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A Pseudospectral Method for Time-Domain
Computation of Electromagnetic
Scattering by Bodies of Revolution

Baolin Yang and Jan S. Hesthaven

Abstract—We present a multidomain pseudospectral method excitation in handled with equal ease. Indeed, the advent of
for the accurate and efficient time-domain computation of scatter- finjte-difference time-domain (FDTD) methods [1] was partly
ing by body-of-revolution (BOR) perfectly electrically conducting driven by the need to solve large scattering problems being

objects. In the BOR formulation of the Maxwell equations, the . . .
azimuthal dependence of the fields is accounted for analytically illuminated by a time-dependent source. Moreover, the FDTD

through a Fourier series. The numerical scheme in the(r, z) approach has proven very fruitful in enabling the modeling of
plane is developed in general curvilinear coordinates and the problems of very significant geometric complexity, possibly
method of characteristics is applied for patching field values in the  jnvolving complex materials.

individual subdomains to obtain the global solution. A modified Although alleviating the problems associated with broad-

matched-layer method is used for terminating the computational e . .
domain and special attention is given to proper treatment of band excitation, the mainstream FDTD method is troubled

the coordinate singularity in the scattered field formulation and by the need of 10-20 points per wavelength to accurately
correct time-domain boundary conditions along edges. Numerical resolve the wave dynamics of the scattering problem—and

results for monochromatic plane wave scattering by smooth any other wave problem. The same phenomenon exists in
and nonsmooth axis-symmetric objects, including spheres, cone-ine MoM approach and is an inherent consequence of these

spheres, and finite cylinders, is compared with results from the .
literature, illustrating the accuracy and computational efficiency methods being of low order, e.g., most FDTD schemes are only

associated with the use of properly constructed spectral methods. Second-order accurate. The accurate modeling of electrically
To emphasize the versatility of the presented framework, we large objects thus becomes prohibitive and either the required

compute plane wave scattering by a missile and find satisfactory accuracy or the maximum electric size is severely limited.
agreement with method-of-moment (MoM) computations. The quest for high-accuracy time-domain solution and the
Index Terms—Bistatic radar cross section, body-of-revolution ability to handle electrically large problems points toward
scattering, pseudospectral multidomain methods, time-domain high-order finite-difference methods as the proper tool for solv-
scattering. ing scattering problems and intensive effort have recently been
put into devising such schemes for the Maxwell equations,
|. INTRODUCTION e.g., [2], [3], yielding superior accuracy at the expense of a
somewhat more complicated computational framework.

ITH the development of new technologies such as - o
. In the present work, we follow this line of thinking and
ultra-short pulse radars comes an increased need (fj;I)r

- . .~ develop pseudospectral time-domain methods suitable for the
the accurate and efficient modeling of very broad-band signals_~ " : : S
illuminating electrically large scatters numerical solution of the scattering problem. To maintain
In the past. the method-of-momen.ts (MoM) has been eg_eometric flexibility essential for the solution of problems
past, . . of a practical character, we continue the work initiated in
tremely successful in addressing the problem of monochr@—] [5] and formulate a multidomain scheme for the accurate
matic plane wave scattering by very general objects. However,’ "= " : . . .
this choice of method is less attractive for these new tvpes & d efficient computation of scattering by bodies-of-revolution
. yp OR). The pseudospectral schemes can be thought of as a
problems for several reasons, e.g., the inherent monochromatic . S
nature of the MoM makes the computation of broad-barg&imum order finite-difference schemes and as such takes the
scattering a very expensive process. Moreover, regions

r }e of the royals among numerical schemes for the solution
. ; . . of partial differential equations. As we shall learn properl
multiple scattering or electrically very large objects are knowf%rﬁqulated pseudospegtral schemes yield not onlypsupper)ilor

to cause severe ill-conditioning and extremely large linear : e
. L accuracy but does so in a very efficient manner as compared
systems, stretching the limits of modern computers. to.traditional low-order EDTD schemes
timTerlzor:aei?l :T?;t:;%id{:?Eicf]xc'r::gnwz\ljggaerfés st:grtusjl Ztl'he remaining part of this paper is organized as follows. In
P P QEﬁection Il, we develop the appropriate theoretical framework
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of the multidomain pseudospectral framework in which weherek! = 27/ relates to the wavelength of the incident
shall solve the Maxwell equations. The complete numericalave approaching the scatter along the propagation vector
scheme is studied quantitatively as well as qualitatively in < L PP i

