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Abstract—The development of novel antennas for mobile com-
munications often relies on performance simulations. The eval-
uation of the antenna surface currents for many frequencies
using the method of moments (MoM) can take a long time
since the impedance matrix must be computed for each new
frequency. This paper investigates and compares two efficient
methods for the computation of the broad-band performance of
mobile communications antennas using frequency interpolation
of either the MoM impedance matrix [Z] or admittance matrix
[Y ]. In either method, the elements of only a few matrices
at relatively large frequency intervals are directly computed.
These matrices are then used to interpolate the elements of the
respective [Z] or [Y ] matrices at the intermediate frequencies.
Both methods reduce the time it takes to compute the antenna
performance over a wide frequency band. The implementation
of each method to evaluate the performance of several different
antennas used for mobile communications is discussed. Examples
with both frequency-domain and time-domain results are pre-
sented and both near-field and far-field quantities are considered.
The accuracy, the simulation run times, and the computational
requirements of direct MoM, [Z] matrix interpolation, and [ Y ]
matrix interpolation are compared.

Index Terms—Broad-band antennas, helix, method of mo-
ments, mobile antennas, PIFA, [Y ] matrix, [ Z] matrix.

I. INTRODUCTION

T HE rapidly expanding personal and mobile communi-
cations services have necessitated the development of

new antenna designs. An important task associated with the
evaluation and comparison of antennas for these applications
involves simulations to predict the antenna performance over
a wide frequency range. A challenge in the design of such
antennas is the development of advanced simulation software
that allow the characterization of different configurations of
perfect conducting wires and surfaces. Two popular electro-
magnetic analysis methods that are often applied to these class
of antennas are the finite-difference time-domain (FDTD) [1],
[2] and the surface-patch method of moments (MoM) [3]–[5].

Manuscript received June 2, 1997. This work was supported in part by
Rockwell Science Center, Thousand Oaks, CA, and in part by the UC MICRO
program.

K. L. Virga is with the Department of Electrical and Computer Engineering,
University of Arizona, Tucson, AZ 85721 USA.

Y. Rahmat-Samii is with the University of California, Los Angeles, Los
Angeles, CA 90095 USA.

Publisher Item Identifier S 0018-926X(99)02213-9.

FDTD predicts antenna performance over a wide band of
frequencies in one simulation. A common FDTD formulation
employs a three-dimensional (3-D) volumetric grid of uniform
rectangular cells that results in a dense grid with small cells
for radiators with detailed features. Geometries with curved
and flared elements are approximated with a stairstep grid. A
circular helix antenna, for example, must be approximated by
an equivalent square helix [6] or requires a grid of extremely
small stairstep cells to model the coil windings.

The frequency-domain MoM approach based upon the trian-
gular patch surface model overcomes some of the geometrical
modeling restrictions of FDTD. The MoM formulation can
include a combination of wires of arbitrary shape attached
to metallic surfaces of arbitrary shape. The triangular mesh
allows curved and flared geometries to be modeled with a flat
patch (or linear) surface approximation and allows detailed
features to be modeled with a locally dense mesh. Piecewise
linear wire elements allow coiled wires to be effectively mod-
eled. The MoM approach computes the antenna performance
one frequency at a time and requires the computation of many
frequency points for broad-band performance evaluation or for
short-pulse source antenna characterization. The computation
over a wide frequency range can take a long time since
the elements of the MoM matrix must be recomputed
for each new frequency point. Thus, techniques to minimize
the computation time and significantly speed up the overall
simulation process are highly desirable. Popular methods to
reduce the computation time of MoM focus either on the use
of numerical and geometrical approximations to quickly fill
or efficient matrix inversion and solution algorithms [7], [8].

Spatial interpolation methods used to efficiently fill the
impedance matrix [9]–[11] have been studied. These ap-
proaches impose constraints on the structure of the surface
mesh or the interpolation sampling criteria. A technique that
employs the method of moments to compute rational function
approximations for the transfer functions of antenna output
performance parameters is discussed in [12]. This method
is used to develop a compact transfer function of a single
parameter, such as input impedance, over a broad frequency
band. Since the transfer functions are determined for only
one parameter at a time, they cannot be used to extract any
additional information on the overall antenna performance. In
[13], the Cauchy technique is used to calculate rational func-
tion approximations for the surface currents on a conducting
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cylinder with a slit. These functions are used to extrapolate
the broad-band response from narrow-band data. Since the
functions represent currents, they must be recomputed for each
different angle of incidence or excitation. The coefficients of
the rational functions used in [12] and [13] can be determined
either by many frequency samples of a response or the
response and its higher order derivatives at a few frequencies.
The derivatives are computed by actually modifying the MoM
analysis program, which not only requires access to the source
code, but can become rather difficult when complex basis or
testing functions are used.

The present work focuses on implementing matrix or
matrix interpolation methods that:

1) are easily implemented to an existing method of mo-
ments computer code, thus require no significant code
modifications;

2) accurately construct the antenna surface currents,
impedance, patterns, etc.;

3) utilize simple interpolation functions that require only a
few coefficients;

4) apply to a wide variety of antenna configurations;
5) impose few restrictions on the antenna geometry mod-

eling;
6) are independent of antenna excitation.

