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On a New Cylindrical Harmonic
Representation for Spherical Waves

Douglas H. WernerSenior Member, IEEEand Thomas W. Colegrove

Abstract—An exact series representation is presented for inte- have been treated elsewhere in the literature [2], [3], no general
grals whose integrands are products of cosine and spherical wave methodology for evaluating integrals of this form currently
functions, where the argument of the cosine term can be any eyists for arbitrary values of the parameter Treating the
integral multiple » of the azimuth angle¢. This series expansion . . . . . -
will be shown to have the following form: entire family of integrals given by (1) unifies these independent

‘ cases as part of a more general framework.
(K*ppo) W' (kRo) In this paper, we develop an exact series representation for

m! (kRo)™ such integrals which is valid for all integer values of the

parametern. The development of this series representation,

. : . - . based essentially upon an expansion for the exponential in
this series representatlon corresponds to eX|st|ng expressions for . . . . .
the cylindrical wire kernel and the uniform current circular  €rmS Of spherical Hankel functions of the second kind is given
loop vector potential, respectively. A new series representation in Section Il. In Section IlI, important immediate applications
for spherical waves in terms of cylindrical harmonics is then of this result are considered, including the special cases of the
derived using this general series representation. Finally, a closed- cylindrical wire kernel and the uniform current loop antenna
form far_—fleld approxlmatlon is devel_ope_d and_|s shown to reduce mentioned above, as well as a new series expansion for
to existing expressions for the cylindrical wire kernel and the . . o
uniform current loop vector potential as special cases. spherical waves derived by means of a decomposition of these

waves into cylindrical harmonics. Finally, a closed-form far-
field approximation of (1) involving Bessel functions of the
first kind is presented in Section IV.

e IkRo

I(n) = o Ono — jk Z C(m,n)

m=1

It is demonstrated that in the special cases: = 0 and n = 1,

Index Terms—<Circular loop antenna, cylindrical harmonics,
cylindrical wire dipole, spherical wave expansions.

I. INTRODUCTION Il. THEORETICAL DEVELOPMENT

family of integrals which frequently arise in antenna In this section, an exact series representation for the general
theory are considered in this paper. The general forfamily of integrals defined in (1) will be derived. We begin

of these integrals is defined by this derivation by recognizing that (1) may be expressed in
the convenient form
1 27 e JkR
I(n)= - / cosng dep (1) j 4 »
27 Jo I(n - _J ¢ / cosnde T dp. 4
where

which reduces the integrand to a product involving a simple

R=\/C?+ p? + pZ — 2ppo cos (2) exponential. A procedure has been described in [4], which
makes use of Lommel expansions in order to derive an exact
series representation for the exponential function which ap-

C=2— 2. (3) Pears in the integrand of (4). The resulting series representation
is given by
It is of interest to point out here that the integral in (1)

reduces to the WeII_-kr_mwn cylln_drlcal wire kernel when= O_ kR kR 0 (k2ppo)™ cos™ ¢ /15,21),1(/&30)

and, whenn = 1, it is proportional to the vector potential ¢ =e + Z - (kRo)ym 1 (5)

for a circular loop antenna with a uniformly distributed cur- m=1 ) 0

rent. More generally, integrals of the form (1) arise in the

decomposition of spherical waves into cylindrical harmonic¥nere

[1]. Although the special cases= 0 andn = 1 of this integral

and

Ry =\/C+p2+p} (6)
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Substituting expression (5) for the exponential into (4) and Finally, substituting (11) and (15) into (7) leads us to the

integrating term-by-term yields following exact series representation for the intedi@al):
_J 4 kR, o _ ¢ Ik o — (k2ppo)™
I(n) = ) <d§ e ) /0 cos ne do Itn)= e Ono — jk ; C(m,n) BT
a i (K2ppo)™ ( d hizi(kRy) h2 (kRo) 16
K2 ml d¢ (kRg)m—1 kR (16)
1 27
"o cosng cos™ ¢ de. @) [Il. A PPLICATIONS
0

The expressions on the right-hand side of (7) can be greatly The Cylindrical Wire Kernel

simplified by carrying out the indicated operations. To evaluateWhenn — 0, the integral (1) reduces to the well-known

the first term on the right-hand side of (7) we observe that cylindrical wire kernel [2]. In other words

1 27 o s g 1 2w ,—jkR
o ), cosng dp = dpo (8) K(¢) =I(0) = . /0 = dé (17)
whered,,o represents the Kronecker delta function defined kynich, according to (16), has the following series represen-
5 { 1, n=0 ) tation:
"0 =00, otherwise e—ikRy 2 K2 o0V WD (kR
KO = =ik 3 Cmo) 20T T,
and also that 0 m=1 m 0
d _. ik (18)
— e IkRo — _JV ro—ikRo
€ e o Ce (10)

BecauseC(m,0) vanishes whenevem is odd, we can

Thus, by applying (8)~(10), it follows that the first term irintroduce the new summation index = 3m and thereby

(7) reduces to recast (18) in the form
; j —jkRo oo 2 on 1, (2)
j d —jkRo o _ e_ijO K — —6 ’ _ r'k (k ppo/z) h2n (kRO) 19
gy () [, coon o= O="m F L e Gme @
(11)

which is equivalent to the result obtained by Wang [5]. Algo-

The integral appearing in the second term of (7) can fithms based on this series representation of the cylindrical
evaluated by a simple change of variables which yields [3] wire kernel have recently been developed for the efficient
yet accurate evaluation of moment method impedance matrix