Section 1V, where we present results for scattering by a variety k' = —(sin 6" cos ¢'X + sin " sin ¢'y + cos 62)

of objects excited by plane monochromatic waves of axial
well as oblique incidence and the results are compared wy
results from the literature. Section V contains a few concludincg
remarks and directions for future research.

ere(#*, ¢*) specifies the direction of the incoming field in
e usual spherical bas(sa,é,(f)) and corresponding coor-
nates(p, 8, $) with the exception that we have chosen to
measured’ as the angle to-z such thatk = 2 for axial
incidence, i.e.f* = 0. Unless otherwise stated, we shall only
consider the case af’ = 0 for simplicity.

Consider the vacuum Maxwell equations in cylindrical The polarization of the incoming field is specified through

Il. THE BOR FORMULATION OF THE MAXWELL EQUATIONS

coordinates(r, ¢, z) the components alon§ and ¢ as
55 — V X H (1) EIIIC — EéﬂCe + E;HC(p’ HlIlC — Z—lkZ X EIIIC
Naa_l;l =-VxE (2) where Z = /p/e = 12072 represents the intrinsic

impedance. In accordance with standard notation, we refer
whereE = (E,, Ey, E.)" andH = (H,, Hy, H.)" signify to the case ofEX = 0 as horizontally polarized while
the electric and magnetic field components whileand 1 Eirc = 0 is termed vertically polarized excitation.
refer to the vacuum permitivity and permeability, respectively,
related to the vacuum speed of light= (ez2) /2. A Treatment of the Axial Singularity

To arrive at the BOR formulation of the Maxwell equations,

the azimuthal field variation is accounted for analytically Th_e BOR equations (5) a_nd (6) contain a coordinate sin-
through a Fourier expansion as gularity at » = 0 that requires proper treatment. For the

case of the total field formulation, a popular approach [1]

oo

. ~ . is to use I'Hospitals rule at the axis to turn the singular
E(r,¢,2) = (7, 2 (7, 2 3 X S . .
(r,¢,2) ;_:O(e (r,z) cosme +&,(r, z)sinmg) - (3) terms into derivatives. However, when using the scattered field
oo formulation, it remains unknown whether this limit exists and
H(r, ¢,2) = Z (hy(r, z) cosme + h,(r, z)sinm¢)  (4) We must seek an alternative approach.
0 We apply a change of variables as
wherem is the mode number and, = (é,,,u,é%u,éz,u)T, €uy=7rCuy, hu,=rhy,.,

&, = (Er, oy C20) ", and likewise forh, andh,. Hence,
the first subscript refers to the field component, while thehich, after being introduced in (5) and (6), yields
second subscript refers to its azimuthal variation. de.. . 1 . .

We recall that while the scatterer is assumed to possess ar—— = Vi X by, + =[(h,, -2)¢p £ me x h,,,]  (8)
axis symmetry, this is certainly not the case for the incident !

and scattered fields and introducing (3) and (4) only suppliepl% =-V| xXey,, — %[(e'u,,w )bt moxe,. (9)
an efficient way to account for the azimuthal variation of each
individual mode. where we have introduce®  as the usual perpendicular
Substituting (3) and (4) into (1) and (2) and utilizing thevector operator in thér, z) plane, i.e.,
orthogonality of the trigonometric polynomials results in a pair 9 9
of equations for the twelve unknowns, ,, andh,, ,,, for each V1= f@ + 287'
azimuthal modem as “
&, v . m o~ - Equations (8) and (9) still contains a number of singular terms
5 = Vixhy, + 7¢ X hy oy (5) at the axis. We shall consider the two casesrof= 0 and
on, . m - m > 0 separately.
8t7 =-Vxe,,F 7¢ X €yy- (6) m =0: In this case, we only have singularities in the equa-

tions of ¢4 andh,. However, form # 1, &, and hy

are identically zero due to the nature of the fields at
the axis [1] and we need not discretize the equations
for the azimuthal field components at the axis but
may simply impose the boundary conditions. Since
these arguments are valid only for the total fields
the boundary conditions for the scattered field are
recovered by using the prescribed incident field.

These twelve equations separate into two independent sets
of equations in six unknowns, representing fields that are
azimuthally orthogonal.