The matrix and matrix interpolation approaches
discussed in this paper are outlined in Fig. 1. Both methods
incorporate knowledge of the general frequency characteristics
of the respective matrix elements in a way that reduces the time
it takes to compute them at each frequency. Thematrix
interpolation method was originally proposed by Newman and
Forrai [14] for the scattering analysis of a microstrip patch.
Newman [15] also used it for the impedance analysis of
a straight dipole antenna and flat square plate. The present
work expands the utilization of matrix interpolation to
the wide-band performance evaluation of complex antennas
and also investigates a comparable matrix interpolation
approach. The methods are applied to the triangular surface-
patch MoM formulation. The objective is to compare the
versatility, accuracy, and computational efficiency between the
two methods and provide implementation guidelines.

Mobile communications antennas come in a variety of
configurations but are often small with respect to wavelength,
consist of thin wires, or have low-profile surfaces. matrix
and matrix interpolation have been applied to the perfor-
mance analysis of the antennas shown in Fig. 2. The planar
inverted F antenna (PIFA) is a compact low-profile antenna
that can be readily integrated onto portable and mobile radios.
The circular helix is a thin-wire antenna that is suitable for
satellite communications applications. The forked monopole
is a unique wire antenna that displays both a monopole
resonance and a high-Q transmission line mode resonance.
The antenna examples have different numbers of unknowns
from one another, which provides some useful insight when
comparing computational efficiency.

Section II outlines the MoM formulation used in this paper
and describes the matrix and matrix interpolation meth-
ods. The results of applying the method to several distinctly

Fig. 1. Comparison of[Z] and [Y ] matrix interpolation methodologies.

(a) (b) (c)

Fig. 2. Antennas for the application of[Z] and[Y ] matrix interpolation. (a)
PIFA (527 unknowns). (b) Circular helix (88 unknowns). (c) Forked monopole
(22 unknowns).

different mobile communications antennas are presented in
Section III. Section IV compares the computational efficiency
of both interpolation methods. Section V gives guidelines on
the implementation of the methods. Section VI summarizes
and concludes the results.

II. I NTERPOLATION METHODOLOGIES

A. Triangular Surface-Patch Method of Moments Methodology

In the triangular surface-patch MoM formulation for antenna
radiation problems, the antenna surfaces are partitioned into

sufficiently small subsections. From this, one sets up and
solves the system of equations to determine
the surface currents on the antenna, where is the

impedance matrix, is the current coefficient
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matrix to be determined, and is the voltage or
excitation matrix. Alternatively, the surface currents can
be determined using , where is the
admittance matrix that is computed by .

The formulation described in this paper uses the electric
field integral equation (EFIE) for perfect electric conductors
(PEC). Using this condition and expressing the total radiated
field in terms of potential functions allows one to write

(1)

where

(2)

and

(3)

where is the distance between the observa-
tion point and source point on the PEC surface is the
wavelength , and and are the permittivity and
permeability, respectively, of the medium. In this formulation
an time convention is used, where and denotes
the frequency.

In the triangular surface-patch methodology three differ-
ent linearly independent vector basis functions are used to
represent the currents on the antenna. The basis functions
depend only upon the geometrical parameters of the particular
subsection under consideration. The details of the efficient
numerical implementation of the method are discussed in [4]
and [5]. Significant computational effort is required to fill the

elements of the matrix. This effort increases when
techniques such as higher order basis functions [16]–[17], are
used.

Equations (1)–(3) and the form of the basis and testing func-
tions determine the frequency characteristics of the elements
of the matrix. These equations reveal that the term
dominates the frequency behavior of the elements. For
matrix element equals where is
the observation location (or subsection) andis the source
location (or subsection.) When the observation and source
are close to each other, is small and varies
slowly with frequency. When they are far from each other,

is large and fluctuates rapidly with frequency.
The behavior of the elements of is not directly discernible
from (1)–(3) since the matrix elements for a particular
antenna configuration are only determined after inverting the
overall matrix.

B. Characteristics of Matrix and Matrix Elements

Some matrix and matrix elements for the helix have
been plotted as a function of frequency. Fig. 3 gives a close
look at the behavior of some of the matrix and matrix
elements for the helix for a 4 : 1 frequency band. matrix
and matrix elements for small, medium, and large values
of are considered. The circular helix has 88 subsections
that are numbered from one, located at the attachment point

(a)

(b)

Fig. 3. Comparison of various[Z] and[Y ] matrix elements for circular helix.
(a) [Z] matrix elements. (b)[Y ] matrix elements.

of the antenna and ground plane consecutively to 88, located
at the open end of the wire.

The matrix elements in Fig. 3(a) vary slowly with
frequency while the matrix elements in Fig. 3(b) fluctuate
rapidly with frequency. While the elements of the matrix
are practically unaffected by the resonant characteristics of
the antenna, the elements of the matrix are strongly
influenced by the resonant behavior. An individual matrix
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element depends only upon the relative spacing between two
subsections, whereas the elements ofstrongly depend upon
the overall behavior of the entire antenna structure.

The elements of can be evaluated over a frequency range
by rather simple and low-order interpolation functions, such
as a quadratic polynomial. The interpolation of the elements
of over a frequency range requires interpolation functions
such as the ratio of two th order polynomials to accurately
capture the frequency behavior of the matrix elements.

C. Matrix Interpolation with Quadratic
Interpolation Functions

The matrix interpolation process begins by partitioning
the entire frequency band of interest into steps and defining
several “selected” frequencies. The interval between adjacent
“selected” frequencies defines the interpolation frequency step
size. The matrices for the first three selected frequencies
are directly computed by evaluating the potential integrals (2)
and (3) as prescribed by the MoM. The elements of for
the intermediate frequencies are approximated by a quadratic
function

(4)

where denotes frequency and and are the
th elements of the complex coefficient matrices

and . Equation (4) can be cast into a system of three
equations and three unknowns. These equations along with the
elements of the directly computed matrices calculated at
three selected frequencies are used to determine the coefficient
matrices. If the frequency band of interest is especially wide, it
may be necessary to divide the band into several interpolation
frequency ranges and implement a process of stepping through
them. Quadratic interpolation works best for antennas with
surfaces that are smaller than 0.5.