27 :
2i cosng cos™ ¢ deb integrals [6].
T Jo
1 /7 B. The Uniform Current Loo
== / cosng cos™ ¢ dp=C(m,n). (12) ) P ) _
T Jo The vector potential for a uniform current circular loop
where antenna can be written as [7]
A= Ayd 20
C(m,n) = }n <m>7 if n<mandm—n=2p #9 (20)
’ 2 p : where
0, otherwise. ) -
I Iy [ ik
13) 4, = po’; 0 1(1) = p(ﬁo / cos ¢ —— dp. (21)
Using the recurrence relation 0 . )
It then follows from (16) that a series representation for (21)
d <h£3>(a:)> h?) () (14 M3 be found which has the form
% " - " oo 2 m (2)
y = BP0l oy 1y o)™ B (R Ro) )
along with (12), we can then express the second term of (7) as 2 = m. (kRo)™
g i (K2pp)™ ( d /15,21),1(/%‘}30) dgecause the ter{ns ;); this series are nonzero onty iis
K 2 ol ¢ (kRo)m1 odd, we can rewrite (22) as
1 2 A _ kpopdo i 2n + 1Y (K*ppo/2)>+t hgi)+1(kR0)
o cosng cos™ ¢ de T T . n (2n+ 1)1 (kRg)2n+1
0 n=l
=) oo _ (2)
: (Kppo)™ hi (kRo) Fpoudo o (K?ppo/2)*" ™" Ry (FFo)
= —jk C . 15 = 23
/ ;::1 () = Greyr - Y 2j ; al(n—1)!  (kRp)2n—1 (23)
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which is in agreement with the result obtained by Werner The resulting series representation is found to be
[3]. Thus, we see from (23) above, together with (19) from _,

kR, o0 2 RCIN
Section IlI-A that the series representation derived in Sectiond " —jk Z (k pp'o) forn (Mi?) cos™ .
provides, as important special cases, exact expressions for th Ro m=1 m (kRo)
cylindrical wire kernel and the uniform current circular loop (31)

vector potential.
IV. FAR-FIELD APPROXIMATIONS

C. Series Expansion for a Spherical Wave If we choose a field point very far from the origin so that

The decomposition of a spherical wave into cylindrica]fR — oo, then it can be shown that [8]
harmonics can be written as [1] L eIk

B (kRo) — j"H —— (32)
e—JIkR o 00 !
= = > em cosme / M (Ap) T (Apo) where

m=0 0 r=/p?+ 22 33
V=R ’ (33)

. ﬁ dA. (24) This same argument can be used to prove that

(k?ppo)™ 1 (kposin )™
wheree,, is Neumann’s number defined by m! (kRg)™ - m! (34)
1, m=0 whered is the angle from the-axis to the field point vector.
Em = 2, m>1. (25) Therefore, by combining (16), (32), and (34), we obtain the

following far-field approximation fot (n):
It follows immediately upon multiplying both sides of this

—jkr —jkr  =© 1 m
equation bycosn¢ and integrating with respect tp from 0 () & J B0 + 2 J > Clm,n)j™ M
to 2r that [1] Lo .
—jkr © : m
N = _ ST Gy o snO™ (35)

Hence, by substituting (26) into (24) and making use of At this point in the development, we choose to introduce

(16), we arrive at the following exact series expansion for% new summation index, namely = (m — n)/2, which

. ) transforms (35) into
spherical wave:

—jkR I(n) =~ i i <2p+”> FHT (kpo sin )+
= = Z end(n) cosng [ p 22rtn (2p+n)!
n=0 —ikr 00 . 2pdn,
; e (kpo sin@/2)?r+
—jkRo [=1e] oo ]C2 m — jn (_1)p
=2 R —Jjk Z Z C(m,n)e, w T pz:% pl(p+n)!
0 n=0 m=1 m: —jkr
c . .
h$? (kRo) = 3" In(kpo sin6) (36)
- ————=% cosne. 27 r
(kRO)rn d) ( )

where the series representation for Bessel functions of the first

This new spherical wave expansion is particularly useful f{1d Was used in order to arrive at the final closed-form far-
those situations, which are often encountered in electromé'q-ld representation in (36). This provides additional validation
netics where integrations of the form of the exact series representation for (1) given in (16) since the

same result may be readily obtained by applying a standard
1 2w e IkR far-field approximation directly to (1), i.e., replacing by
2 ), @) —f—d¢ (28) ;. _ )y sind cos¢ andr in the phase term and amplitude term
of the integrand in (1), respectively. It will be demonstrated
are required. For these cases, term-by-term integration of t#glow that this general far-field expansion reduces to known
series would translate into much simpler integrals of the typesults for the two special cases considered above i.€.0
1 o andn = 1).

> f(@) cosng d (29)

2 0

A. Far-Field Expression for the Cylindrical Wire Kernel

which, for most cases of practical interest, can be evaluated irBy settingn = 0, we can use (17) and (36) to obtain
closed form. The double series given in (27) may be reducte following far-field approximation for the cylindrical wire
to a single series by making use of the following identity: kernel:

7jk,,,

o) € . .
cos™ ¢ = Z C(m,n)e, cosng. (30) K~ T Jolkpo sin) (37)

n=0 which agrees with the result reported in [9].
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B. Far-Field Expression for the Uniform Current Loop [8] L. C. Andrews, Special Functions for Engineers and Applied Mathe-
. maticians New York: MacMillan, 1985, pp. 241-242.
If we now setn = 1, we can use (21) and (36) to obtain [g] p. L. Werner and D. H. Werner, “Approximations for the cylindrical wire

a far-field expression for the uniform current loop vector kernel,”IEE Electron. Lett.vol. 32, no. 23, pp. 2108-2109, Nov. 1996.
potential. Combining these equations we arrive at

popdo eI+
2 7

which is in agreement with the classical result [7].

Ay J1(kpo sin 6) (38)
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