In various special cases, depending on angle of incidence
and polarization of the incident wave, only one of the two sets
of equations are needed to solve the problem. However, in the
general case, we need to advance all twelve equations subject

to an incident field on the form m > 0: This case is slightly more complicated in that we have

{IE{:; } = {IE{Z }exp[iki(f{i 1 —ct)] ) singularities in all equations. However, fat > 0,
the ¢, and A, components of the total fields are
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identically zero along the axis since any constant- While (10)—(14) uniquely determine the boundary condi-
r Faraday’s Law path integral containing = 0 tions for the scattered field along smooth parts of the scatter,
integrates to zero, i.e¢, andh_ are both identically the formulation of boundary conditions along edges remains
zero along the axis [1]. Rather than solving thepen.

equations for the axial components we simply impose The possibility of singular behavior of the field components
the appropriate boundary condition which then couplglong edges is detailed in [7] from which we infer that only
into the equations of the radial variation. As for theZ, and H, can be expected to be finite in the general case.
case ofm = 0, we must recover the scattered fieldf we term the anglex € [0, 2x] of the wedge terminating in
boundary conditions using the incident fields for théhe edge, the remaining field components can be expected to
remaining terms in (8) and (9) as the above argumestale as
is valid only for the total fields.

We note that the boundary conditions are arrived at without
using approximations but rather derived solely on the basis\heret signifies the distance to the edge. Hence, for convex
the properties of the fields and the knowledge of the prescribggdges,«« € [0,#] the field components exhibit a weak
incident fields along the axis. singularity while all field components remain regular for
concave wedges.

We can certainly not hope to resolve such singular behavior.

To complete the specification of the problem, we need tdowever, boundary conditions are still required along the
address the question of boundary conditions at the scatterasdges of convex wedges and we impose that vanishes

Since we confine our attention to the case of perfectyt the edge while the remaining individual field components
electrically conducting (PEC) objects, the boundary conditiomge continuous across the edge. While this is physically
takes the general form correct only for H, it is a reasonable assumption also for

AxE=0, n-H=0 the remaining field components, which are still allowed to

_ I . _grow unboundedly in accordance with [7]. Moreover, the
wherefi = (7A,., 74, 72.) represents an outward pointing unit

; ‘procedure ensures smooth fields for edges of concave wedges
vector at the object. :

For the sake of simplicity we shall deal with the azimuthr:”1 accordance with the expected behavior.
components seperately and introduce ¢he) plane outward
pointing normal vectoh = (#,.,0, 7. ).
Let us introduce the scattered field formulation as In the following, we shall describe in some detail the
E=E™ +E°, H=H"{H individual elements of and the reasoning behind the complete

o ) . . ] multidomain scheme for the solution of (8) and (9) subject to
where the incident fieldd:*c and H™, are prescribed at all 1o prescribed initial and boundary conditions.

times through (7). Considering the electric field we obtain, due
to the symmetry, the condition A. Chebyshev Spectral Methods

By = —Eg" (10) The schemes presented in this paper are all based on
while a second condition is obtained by requesting Chebyshev collocation methods, which, due to their superior
(2) - (f x E1HC) _ _(2). (A x E*) =1, ES — i B5. (11 approximation properties, are widely used for the solution of
) . ) partial differential equations.
Th|s only yields one equation for_ the twq _unk_nown. scattered The Chebyshev polynomial of ordéris defined as
field components. However, a third condition is arrived at by

recalling the behavior of hyperbolic problems at solid walls, Ti(x) = cos(k cos ™t )
at which the outgoing characteristics are simply reflected [6]. . . ) ,
Hence, for consistency we must also require that where |a;| < 1. In the following sections we will (_:on3|der
) s s Tise collocation methods, where th¥ + 1 collocation points are
n-E°=a,.E +7.E =n-E> (12)  chosen to be the Chebyshev—-Gauss—Lobatto points found as
where E** signifies the computed scattered field. This yieldhe roots of the polynomiall — z2)7% (=), i.e.,
the additional equation required to enforce the boundary