The interpolation function can be improved upon by in-
corporating the frequency behavior of the elements of
into the process [15], [18]. This is done to increase the
accuracy in evaluating the terms of at the intermediate
frequencies or allow larger interpolation frequency ranges..
For large antennas, the rapid frequency variation of the factor

dominates the frequency variation of the matrix
elements with large . The quantity

(5)

varies quite slowly with frequency. When is large with
respect to , the improved computation of is evaluated
in two steps. First, a element is computed by quadratic
interpolation using the corresponding elements of the directly
computed matrices. The matrix element is then
determined by multiplying the resultant value by the known
factor . The interpolation function can also be cast in
a form that accurately models the behavior of the singular and
closely spaced terms of . This has been implemented for
thin wire antennas [15].

D. Matrix Interpolation with Ratio of
Polynomials Interpolation Functions

Each element of the matrix is approximated by the ratio
of two polynomials given as

(6)
where denotes frequency, denotes the order of the
numerator polymonial, denotes the order of the de-
nominator polynomial, and and

are the th elements of the complex
coefficient matrices and
respectively. When the numerator and denominator have the
same or nearly the same degree, the ratio of polynomials
representation of matrix element is often better than a
polynomial approximation [19]. In this approach,
coefficient matrices are computed.

The matrix interpolation process begins by defining the
order of the polynomials in (6). From this, “selected”
frequencies within the frequency range are identified. An

matrix, determined by is computed
for each “selected” frequency. The elements of these matrices
are then used to determine the complex coefficient
matrices. The th element of each coefficient matrix is then
substituted into (6) to compute the corresponding element of
the matrix at each intermediate frequency.

The matrix elements are highly dependent upon the
resonant characteristics of the antenna. The method of im-
proving the interpolation by factoring out the term
does not apply to matrix interpolation. The choices of the
polynomial orders in the numerator and denominator depend
upon the proximity of adjacent antenna resonances and the
overall evaluation frequency range. Since one typically does
not know the location of the resonances beforehand, there
is no convenient way to quickly determine the order of the
numerator and denominator polynomials. In this paper, the
same polynomial order is used for the numerator and the
denominator.

III. A PPLICATION OF INTERPOLATION METHODS

TO ANTENNA PERFORMANCE ANALYSIS

This section compares the results of employing thema-
trix and matrix interpolation methods to the performance
evaluation of complex antennas. The methods are applied to an
antenna composed primarily of surfaces (a PIFA), a long wire
antenna (a circular helix), and a short wire antenna (a forked
monopole). These antennas were chosen since they represent
a diverse variety of complex antenna configurations with
intricate geometries of wires or wires connected to surfaces.

A. Frequency-Domain Analysis of PIFA Antenna

The matrix and matrix interpolation schemes have
been applied to the computation of the input impedance of the
PIFA. Some design details for PIFA’s are given in [20]–[22].
The PIFA, shown in Fig. 2(a), consists of an air-suspended
rectangular patch element, a small ground plane, and a shorting
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(a)

(b)

Fig. 4. Comparison of PIFA input impedance computed by[Z] and [Y ]
matrix interpolation (in both cases, the data for the dashed and solid lines are
superimposed). (a)[Z] matrix interpolation. (b)[Y ] matrix interpolation.

plate. The overall mesh consists of 527 unknowns. The antenna
is fed by a delta-gap source that is placed between the base of
the feed wire and the ground plane.

Fig. 4 compares the input impedance computed by direct
MoM, matrix interpolation, and matrix interpolation.
The input impedance in each case is computed at every
10 MHz. The input impedance computed by quadratic
matrix interpolation uses three selected frequencies located at
0.6, 0.85, and 1.1 GHz. The input impedance computed by

matrix interpolation uses either the ratio of second-order
polynomials (second-order R.O.P.) or the ratio of fourth-order
polynomials (fourth-order R.O.P). The second-order R.O.P
case uses five selected frequencies computed at every 125

Fig. 5. Comparison of ratio of polynomials representation of matrix element
Y1527 for PIFA.

MHz. The fourth-order case uses nine selected frequencies
computed at every 62.5 MHz.

Fig. 4(a) shows that the -matrix interpolation results
agree well with the direct MoM results. The results for nearly
a 2 : 1 frequency range are accurately determined by directly
computing the MoM matrix at only three frequencies.
matrix interpolation predicts the resonant behavior at 780 MHz
even though there is no selected frequency specifically located
at this point. Quadratic matrix interpolation works well for
this antenna because it primarily consists of surface elements
and the largest antenna dimension is only 0.43at 1.1 GHz.

Fig. 4(b) shows that the matrix interpolation results
computed with fourth-order polynomials agree well with the
direct MoM results, while the interpolation results computed
with second-order polynomials do not. To understand and ex-
plain these results, the ratio of polynomials representation was
used to investigate how accurate it can compute a single
matrix element. Fig. 5 shows matrix element computed
three different ways: 1) by directly inverting the entire
matrix and extracting the element at each frequency; 2)
by approximating the value of by the ratio of second-
order polynomials; and 3) by approximating the value of
by the ratio of fourth-order polynomials. The coefficients for
the second-order ratio of polynomials were computed by the
evaluating (via the computation and inversion of at
five “selected” frequencies. The coefficients for the fourth-
order R.O.P. approximation were computed by evaluating
at nine “selected” frequencies. This figure shows that second-
order R.O.P. captures the behavior of the real part of
but does not model the imaginary part very well. The fourth-
order R.O.P. accurately determines both the real and imaginary
parts of this matrix term. Detailed plots of other matrix
elements show similar comparisons.

