0} 5 (\\ ! Interpolation
VPl P
i | [ mn i A
T‘ ” K o \/‘J\v [Y] Matrix
0l L I . ‘ Interpolation || —— 565 72 =— 22450 21 882.5
) 5 10 15 20 25 2nd Order
Scaled Frequency (F/c) ROP
40 \ [Y] Matrix
. h Interpolation || —— 1019 1208 =w— 3722 21 | 26202
30} | 4th Order
Cod L R.OP
= 20 |
‘j"., ] ‘ i I *[BM RS6000/530H workstation
2o A
x i Vi I TABLE 1
0 z >/ /17 *7~/x/\ *
1 z Y / //L/\/\ ‘A TIMING COMPARISON OF [Z] AND [Y] MATRIX INTERPOLATION FOR
-E -10: Py HEeLix (IN CPU SEconpsk). 88 UNKNOWNS AND 301 FREQUENCIES
o
20 - . . . N
@ e v ZIEL - YIEIL o ZIFLIYTREL ) Total
Directly Directly Interp.  Interp.
-30
Direct
-40 . S . S 1026  — @ — — — 36 1062
5 10 15 20 25 MoM
Scaled Frequency (F/c)
[Z]Marix } 1705  =—— 028 145 —— 36 53.78
(a) Interpolation
10 . [Y] Matrix
Direct MOM Interpolation || — 32,37 33— 2538 1 91.75
---- [Z] Matrix Interp. 4th Order
ROP
{Y] Matrix
Interpolation | 763 4615 —— 363 1 179.75
10th Order
ROP

*IBM RS6000/530H workstation

Source Current

of the different steps of the three methods. Table | shows the
timing comparison for the PIFA. Three selected frequencies

|
1 Tables | and 1l show the computational time used for each
!

'100 2 4 6 ) 10 were used fofZ] matrix interpolation, five selected frequen-
Scaled Time (cT) cies for [Y] matrix interpolation with second-order ratio of
() polynomials , and nine selected frequencies [Bf matrix

. . . _ _interpolation with fourth-order ratio of polynomials. Table I
Fig. 10. Time-domain response of source current for helix antenna for tlm?] - . . .
derivative of a Gaussian voltage-source excitatioris(the speed of light). SNOWS the timing comparison for the C"‘CUlar. h_e“X antenna.
(a) Input admittance. (b) Source current. Five selected frequencies were used [f8} matrix interpola-
tion, nine selected frequencies {af] matrix interpolation with
fourth-order ratio of polynomials, and 21 selected frequencies

frequencies to accurately capture this behavior. Fig. lO(Bf] matrix interpolation with tenth-order ratio of polynomials.

compares the time-domain response of the source current he first row in these tables shows the total time required
computed by direct MoM and bjZ] matrix interpolation. to evaluate the surface currents directly with MoM. This time

is determined by the time it takes to directly compute and
fill all of the N? elements of thgZ] matrix and to solve
IV. COMPARISON OF COMPUTATIONAL EFFICIENCY [Z][I] = [V] at each frequency using matrix factorization and

The previous section compared the accuracy of [t decomposition with Linpack subroutines [25]. The second row
matrix and[Y'] matrix interpolation for several diverse antennghows the time involved to compute the surface currents using
structures. This section compares the computational efficierléil matrix interpolation. The total time is determined by the
of these methods.Z] matrix interpolation results in a largesum of the time it takes to:
time savings over the direct method when the matrix fill time 1) fill the [Z7] matrices directly at the selected frequencies;
dominates the overall computation time. 2) compute the coefficients of the interpolation functions;
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3) fill the [Z] matrices by interpolation at each of the TABLE Il
intermediate frequencies; COMPARISON OF [I] MATRIX INTERPOLATION FORHELIX (IN
! CPU Sconpsk). 88 UNKNOWNS AND 301 FREQUENCIES
4) solve for[!] by [Z][I] = [V] at each frequency.
The remaining rows indicate the time required to compute (YIFill gqye  Coeffs. [MEN |
the surface currents usirfd’] matrix interpolation. The total Diretly (Nx1] _ Interp.
time in each[Y] matrix interpolation case is determined by [1] Matrix
; ; . Interpolation 32.37 1 0.375 0.28 34.025
the sum of the time it takes to: _ i O R Op
1) compute thdY'] matr|ces at th_e selecteq frequenmes; (1] Matrix
2) compute the ratio of polynomials coefficients; Interpolation 76.3 1 052 063 | 7743
3) fill the [Y'] matrices by interpolation at the intermediate 10th Order R.O.P
frequencies; *IBM RS6000/530H workstation

4) solve for[I] by [I] = [Y][V] at each frequency.