E. E. H. H, ~t (m=)/(@r=a)

B. Boundary Conditions at the Scatterer

I1l. THE NUMERICAL SCHEME

condition on the electric field. T; = — COS(ZLT), 0<i< N.
The situation for the magnetic field is very similar. Indeed, N
the physical condition yields When applying a Chebyshev collocation method, the function

f(z) is approximated by a grid functiofi; = f(x;), where

the grid points are the Gauss—Lobatto points. We construct
a global Nth order Chebyshev interpoladty to obtain the
approximation of the function

n-H"=_h H° = -4, H’ -3 H® (13)
while an additional condition appears as
¢ -(AxH)=n.H —a,H =¢-(hx H>*) (14) N
Unf) (@) = figi(@).
=0

where H#®¢ refers to the computed scattered field.
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The interpolating Chebyshev-Lagrange polynomials are given

as ) AR 7
e (Em)="r(r.2)
2\t _1yi41 ;
() = (1 -2y (z)(=1) Vs
CZ‘NQ(J} — J}Z) v D (rz)=¥"(En)
wherecg = cy =2 andg;, =1forl < i< N-1.To Py

seek approximate solutior{dy f)(x) to a partial differential T vn P Je
equation, we ask that the equation is satisfied in a collocation =z
sense, i.e., at the _COIIOC‘T"UO!’] points. Hence, W_e nee(_j to Obtﬁim 1. lllustration of the mapping between physical coordingtes;) and
values of the spatial derivatives at the collocation points. Thisneral curvilinear coordinate, ) required for the construction of the
is accomplished by approximating the continuous differentiggneral multidomain scheme.
operator by a matrix operator with the entries
D , B. The(r, z) Equations in Curvilinear Form

5 = 95(@i) The first step toward a geometrically flexible spectral
scheme is to extend the use of polynomial expansions to
the general curvilinear quadrilateral domain. We assume
the existence of a smooth nonsingular mapping function
AInf) relating the(r, z) coordinate system to the general curvilinear

N

N
o)~ S () = > Dijf(x)) coordinate systenf¢,n) as
§=0

E=&(r2), n=mn(rz)
and, likewise, for higher derivatives. For the explicit expres-

sions of the entries of the matrix operator and further detafiS illustrated in Fig. 1. We shall return to the actual specifica-
on collocation methods, we refer to [8]. tion and construction of the smooth map, shortly.

The extension of this one-dimensional (1-D) framework to a Utilizing this notation transforms (8) and (9) into two
multidimensional setting is most easily accomplished throudlyPerbolic systems

such that the derivative of at a collocation pointz; is
approximated as

the use of tensor products, e.qg., given the funcfi¢n, ) we dq dq dq 1
construct the two-dimensional approximation a—tl = A(VLS)a—g + A(Vﬂﬁa—n1 +(C+D)ar (16)
M N and
(T n D)@, y) =30 Flwiy)gi(x)g;(y) 9q 9q I 1
i=0 j=0 M2 4 he 2] L -D 17
5 (V1o a¢ + A(Vin) an + )d2  (17)

where we have introduced the Chebyshev Gauss—Lobatto grid

y; alongy. The advantage of this approach is that derivativd1eré we have the two state vectors
are still computed through the use of 1-D differentiation
matrices and matrix—matrix products. However, the use of T
tensor products also requires thatz,y) is defined on a Q2 = [Crs Cous o Py gy Pz ]

rectangular grid, a restriction that we shall overcome short(%ntainin the twelve unknown field components. The form
by introducing a multidomain formulation. 9 P )

Filtering of the solution may be used when unresolvegﬁ(lre)n?n?hr(17)hetr;p?ars'ﬁ]estt?sqt then t\t/\r/o fe;iroiniﬂuit'v\?ns
gradients are presents, as we may expect to be the c er only through the forcing term, constructed Iro € two

se .
at edges. In the implementation of the present scheme, vag%rlces

_ T
q1 = [Cr,uv Coh,vr Cz uy hr,'vv hq5,uv hz,'v]

employ an exponential filter of the type 0 0 0 0 0 O
00 0 00 1/
1 . L. 0<i<N. c_ |00 0 00 0
SIUSINEE AL S =06 8 o0 o
N =N, 0 0 -1/ 0 0 0
wherelV. is a cutoff mode numbery; is the order of the filter, 00 0 00 0
anda = —lney,, with 5, being the machine accuracy. Thisand
choice of filter function is by no means unique and alternatives
may be found in [8]. The filtering may conveniently be 0 0 0 0 0 mfe
expressed as a matrix operatrwith the entries 0 0 0 0 0 0
D 0 0 0 =-m/e O O
5 N, 0 0 m/p 0 0 0
F; _—Z_ka(-T7)Tk(-TJ) 0 0 0 0 0 0
N 15 o -mfp 0 0 0 0 0
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The general operatot(n) with n = (n,.,n,) representing the lower total operation count and increased allowable time-step
local metric, is given as while providing a very natural data-decomposition, well suited
for the implementation on contemporary parallel computers.