Fig. 6 compares the radiation patterns at 0.85 GHz
computed directly from MOM, matrix interpolation, and
second-order ratio of polynomials. matrix interpolation
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(a) (b) (c)

Fig. 6. Comparison of far-field patterns of PIFA at 0.85 GHz computed by[Z] and [Y ] matrix interpolation. (a)jEj dB versus�; � = 90�. (b) jEj dB
versus�; � = 90�. (c) jEj dB versus�; � = 0�. Selected frequencies for[Z] matrix interpolation are 0.53, 0.78, and 1.03 GHz. Selected frequencies
for [Y ] matrix interpolation are 0.6, 0.8, 0.9, 1.0, and 1.1 GHz.

using second-order ratio of polynomials. The selected
frequencies for matrix interpolation are 0.53, 0.78, and
1.03 GHz, while the selected frequencies for matrix
interpolation are 0.6, 0.8, 0.9, 1.0 and 1.1 GHz. The patterns
computed by the direct MoM and matrix interpolation
agree very well, while the patterns computed usingmatrix
interpolation do not. When matrix interpolation is used
to compute the radiation patterns at 0.90 GHz (a selected
frequency), there is good agreement with the direct MoM
results as expected. These results indicate thatmatrix
interpolation can accurately compute near-field and far-field
antenna parameters. They also indicate that higher order
polynomials must be used when matrix interpolation is
employed for near-field (input impedance) as well as far-field
(radiation patterns) quantities.

B. Frequency-Domain Analysis of Circular Helix

The matrix and matrix interpolation schemes were
used to the compute the input impedance of a four turn
circular helix antenna on an infinite ground plane shown in
Fig. 2(b). The helix is in the axial mode near 3 GHz. Some

general design details for helix antennas are discussed in [23].
The helix is an excellent candidate to test the interpolation
strategies, since the input impedance of this antenna changes
quite rapidly at frequencies when additional modes propagate
on the antenna. The model for this antenna uses 88 wire
subsections and is fed by a delta-gap source located at the
base of helix.

The input impedance computed by direct MoM and by
matrix and matrix interpolation is compared in Fig. 7.
Note the rapidly changing input impedance behavior from
the additional modes that propagate on the helical structure.
The input impedance in each case is computed and plotted
at every 20 MHz. The matrix interpolation frequency
step size is 150 MHz. The selected frequencies used for
matrix interpolation are denoted by the five stars “.” The
impedance computed by matrix interpolation is calculated
by interpolation over the entire 4 : 1 frequency band using
only five directly computed matrices, i.e., three subbands
are used. The input impedance computed by matrix
interpolation uses either the ratio of fourth-order polynomials
(fourth-order R.O.P.) or the ratio of tenth order polynomials
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(a)

(b)

Fig. 7. Comparison of helix input impedance computed by[Z] and [Y ]
matrix interpolation. (a)[Z] matrix interpolation. (b)[Y ] matrix interpolation.

(tenth-order R.O.P ). Nine selected frequencies are used for
the fourth-order R.O.P case, while 21 selected frequencies are
used for the tenth-order R.O.P case. The selected frequencies
in each case were chosen by dividing the 2–8 GHz frequency
range in equal frequency increments.

The input-impedance behavior of the helix is well mod-
eled with matrix interpolation. Even the rapid impedance
variations between 4 and 5 GHz only slightly differ from the
directly computed results. This is significant since the closest
selected frequencies are at 3.5 and 5 GHz, which lie outside
this range. The matrix interpolation results show that
neither the fourth-order ratio of polynomials nor the tenth-
order ratio of polynomials accurately reconstruct the direct
MoM input impedance behavior. Higher order polynomials

Fig. 8. Comparison of ratio of polynomials representation of matrix element
Y1;60 for helix.

orders or an efficient scheme to determine different polynomial
orders each for the numerator and denominator are needed to
accurately predict the input impedance for the entire 4 : 1 band.

A close look at the accuracy of matrix interpolation for
a single helix matrix element for the helix is shown in Fig. 8.
This plot compares element as a function of frequency
computed three different ways: 1) by directly inverting the
entire matrix and extracting the element at each
frequency; 2) by approximating the value of by the
ratio of fourth-order polynomials; and 3) by approximating
the value of by the ratio of tenth-order polynomials,
The coefficients for the ratio of fourth-order polynomials.
were computed by evaluating at nine different frequencies.
The coefficients for the ratio of tenth-order polynomials were
computed by the computing in the same way at 21
different frequencies. Fig. 8 shows that the ratio of fourth-
order polynomials does a rather poor job of reconstructing the
real and imaginary parts of this matrix element. The ratio of
tenth-order polynomials models most of the detailed features
of the real part of , yet still does not capture many of the
features of the imaginary part of . A ratio of tenth-order
polynomials representation for each element of requires
the computation and inversion of at 21 frequencies as
well as the storage of more than 21 [88 88] coefficient
matrices. Only five [88 88] coefficient matrices are required
to accurately compute the antenna performance withmatrix
interpolation.

