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On a New Cylindrical Harmonic
Representation for Spherical Waves

Douglas H. Werner,Senior Member, IEEE, and Thomas W. Colegrove

Abstract—An exact series representation is presented for inte-
grals whose integrands are products of cosine and spherical wave
functions, where the argument of the cosine term can be any
integral multiple n of the azimuth angle�. This series expansion
will be shown to have the following form:
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It is demonstrated that in the special casesn = 0 and n = 1,
this series representation corresponds to existing expressions for
the cylindrical wire kernel and the uniform current circular
loop vector potential, respectively. A new series representation
for spherical waves in terms of cylindrical harmonics is then
derived using this general series representation. Finally, a closed-
form far-field approximation is developed and is shown to reduce
to existing expressions for the cylindrical wire kernel and the
uniform current loop vector potential as special cases.

Index Terms—Circular loop antenna, cylindrical harmonics,
cylindrical wire dipole, spherical wave expansions.

I. INTRODUCTION

A family of integrals which frequently arise in antenna
theory are considered in this paper. The general form

of these integrals is defined by

(1)

where

(2)

and

(3)

It is of interest to point out here that the integral in (1)
reduces to the well-known cylindrical wire kernel when
and, when , it is proportional to the vector potential
for a circular loop antenna with a uniformly distributed cur-
rent. More generally, integrals of the form (1) arise in the
decomposition of spherical waves into cylindrical harmonics
[1]. Although the special cases and of this integral
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have been treated elsewhere in the literature [2], [3], no general
methodology for evaluating integrals of this form currently
exists for arbitrary values of the parameter. Treating the
entire family of integrals given by (1) unifies these independent
cases as part of a more general framework.

In this paper, we develop an exact series representation for
such integrals which is valid for all integer values of the
parameter . The development of this series representation,
based essentially upon an expansion for the exponential in
terms of spherical Hankel functions of the second kind is given
in Section II. In Section III, important immediate applications
of this result are considered, including the special cases of the
cylindrical wire kernel and the uniform current loop antenna
mentioned above, as well as a new series expansion for
spherical waves derived by means of a decomposition of these
waves into cylindrical harmonics. Finally, a closed-form far-
field approximation of (1) involving Bessel functions of the
first kind is presented in Section IV.

II. THEORETICAL DEVELOPMENT

In this section, an exact series representation for the general
family of integrals defined in (1) will be derived. We begin
this derivation by recognizing that (1) may be expressed in
the convenient form

(4)

which reduces the integrand to a product involving a simple
exponential. A procedure has been described in [4], which
makes use of Lommel expansions in order to derive an exact
series representation for the exponential function which ap-
pears in the integrand of (4). The resulting series representation
is given by

(5)

where

(6)

and the are spherical Hankel functions of the second
kind of order .
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Substituting expression (5) for the exponential into (4) and
integrating term-by-term yields

(7)

The expressions on the right-hand side of (7) can be greatly
simplified by carrying out the indicated operations. To evaluate
the first term on the right-hand side of (7) we observe that

(8)

where represents the Kronecker delta function defined by

otherwise
(9)

and also that

(10)

Thus, by applying (8)–(10), it follows that the first term in
(7) reduces to

(11)

The integral appearing in the second term of (7) can be
evaluated by a simple change of variables which yields [3]

(12)

where

if

otherwise.
(13)

Using the recurrence relation

(14)

along with (12), we can then express the second term of (7) as

(15)

Finally, substituting (11) and (15) into (7) leads us to the
following exact series representation for the integral :

(16)

III. A PPLICATIONS

A. The Cylindrical Wire Kernel

When , the integral (1) reduces to the well-known
cylindrical wire kernel [2]. In other words,

(17)

which, according to (16), has the following series represen-
tation:

(18)

Because vanishes whenever is odd, we can
introduce the new summation index and thereby
recast (18) in the form

(19)

which is equivalent to the result obtained by Wang [5]. Algo-
rithms based on this series representation of the cylindrical
wire kernel have recently been developed for the efficient
yet accurate evaluation of moment method impedance matrix
integrals [6].

B. The Uniform Current Loop

The vector potential for a uniform current circular loop
antenna can be written as [7]

(20)

where

(21)

It then follows from (16) that a series representation for (21)
may be found which has the form

(22)

Because the terms of this series are nonzero only ifis
odd, we can rewrite (22) as

(23)
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which is in agreement with the result obtained by Werner
[3]. Thus, we see from (23) above, together with (19) from
Section III-A that the series representation derived in Section I
provides, as important special cases, exact expressions for the
cylindrical wire kernel and the uniform current circular loop
vector potential.

C. Series Expansion for a Spherical Wave

The decomposition of a spherical wave into cylindrical
harmonics can be written as [1]

(24)

where is Neumann’s number defined by

(25)

It follows immediately upon multiplying both sides of this
equation by and integrating with respect to from 0
to 2 that [1]

(26)

Hence, by substituting (26) into (24) and making use of
(16), we arrive at the following exact series expansion for a
spherical wave:

(27)

This new spherical wave expansion is particularly useful in
those situations, which are often encountered in electromag-
netics where integrations of the form

(28)

are required. For these cases, term-by-term integration of the
series would translate into much simpler integrals of the type

(29)

which, for most cases of practical interest, can be evaluated in
closed form. The double series given in (27) may be reduced
to a single series by making use of the following identity:

(30)

The resulting series representation is found to be

(31)

IV. FAR-FIELD APPROXIMATIONS

If we choose a field point very far from the origin so that
, then it can be shown that [8]

(32)

where

(33)

This same argument can be used to prove that

(34)

where is the angle from the-axis to the field point vector.
Therefore, by combining (16), (32), and (34), we obtain the
following far-field approximation for :

(35)

At this point in the development, we choose to introduce
a new summation index, namely , which
transforms (35) into

(36)

where the series representation for Bessel functions of the first
kind was used in order to arrive at the final closed-form far-
field representation in (36). This provides additional validation
of the exact series representation for (1) given in (16) since the
same result may be readily obtained by applying a standard
far-field approximation directly to (1), i.e., replacing by

and in the phase term and amplitude term
of the integrand in (1), respectively. It will be demonstrated
below that this general far-field expansion reduces to known
results for the two special cases considered above (i.e.,
and ).

A. Far-Field Expression for the Cylindrical Wire Kernel

By setting , we can use (17) and (36) to obtain
the following far-field approximation for the cylindrical wire
kernel:

(37)

which agrees with the result reported in [9].
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B. Far-Field Expression for the Uniform Current Loop

If we now set , we can use (21) and (36) to obtain
a far-field expression for the uniform current loop vector
potential. Combining these equations we arrive at

(38)

which is in agreement with the classical result [7].

V. CONCLUSION

An exact series representation for integrals of the form
(1) has been presented in this paper. As special cases of
this general series representation, the kernel integral for a
cylindrical dipole and the vector potential for a uniform
current circular loop were evaluated. In addition, the general
series representation was used to develop a new and useful
series expansion for a spherical wave in terms of cylindrical
harmonics. A general closed-form far-field approximation was
also developed and shown to reduce to the known results for
the special cases of the cylindrical wire kernel and the uniform
current loop vector potential.
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