0 0 0 0 ns/e 0 We refer to [9] and [10] for a thorough discussion of the
0 0 0 n./e 0 —n,/e ; . . . .
0 0 0 0 - 0 advantages associated with a multidomain formulation when
! solving wave-dominated problems.
0 n./i 0 0 0 0 : . .
Once we have split the global computational domain into
—n./p 0 ne/p 0 0 0 .
K subdomains, we need to construct the map D — |,
0 —ne/p 0 0 0 0

(see Fig. 1) wheré C R? is the unit square, i.el,e [-1,1]%.
This operator diagonalizes under the similarity transforst this point, we have the Cartesian coordinatesz) € D
A(n) = S7'(n)A(n)S(n) where the diagonal eigenvalueand the general curvilinear coordinatés,n) € | related
matrix A(n) has the entries through the map(z,y) = ¥(&,7n). To establish a one-to-
one correspondence between the unit square and the general

(18) guadrilateral we construct the local map for each subdomain
§ing transfinite blending functions [11]. We refer to [12] for a
thorough account of this procedure within the present context.

Once the global mapl has been constructed, we may
compute the metric of the mapping and outward pointing
normal vectors at all points of the enclosing edges of the
guadrilateral.

A(Il) = |Il| dlag[ov 07 ¢, C, =G, —C]

corresponding to two nonpropagating waves and two wa
propagating along with the speed of light;, while two waves
propagate along-n at the same speed. Here we have it
represents the length of the vectosuch than = |n|(7,., 7).
The diagonalizing matriX$(n) is given as

n. 0 Zn, 0 —Zn. O Within the multidomain setting we need to sol¥é inde-
0 0 0 Z 0 Z pendent problems in the individual subdomains. However, to
S(n) = s P —Z q Zy. P obtain the global solution we must pass information between
0 0 —Tz 0 (> the subdomains in a way consistent with the dynamics of the
0 0 1 0 1 0 Maxwell equations. Since (16) and (17) constitute a hyperbolic
0 oy 0 — Ty system, it is natural to transfer information between the various
subdomains using the characteristic variallReswhich are
convected along the normal with a speed given by the

My 0

from which we may obtain

Ry 2e-n diagonal elements ofA(n) (18). Hence, once the outward

Ry 2h-n . normal vector at the enclosing boundary of the subdomain is
R—5"'(n)q= Ry | _ 1 (h+Z71n x e) ¢ known we may uniquely determine which characteristics are

Ry 2|(Z7te—nxh) ¢ leaving the subdomain and which are entering and, thus, need

R (h—Z 'axe)- ¢ specification. We observe from (18) that whig and R, are

Rg (Z7le+n x h) ¢ always leaving the domain and, therefore, need no boundary

) ) . ) conditions,R; and Rg are always entering the computational
which we recognize as the characteristic variables, propagatiiihyain and require specification to ensure wellposedness.
alongn, with the speeds given by the entries MH)T (18).  Based on this observation, we sketch in Fig. 2 the scheme for
Here we ijave used the gener_al forq = [e, h]" and patching of two subdomain®' and D? sharing the common
introducedn = (n,.,0,n.) for clarity. . edgeT. The two characteristic variableB} and R} leaving

Be_5|des from_reve_a_llng_ information about the dyr_war_mcs L supply the sought-after boundary conditions % and
the fields, the identification and use of qharactensncyag and, reversely, for the specification & and R:. For
ables.,.pla'ys (as we sha!l see .shortly) an integral role in t e nonpropagating?, and R, we use the average across
specification of the multidomain scheme. I". Once the characteristic variables have been adjusted, the
physical fields are recovered through the relatign)R = q.