C. Frequency-Domain Analysis of Forked Monopole

The third comparison pertains to the computation of the
input admittance of a forked monopole antenna on an infinite
ground plane shown in Fig. 2(c). The forked monopole con-
sists of two “fork” wire segments that are connected together
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by a short common segment at the base of the antenna. The
forked monopole antenna consists of a basic monopole
antenna with an added “forked” element that is slightly shorter
than . The resultant structure has both a normal mode
monopole resonance and a high-transmission line mode
resonance. This antenna is derived from the bottom-fed fan
antenna used by the U.S. Navy for shipboard communications
[24]. The MoM geometry model for this antenna consists
of two subsections for the short common segment and ten
subsections for each “fork” segment. The antenna is fed by
a delta-gap source at the base of the common segment. The
frequency of the high- resonance is determined by the length
of the section that is slightly shorter than . To resolve the
high- resonance behavior accurately with discrete frequency
samples requires a very small frequency step, thus this antenna
is an excellent example to test how well and matrix
interpolation predict very narrow-band resonances.

Fig. 9 compares the input admittance computed by direct
MoM and by matrix interpolation [using (5)] and by
matrix interpolation. The input admittance in each case is
computed at increments of The selected frequencies
used in each method are denoted by “.” The input admittance
computed by matrix interpolation is calculated over the
entire 3 : 1 frequency band using only three directly computed

matrices. The input admittance computed by matrix
interpolation uses the ratio of fourth-order polynomials. Since

matrix interpolation with the ratio of lower order polyno-
mials did not accurately compute the input impedance of the
PIFA for a 2 : 1 frequency band and since the PIFA has much
simpler characteristics over the frequency of observation than
the forked monopole, lower order polynomials were not used
in the matrix interpolation of the forked monopole.

The input admittance results are similar to the results
obtained in Fig. 3 of [24]. The very sharp resonance behavior
near is accurately predicted in each case even though
no selected frequency is located at this resonance.ma-
trix interpolation computes the admittance behavior slightly
more accurately than matrix interpolation, yet matrix
interpolation only requires the direct MoM matrix solution for
three frequencies.

D. Time-Domain Analysis of Input Current of Circular Helix

One significant advantage of using interpolation to compute
the matrix elements is the significant reduction in computation
time required to compute the antenna characteristics at the
many frequencies needed to calculate the time-domain antenna
performance. The flow diagram in Fig. 1 shows how an
antenna parameter such as input impedance, computed at many
frequencies can be used with an inverse Fourier transform to
determine the time-domain antenna behavior.

The matrix interpolation method has been applied
to the analysis of the source current of the circular helix
antenna shown in Fig. 2(a) for short-pulse excitation.
matrix interpolation was not employed for this case because
of the difficulty in obtaining a high degree of accuracy in
computing the input impedance via matrix interpolation
over such a large frequency band.

(a)

(b)

Fig. 9. Comparison of forked monopole input admittance computed by
[Z] and [Y ] matrix interpolation. “�” denotes selected frequencies. (a)
Direct MoM and [Z] matrix interpolation. (b) Direct MoM and[Y ] matrix
interpolation.

The input voltage source is the time derivative of a Gaussian
pulse. The temporal behavior of the source voltage impressed
at the connection between the base of the helix wire and the
infinite ground plane is

volts (7)

where and s. The
temporal step size is s. Fig. 10 shows
the input admittance of the helix as a function of the scaled
frequency , where m/s. Fig. 10(a) compares
the input admittance at 256 frequency points computed
by the direct MoM and matrix interpolation. Fourteen
selected frequencies, denoted by “,” are used to interpolate
the elements of . The input admittance computed by
matrix interpolation agrees well with the values computed by
direct MoM since there is a high density of selected frequen-
cies at the lower frequency range. The selected frequencies
were chosen by comparing just a few of the elements of the

matrix computed by interpolation and the direct MoM.
Since only a few elements were compared and no matrix
inversion was involved, this was a quick process. The addition
of selected frequencies at the lower frequencies resulted in
very good agreement between the directly computed and
interpolated matrix elements. The imaginary parts of the
elements of for the self and small terms have a
logarithmic variation, rather than a quadratic variation, with
frequency. Many selected frequencies were needed at the lower
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(a)

(b)

Fig. 10. Time-domain response of source current for helix antenna for time
derivative of a Gaussian voltage-source excitation (c is the speed of light).
(a) Input admittance. (b) Source current.

frequencies to accurately capture this behavior. Fig. 10(b)
compares the time-domain response of the source current
computed by direct MoM and by matrix interpolation.

IV. COMPARISON OFCOMPUTATIONAL EFFICIENCY

The previous section compared the accuracy of the
matrix and matrix interpolation for several diverse antenna
structures. This section compares the computational efficiency
of these methods. matrix interpolation results in a large
time savings over the direct method when the matrix fill time
dominates the overall computation time.

TABLE I
TIMING COMPARISON OF [Z] AND [Y ] MATRIX INTERPOLATION FOR

PIFA (IN CPU SECONDS�). 527 UNKNOWNS AND 51 FREQUENCIES

TABLE II
TIMING COMPARISON OF [Z] AND [Y ] MATRIX INTERPOLATION FOR

HELIX (IN CPU SECONDS�). 88 UNKNOWNS AND 301 FREQUENCIES

Tables I and II show the computational time used for each
of the different steps of the three methods. Table I shows the
timing comparison for the PIFA. Three selected frequencies
were used for matrix interpolation, five selected frequen-
cies for matrix interpolation with second-order ratio of
polynomials , and nine selected frequencies for matrix
interpolation with fourth-order ratio of polynomials. Table II
shows the timing comparison for the circular helix antenna.
Five selected frequencies were used for matrix interpola-
tion, nine selected frequencies for matrix interpolation with
fourth-order ratio of polynomials, and 21 selected frequencies

matrix interpolation with tenth-order ratio of polynomials.
The first row in these tables shows the total time required

to evaluate the surface currents directly with MoM. This time
is determined by the time it takes to directly compute and
fill all of the elements of the matrix and to solve

at each frequency using matrix factorization and
decomposition with Linpack subroutines [25]. The second row
shows the time involved to compute the surface currents using

matrix interpolation. The total time is determined by the
sum of the time it takes to:

1) fill the matrices directly at the selected frequencies;
2) compute the coefficients of the interpolation functions;
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3) fill the matrices by interpolation at each of the
intermediate frequencies;

4) solve for by at each frequency.