For the PIFA, the direct{Z] matrix fill time per fre-
quency is about three times greater than the solve tinglynomials is actuallygreaterthan the time for[Z] matrix
The total computation time usingZ] matrix interpolation interpolation.
is over three times faster than the direct MoM. The total |n addition to comparing the computational run time ef-
computation time usingY] matrix interpolation with the ficiency, the increase in memory storage must also be con-
ratio of two second-order polynomials is about 4.5 timesidered. Many techniques that serve to reduce the overall
faster than the direct MoM. This is only a slightly fastegimulation time do so at the expense of increased memory
than [Z] matrix interpolation. Recall that higher order polystorage and, thus, limit the size of the problem that can be
nomials are required for the accurate computation of then. [Z] matrix interpolation uses four times the memory
matrix elements. The computation time with the ratio off the direct Mom approach. In addition to storing tf#]
two fourth-order polynomials is only about 1.4 times fastanatrix for the intermediate computation frequency of interest,
than direct MoM. Thus, an accurate simulation utilizifig] three matrices for the complex quadratic coefficients must
matrix interpolation may actually take longer thi#] matrix be stored. When the interpolation process is divided into
interpolation. several frequency subbands, two additional direct fill&dl

For the helix, the directZ] matrix fill time per frequency matrices must also be saved. Since the greatest computation
is over 28 times greater than the solve time. The overalpeed up is obtained fd¢Z] matrices with small or medium
computation time of the entire frequency sweep usi@j order, the storage of all the matrices can typically fit within
matrix interpolation is about 19 times greater than the dirette computational memory of computer workstations used for
MoM. The overall computation time of the frequency sweemethod of moments computations.
using[Y'] matrix interpolation with either fourth-order or tenth- When second-order polynomials are used, [ti¢ matrix
order ratio of polynomials is greater than tHi&] matrix interpolation method uses six times the memory of the direct
interpolation approach. MoM approach. In this case, five coefficient matrices as well

Next, consider an alternate approach that interpolates #methe[Y] matrix for the intermediate computation frequency
elements of the current—dd]—matrix. Interpolation of the of interest must be stored. When fourth-order polynomials
current matriX|7] should be efficient sincg] is only a column are used, the memory requirement increases to nine times
matrix of N elements. Table lll compares the time requirethe memory of the direct MoM approach. The memory re-
for [I] matrix interpolation for the circular helix. Each elemenguirement is 22 times that of the direct MoM approach when
of the [{] matrix is approximated as a ratio of polynomialstenth-order polynomials are used.
Both fourth-order and tenth-order polynomials are considered.
The total time in each case is determined by the sum of the V. IMPLEMENTATION GUIDELINES

time it takes to: . ) To compute the broad-band frequency performance of the
1) compute thgY'] matrices at the selected frequencies; antenna as rapidly as possible, the interpolation frequency step
2) compute the current matric = [Y][V] at the selected myst be carefully chosen. A small interpolation frequency step

frequencies; means thaZ] or [Y'] matrices are directly computed and filled
3) compute the ratio of polynomials coefficients; for many frequencies. A very large interpolation frequency
4) compute the fina[/] matrices by interpolation at the step results in poor reconstruction of the matrix elements.

intermediate frequencies. To choose a suitable interpolation frequency step sizg4pr

The overall computation time off] matrix interpolation matrix interpolation, one can easily review the characteristics
with fourth-order ratio of polynomials is less than the time foof several[Z] matrix elements. A plot of just a few of the
[Z] matrix interpolation. However, since inadequate accuraeyements of Z] that represent the full span (smallest, largest,
was obtained with this ord¢k’] matrix interpolation and since and mid range) of,,,, values can be used to quickly identify
the elements of!] have similar variation as the elementshe overall frequency range at which the matrix elements
of [Y], higher order polynomials for accurafd] matrix can be accurately fitted by a chosen interpolation function.
interpolation are required. The overall computation time d&fhe overall accuracy obtained frofi¥] matrix interpolation
[I] matrix interpolation with the ratio of two tenth-orderis not highly dependent upon the precise location of the
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selected frequencies, yet they should be fairly well spacefl MoM problems that utilize similar Green’s functions or
over the frequency range. The computation time required ittegral equations.

compute severa)lZ] matrix elements is significantly smaller
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