This procedure is applied along all interface points, including

We wish to solve (16) and (17) within a general compuhe vertices where it is done dimension-by-dimension, to
tational domain? € R? in the (r,z) plane with» > 0. As arrive at the global solution at each times-step. As we shall
we have briefly discussed, the most natural and computationek shortly, this procedure of patching hyperbolic systems
efficient way of applying polynomial expansions in severa$ stable as well as accurate. Moreover, in a parallel setting
dimensions is through the use of tensor products. This prodee communication between subdomains grows only like the
dure, however, requires that the computational domain can$&face of the geometric building block rather than the volume.
smoothly mapped to the unit square. To surround this quite . N
severe limitation, we construd® using X nonoverlapping D- Far-Field Boundary Conditions
general curvilinear quadrilateralak C R? such thatQ = A long-standing problem in computational electromagnetics

{;1 D* is the issue of finding infinite space solutions on a finite

The advantages of such an approach, besides from prowidmputational domain. The central problem is how to construct
ing the geometric flexibility, are many. In connection wittappropriate boundary conditions that prevent outgoing waves
spectral methods, the multidomain framework results in feom being reflected from the artificial numerical boundaries.

C. The Multidomain Formulation
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T
liilivigss,
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R R < 11555
i : ST A%
i 2 N il %
R! R2 R \\\\|||ll'%[,,,,'////
R, R: 17
3 3
1 2
=
R, R:
5 5 Fig. 3. Typical multidomain grid for the computation of scattering by a
R1 = R2 sphere. Note the stretching of the grid in the outer subdomains in order to
6 6 successfully absorb outgoing waves in the ML layer without increasing the
computational work.

Fig. 2. lllustration of the patching of subdomains through the use of char-
acteristic variables. where (6, ) measures the angles between the incident wave
vectork® and the scattered wave vectot, given as

Characteristic boundary condition is used in different nu- s EZ x HEZ
merical schemes in many types of applications (see, e.g., [13]). k=2 |Ez_|2
It can serve as an absorbing boundary condition by imposin i P )
the incoming characteristic variables to be zero. However,"l%ere EZ, and HZ, signifies the far-field values of the
was shown in [4] that the accuracy of the approach is limitegcatiered fields. Unless otherwise stated, we normaliaeth
in particular when the artificial boundary is placed close {§€ Square of the wavelenghof the incident wave and define
the scatterer. o (8, )
The introduction of the perfectly matched layer (PML) RCS(68,¢) = 10logy, 22
methods [14] has spawned significant research into Snljfh

methods. Moreover, the development of well-behaved P S we are only computing the near fields, we apply a near-

L ! . X .
methods suitable for the BOR formulation of the Maxwel leld to far-field transformation [1] with the enclosing sur-
equations remains an open challenge.

ace being chosen to coincide with grid lines. A Cheby-
In [4], we introduced a matched layer (ML) method, We|§hev—CIenshaw—Curtls integration [8] is used for approximat-
suited for use in connection with multidomain methods, al

ng the integrals.

though not perfectly matched. An absorbing layer introduceﬁjOnly the scattered fields are computed and the objects are
through terms like—o (£, )qu 2 in (16) and (17), is put in the illuminated through the boundaries as discussed in Section II-

outermost subdomain at some distance from the subdomB" To advance the fields in time, we use a fourth-order

in .
interface and a cubic grid mapping is used to generate a m ﬁslhnge—Kutta scheme [8] and we enforce the boundary condi-

. : . ions as well as perform the patching of the local solutions at
that is coarse in the part of the outer subdomain covered e intermediate time-steps of the integration. The time-ste
the layer. With the help of a low-pass filter, the reflections b 9 ’ P

in the ML region (being of high frequency relative to theS chosen below the stability limit to avoid severe dispersion
local grid) is then being filtered out. Despite its simplicity, th(\% ri;(;rivarij (;Ngngpply ?Vf:‘lct)igwailr? dt?]secrék();:j Ilgtic?r?(i)téogalcl:lr;A’
ML method was shown to perform very well in [4], with the ¢ v 9 P

additional advantage of being simple to implement. time-step.

A. Scattering by a Sphere

IV. NUMERICAL EXPERIMENTS Scattering by perfectly conducting spheres serves as an
To validate the accuracy and computational efficiency of tr%)tlmal te;t case since the analytical sqlutlon IS "’.‘OW”. thr(_)ugh
. . : .~a Mie series [17]. We need only consider axial illumination,
complete computational framework discussed in the previols : . .
I.8., only them = 1 mode in (3) and (4) is required due to

sections, we have computed plane wave scattering by a nl‘{ﬂ]e_ symmetry of the scatterer and the properties of the fields.

ber .Of perfectly conducting bOdIeS.Of revolution, prewous% accordance with standard notation, the RCS is normalized
studied through the use of analytic methods or alternative

numerical schemes. e BOR MoM [15] with wa? rather than with the wavelength of the incident wave.
€9 » In Fig. 3, we show a typical grid layout for the computation

To assess the accuracy of the computational framework WF ) : Co

o i . of scattering by the sphere. We use eight subdomains in two
use the bistatic radar cross section (RG8), ¢) representing lavers surrounding th h .