The remaining rows indicate the time required to compute
the surface currents using matrix interpolation. The total
time in each matrix interpolation case is determined by
the sum of the time it takes to:

1) compute the matrices at the selected frequencies;
2) compute the ratio of polynomials coefficients;
3) fill the matrices by interpolation at the intermediate

frequencies;
4) solve for by at each frequency.

For the PIFA, the direct matrix fill time per fre-
quency is about three times greater than the solve time.
The total computation time using matrix interpolation
is over three times faster than the direct MoM. The total
computation time using matrix interpolation with the
ratio of two second-order polynomials is about 4.5 times
faster than the direct MoM. This is only a slightly faster
than matrix interpolation. Recall that higher order poly-
nomials are required for the accurate computation of the
matrix elements. The computation time with the ratio of
two fourth-order polynomials is only about 1.4 times faster
than direct MoM. Thus, an accurate simulation utilizing
matrix interpolation may actually take longer than matrix
interpolation.

For the helix, the direct matrix fill time per frequency
is over 28 times greater than the solve time. The overall
computation time of the entire frequency sweep using
matrix interpolation is about 19 times greater than the direct
MoM. The overall computation time of the frequency sweep
using matrix interpolation with either fourth-order or tenth-
order ratio of polynomials is greater than the matrix
interpolation approach.

Next, consider an alternate approach that interpolates the
elements of the current—or —matrix. Interpolation of the
current matrix should be efficient since is only a column
matrix of elements. Table III compares the time required
for matrix interpolation for the circular helix. Each element
of the matrix is approximated as a ratio of polynomials.
Both fourth-order and tenth-order polynomials are considered.
The total time in each case is determined by the sum of the
time it takes to:

1) compute the matrices at the selected frequencies;
2) compute the current matrices at the selected

frequencies;
3) compute the ratio of polynomials coefficients;
4) compute the final matrices by interpolation at the

intermediate frequencies.

The overall computation time of matrix interpolation
with fourth-order ratio of polynomials is less than the time for

matrix interpolation. However, since inadequate accuracy
was obtained with this order matrix interpolation and since
the elements of have similar variation as the elements
of , higher order polynomials for accurate matrix
interpolation are required. The overall computation time of

matrix interpolation with the ratio of two tenth-order

TABLE III
COMPARISON OF [I] MATRIX INTERPOLATION FOR HELIX (IN

CPU SECONDS�). 88 UNKNOWNS AND 301 FREQUENCIES

polynomials is actuallygreater than the time for matrix
interpolation.

In addition to comparing the computational run time ef-
ficiency, the increase in memory storage must also be con-
sidered. Many techniques that serve to reduce the overall
simulation time do so at the expense of increased memory
storage and, thus, limit the size of the problem that can be
run. matrix interpolation uses four times the memory
of the direct Mom approach. In addition to storing the
matrix for the intermediate computation frequency of interest,
three matrices for the complex quadratic coefficients must
be stored. When the interpolation process is divided into
several frequency subbands, two additional direct filled
matrices must also be saved. Since the greatest computation
speed up is obtained for matrices with small or medium
order, the storage of all the matrices can typically fit within
the computational memory of computer workstations used for
method of moments computations.

When second-order polynomials are used, the matrix
interpolation method uses six times the memory of the direct
MoM approach. In this case, five coefficient matrices as well
as the matrix for the intermediate computation frequency
of interest must be stored. When fourth-order polynomials
are used, the memory requirement increases to nine times
the memory of the direct MoM approach. The memory re-
quirement is 22 times that of the direct MoM approach when
tenth-order polynomials are used.

V. IMPLEMENTATION GUIDELINES

To compute the broad-band frequency performance of the
antenna as rapidly as possible, the interpolation frequency step
must be carefully chosen. A small interpolation frequency step
means that or matrices are directly computed and filled
for many frequencies. A very large interpolation frequency
step results in poor reconstruction of the matrix elements.

To choose a suitable interpolation frequency step size for
matrix interpolation, one can easily review the characteristics
of several matrix elements. A plot of just a few of the
elements of that represent the full span (smallest, largest,
and mid range) of values can be used to quickly identify
the overall frequency range at which the matrix elements
can be accurately fitted by a chosen interpolation function.
The overall accuracy obtained from matrix interpolation
is not highly dependent upon the precise location of the
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selected frequencies, yet they should be fairly well spaced
over the frequency range. The computation time required to
compute several matrix elements is significantly smaller
than computing and inverting the overall matrix. Such
an approach can be used to ensure the accuracy of the
simulated results without requiring anyapriori knowledge of
the specified antenna resonant behavior.

There is no rapid way to compute a few matrix elements
over the entire frequency band, since theentire matrix
must be completely filled and inverted to extract even just a
few matrix elements. Thus, there is no convenient way
to assess the order of the polynomials to use for matrix
interpolation. The choice of the order is highly dependent upon
the resonant nature of the structure which can be quite difficult
to determine beforehand.