. 220 g the upper hélf > 0) of the sphere with

a measure between the time-averaged incident and Scatteff:%gnumber of modes in each subdomain depending on the
fields as [16] electrical size of the problem.
In Fig. 4, we compare the analytic solution for plane wave

s |2
o(60,¢) = lim Amr? ||E1C::||2 scattering by aka = 8.3 sphere with the solution obtained

using the multidomain scheme withh = 8 as in Fig. 3
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| wave scattering by a smooth sphere cone.
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boundary conditions (full). ol
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\‘J ence solution, marked by+,” is taken from [15].
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{f ] it is certainly of only marginal practical importance. In the

‘J ! following, we shall study the performance of the multidomain

‘ scheme for scattering problems of a more general charac-
ter. Due to lack of analytic solutions we shall compare the
computed RCS with results taken from the open literature.
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B. Scattering by Generic Objects—Axial Incidence

Fig. 5. RCS(#,0) for a perfectly conducting spherda = 40.0. We
compare the exact Mie series (dashed) and the spectral multidomain solutioDue to the simplicity of the problem, i.e., we only need to

using the ML far-field boundary conditions (full). consider then = 1 mode in (3) and (4), let us first look at
scattering of plane waves impinging axially.
and N = 16 in all domains. For the numerical solution, we In Fig. 6, we show part of a typical grid for the computation
use either characteristic boundary conditions or the ML layef scattering by a 20cone smoothly joined with a spherical
technique discussed in Section IlI-D. Indeed, we clearly olbap having a radius of 0} This case was first considered in
serve the second-order accuracy of the characteristic boundd®j in which the problem is solved using a MoM scheme.
conditions [4] in the back scatter region while the ML solutions The RCS, as computed usidg = 8 and NV = 16 in all
and the analytic solution overlap completely, illustrating theomains, is compared in Fig. 7 with the results reported in
expected accuracy of the spectral multidomain framework. [15] for horizontal and vertical polarization of the incident
To emphasize the strength of spectral methods when diglds. As this is an electrically small object, we should expect
dressing electrically large problems, we show in Fig. 5 excellent agreement between the MoM result [15] and the
comparison between the analytic solution and the computeditidomain solution as is observed in Fig. 7.
solution obtained with ak = 20 and N = 16 spectral A more challenging test is that of plane wave scattering
multidomain solution for aka = 40.0 sphere. Indeed, we by a 45 cone joined nonsmoothly with a spherical cap of
find (even in the highly sensitive backscatter region) closadiuskr = 10. The length of the scatter isa = 20, similar
to perfect agreement between the two solutions. The solutinthe problem considered in [18]. We recall that the field
shown in Fig. 5 is obtained in about 20 min using an averagesmponents in ther, z) plane may exhibit weak singular
sized work station. behavior as discussed in Section II-B.
Although scattering from a sphere may serve as an excellentn Fig. 8, we compare the computed RCS for axial incidence
starting point for the evaluation of a new numerical schemejth the results reported in [18]. Indeed, compared with the
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Fig. 9. Typical multidomain grid used for the computation of scattering by
a nonsmooth sphere cone.

scenario in Fig. 7, we observe a dramatic increase in the '

dynamic range of the RCS due to the larger electric size and - g = p T e T e
increased geometric complexity, but we maintain excellent Theta {gsgres)

agreement between the reference and the results obtairigdil. RCS(6,60) for scattering by a finite cylinder, illuminated by a
using the multidomain spectral scheme. The grid, a fracti@ﬁrizontally“po’!a_rized plane wave impinging at°45The reference solution,

of which is shown in Fig. 9, consists éf = 8 domains, each marked by %" s taken from [19].

employing a resolution ofV = 16 modes in each direction.

We note, in particular, that no effort has been put into selectilsiminated with a wave impinging at 20We use 12 Fourier
refinement of the grid around the edges, something that wouigdes to approximate the azimuthal field variation. The grid

have been crucial in case a low-order scheme was used. is similar to the case of axial illumination and in Fig. 10
we compare the computed RCS with the solution reported in

) ) ) ) ) [18] and observe excellent agreement over a more than 40-dB
C. Scattering by Generic Objects—Oblique Incidence dynamic range.