VI. CONCLUSIONS

The matrix interpolation and matrix interpolation
methodologies have been used with the method of moments
in order to significantly reduce the computation time required
for the wide-band performance evaluation of antennas. Both
methods compute the overall surface currents on the antenna
that can then be used to evaluate the antenna pattern or input
impedance. These interpolation methods do not require thea
priori knowledge of antenna resonances.

The utility of the methods has been illustrated by their
application to different types of antennas used for mobile
communications antennas. The examples represent a diversity
of antenna types with different size matrices. The results show
that the matrix interpolation method is robust to antenna
geometry, the choice of the selected frequencies, and can
predict narrow-band resonances. The results show that
matrix interpolation, on the other hand, is highly dependent
upon the resonant characteristics of the particular antenna
structure.

The work included a comparison of the time savings of
both the interpolation methods over the direct MoM ap-
proach. When low-order polynomial functions are used in

matrix interpolation, it has the time advantage over
matrix interpolation. However, when large-order polynomials
are required to accurately reproduce the elements via
matrix interpolation, then matrix interpolation is faster.
Higher order polynomials for matrix interpolation requires
the storage of more coefficients than matrix interpolation
and requires more computation time.

The advantage of one interpolation method over the other
is based upon the general resonant nature of the antenna to
be modeled. When many resonances occur within a particular
frequency range, matrix interpolation is faster and requires
less computational resources. When there are only one or two
resonances within a particular range, matrix interpolation
is more efficient. The results presented in this paper demon-
strate the wide range of applicability of the matrix interpolation
methods. It was stated from the outset of this work that the
key advantage of these interpolation methods is their ability
to be easily linked with an existing MoM program. Thus,
these interpolation methods can be applied to a wide variety

of MoM problems that utilize similar Green’s functions or
integral equations.

REFERENCES

[1] M. A. Jensen and Y. Rahmat-Samii, “Performance analysis of anten-
nas for hand-held transceivers using FDTD,”IEEE Trans. Antennas
Propagat., vol. 42, pp. 1106–1113, Aug. 1994.

[2] Y. Rahmat-Samii and M. A. Jensen, “Characterization of antennas for
personal wireless communications applications,”Int. J. Wireless Inform.
Networks, vol. 1, pp. 165–175, 1994.

[3] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering
by surfaces of arbitrary shape,”IEEE Trans. Antennas Propagat., vol.
AP-30, pp. 409–418, May 1982.

[4] S.-U. Wu and D. R. Wilton, “Electromagnetic scattering and radiation
by arbitrary configurations of conducting bodies and wires,” Tech.
Document 1325, Appl. Electromagn. Lab., Dept. Elect. Eng., Univ.
Houston, TX, Aug. 1988.

[5] R. E. Hodges and Y. Rahmat-Samii, “An iterative current-based hybrid
method for complex structures,”IEEE Trans. Antennas Propagat., vol.
45, pp. 265–276, Feb. 1997.

[6] J. S. Colburn and Y. Rahmat-Samii, “Evaluation of personal communi-
cations dual-antenna handset diversity performance,”IEEE Trans. Veh.
Technol., vol. 47, pp. 737–746, Aug. 1998

[7] T. K Sarkar, K. R. Siarkiewicz, and R. F. Stratton, “Survey of numerical
methods for solution of large systems of linear equations for electromag-
netic field problems,”IEEE Trans. Antennas Propagat., vol. AP-29, pp.
847–856, Nov. 1981.

[8] F. X. Canning, “Direct solution of the EFIE with half the computation,”
IEEE Trans. Antennas Propagat., vol. 39, pp. 118-119, Jan. 1991.

[9] G. F. Herrmann, “Note on interpolational basis functions in the method
of moments,”IEEE Trans. Antennas Propagat., vol. 38, pp. 134–137,
Jan. 1990.

[10] T. W. Nuteson, K. Naishadham, and R. Mittra, “Spatial interpolation
of the moment matrix in electromagnetic scattering and radiation prob-
lems,” in IEEE Antennas Propagat. Soc. Int. Symp. Dig., Ann Arbor,
MI, June 1993, pp. 860–863.

[11] G. Vecchi, P. Pirinoli, L. Matekovits, and M. Orefice, “Reduction of
the filling time of method of moments matrices,” in11th Annu. Rev.
Progress Appl. Computat. Electromagn., Monterey, CA, Mar. 1995, pp.
600-605.

[12] G. J. Burke, E. K. Miller, S. Chakrabarti, and K. Demarest, “Using
model-based parameter estimation to increase the efficiency of com-
puting electromagnetic transfer functions,”IEEE Trans. Magn., vol. 25,
pp. 2807–2809, July 1989.

[13] K. Kottapalli, T. K. Sarkar, Y. Hua, E. K. Miller, and G. J. Burke, “Ac-
curate computation of wide-band response of electromagnetic systems
utilizing narrow-band information,”IEEE Trans. Microwave Theory
Tech., vol. 39, pp. 682–687, Apr. 1991.

[14] E. H. Newman and D. Forrai, “Scattering from a microstrip patch,”
IEEE Trans. Antennas Propagat., vol. AP-35, pp. 245-251, Mar. 1987.

[15] E. H. Newman, “Generation of wide-band data from the method of
moments by interpolating the impedance matrix,”IEEE Trans. Antennas
Propagat., 36, pp. 1820–1824, Dec. 1988.

[16] A. F. Peterson,“Higher-order surface patch basis functions for EFIE
formulations,” inIEEE Antennas Propagat. Soc. Int. Symp. Dig., Seattle,
WA, June 1994, pp. 2162–2165.

[17] D. R. Wilton, “Review of current status and trends in the use of integral
equations in computational electromagnetics,”Electromagn., vol. 12,
pp. 287–341, 1992.

[18] K. L. Virga and Y. Rahmat-Samii, “Generation of wideband antenna
performance by[Z] and [Y ] matrix interpolation in the method of
moments,” inUltra-Wideband Short Pulse Electromagnetics III. New
York: Plenum, 1996.

[19] R. L. Burden and J. D. Faires,Numerical Analysis, 5th ed. Boston,
MA: PWS-Kent, 1988, ch. 8.

[20] T. Taga and K. Tsunekawa, “Performance analysis of a built-in inverted
F antenna for 800 Mhz band portable radio units,”IEEE J. Select. Areas
Commun., vol. SAC-5, pp. 921–929, June 1983.

[21] K. Hirasawa and M. Haneishi,Analysis, Design and Measurement of
Small Low Profile Antennas. Norwood, MA: Artech House, 1992.

[22] K. Virga and Y. Rahmat-Samii, “Low-profile enhanced-bandwidth PIFA
antennas for wireless communications packaging,”IEEE Trans. Mi-
crowave Theory Tech., vol. 45, pp. 1879–1888, Oct. 1997.

[23] J. D. Kraus,Antennas. New York: McGraw-Hill, 1988.
[24] G. J. Burke and A. J. Poggio, “Computer Analysis of the Bottom-

Fed Fan Antenna,” UCRL-52109, Lawrence Livermore Lab., Univ.
California, Livermore, Aug. 1976.



76 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 1, JANUARY 1999

[25] J. J. Dongarra,Linpack User’s Guide. Philadephia, PA: Soc. Indust.
Appl. Math., 1979.

Kathleen L. Virga (S’84–M’95–SM’97) received
the B.S. degree from California State University,
Long Beach, in 1985, the M.S. degree from Cal-
ifornia State University, Northridge, in 1987, and
the Ph.D. degree from the University of California,
Los Angeles (UCLA), in 1996, all in electrical
engineering.

From 1985 to 1996, she worked in the Radar Sys-
tems Group, Hughes Electronics, Electromagnetic
Systems and Solid-State Microwave Laboratories.
She has been a Task Leader and Supervisor for

several internal research and development projects. She is currently an
Assistant Professor in the Electrical and Computer Engineering Department
at the University of Arizona, Tucson. Her experience includes the design
and development of phase shifters, RF feed networks, radiator elements, and
tranmit/receive modules for airborne phased-array and active-array antennas
for which she holds four patents.She is the Associate Editor responsible for the
professional activities (PACE) column in theAntenna and Propagation Society
Magazine. Her current research interests include mobile communications,
conformal antenna arrays, and the design and measurements of high-density
packaging for high-speed digital and microwave applications.

Dr. Virga is a member of Eta Kappa Nu, Tau Beta Pi, Sigma Xi, and
the IEEE Antennas and Propagation (AP-S) and Microwave Theory and
Techniques (MTT) Societies. She serves as the PACE chair for the AP-S
Society. She served on the Steering Committee that hosted the 1994 MTT
International Microwave Symposium and the Technical Program Committee
for the 1998 AP-S Symposium. In 1996, she was the second-place finalist
in the USNC-URSI Student Paper Competition and received the UCLA
Department of Electrical Engineering Graduate Woman of the Year Award.
She was the invited keynote speaker for the 1996 California State University
Northridge, School of Engineering commencement.

Yahya Rahmat-Samii (S’73–M’75–SM’79–F’85)
received the M.S. and Ph.D. degrees in electrical
engineering from the University of Illinois, Urbana-
Champaign.

He was a Senior Research Scientist at NASA’s Jet
Propulsion Laboratory/California Institute of Tech-
nology. In 1986, he was a Guest Professor at the
Technical University of Denmark (TUD). He has
been a consultant to many aerospace companies.
He is currently Professor of electrical engineering
at the University of California at Los Angeles

(UCLA). He has authored and coauthoreed over 400 technical journal articles
and conference papers, has written 14 book chapters, and is the coauthor
of Impedance Boundary Conditions in Electromagnetics(Washington, DC:
Taylor Francis, 1995). He has been the editor and guest editor of many
technical journals and book publications. He also the holds several patents.
His research contributions cover a diverse area of electromagnetics, antennas,
measurement and diagnostic techniques, numerical and asymptotic methods,
and satellite and personal communications.

Dr. Rahmat-Samii is a Fellow of IAE, a member or Commissions A, B, and
J of USNC/URSI, AMTA, Sigma Xi, Eta Kappa Nu, and the Electomagnetics
Academy. He was the 1995 President of the IEEE Antennas and Propagation
Society, and was appointed an IEEE Antennas and Propagation Society
Distinguished Lecturer. He has been the guest and plenary session speaker at
many national and international symposia, was one of the directors and vice
president of the Antennas Measurement Techniques Association (AMTA) for
three years, and was a member of UCLA’s graduate council. He received
numerous NASA and JPL Certificates of Recognition. In 1984, he was the
recipient of the prestigious Henry Booker Award of URSI. In 1992 and 1995,
he was the recipient of the Best Application Award (Wheeler Award) for
papers published in the IEEE TRANSACTIONS ONANTENNAS AND PROPAGATION.
He is listed inWho’s Who in America, Who’s Who in Frontiers of Science and
Technology, and Who’s Who in Engineering.