As the next level of added complexity, we consider scat- As a second example of oblique scattering we consider
tering by generic objects much as in the previous sectiorssattering by a finite cylinder, illuminated by a plane wave
however, subject to oblique illumination. This problem ismpinging at 45. The length as well as the radius of the
more complicated in that the number of modes required aylinder is 22 and we use & = 12 and N = 16 grid for
the azimuthal expansions of the fields (3) and (4) is largeolving the problem which was considered in [19].
than for axial incidence. In Fig. 11 we show the computed cross section, obtained

The number of modes required in the azimuthal expansiaosing 14 Fourier modes that was found to be enough to arrive
is naturally problem dependent. However, since the fields caha converged result and compare with the results of [19] for
be assumed to possess a high degree of regularity one barizontal polarization. The result for vertical polarization is
expect that only a few modes will yield accurate results. given in Fig. 12 and we observe close agreement between the

The first case, the grid of which is shown in Fig. 9, iglifferent approaches to the scattering problem, confirming the
the nonsmooth cone sphere considered in the last section, deguracy, and efficacy of the spectral multidomain scheme.
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Fig. 12. RCS(#,60) for scattering by a finite cylinder, illuminated by a Fig. 14. RCS(6,0) for a missile subject to axial illumination by a hori-
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D. Scattering by General Objects T w X ;p U i
As a final illustration of the versatility of the multidomain ~ °[ | m l{
scheme for the accurate modeling of scattering by objects of -is|- o \‘
arbitrary geometric complexity, we consider the problem of | |
scattering by a perfectly conducting missile illuminated by a ‘ ‘ ‘ . ‘ ‘ ‘

4-GHz plane wave at axial/nose incidence. The missile isabout © = @« e e 0o

7.25 wavelengths long and the diameter of the main body is
Fig. 15. RCS(#,0) for a missile subject to axial illumination by a hori-

one Wavelength' . . . zontally polarized plane wave. The reference solution, marked+4hy Was
In Fig. 13 we show a fraction of the computational gridgrovided by [20].

illustrating that while the object is of only moderate electric
size, it is of considerable geometric complexity and contains
features like a sharp wedge at the tail. The grid is constructgebblems in electromagnetics—in this case, the scattering
using K = 31 subdomains, each employing a resolution gdroblem. As we have shown through numerous examples,
N = 16. the use of pseudospectral multidomain methods for the time-
For axial incidence of a horizontally polarized plane wavejomain solution of scattering problems yields not only results
in Fig. 14 we show the computed cross section compargfl superior accuracy, but does so in a very efficient manner
with that obtained using a standard MoM approach [20]. Weympared with more conventional low-order FDTD schemes.
observe excellent agreement to within a few decibels ovenfjeed, computational electromagnetics of the future will
dynamic range of close to 60 dB. The difference between thigyyire long time integration of problems involving elec-
present solution and the MoM solution is most pronouncgflca|ly large structures—a scenario for which the use of
in the backscatter region, which is well known to be Veryign_order/pseudospectral methods is likely to be the optimal
sensitive to modeling errors. In Fig. 15 we compare the resull§sice of method.

for the case of vertical polarization. The second objective of this paper was to continue the de-
velopment and evaluation of the pseudospectral time-domain
V. CONCLUDING REMARKS method initiated in our previous work [4], [5] in which

The purpose of this paper has been twofold. We wantesie dealt with two-dimensional problems. Here, we have
on one hand, to illustrate to the reader the benefits of usidgveloped a multidomain scheme for the computation of
high-order/spectral multidomain schemes for the solution e€attering by arbitrary bodies of revolution and illustrated
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the superior properties of such a scheme through numero(g P. Fischer and D. Gottlieb, “On the optimal number of subdomains for

computations and comparisons with results from the literature. hyperbolic problems on parallel computeriit. J. Supercomputer Appl.
High-Performance Compuytvol. 11, no. 1, pp. 65-76, 1997.

Although the development of the BOR scheme opens ) j.'s. Hesthaven, “A stable penalty method for the compressible Navier-
for the computation of large complex axis-symmetric bodies, Stokes equations. II. One dimensional domain decomposition schemes,”

; ; ; ; ; SIAM J. Sci. Comp.vol. 18, pp. 658—685, 1997.
hitherto intractable through direct numerical mOde“ng’ marl¥1 W. J. Gordon and C. A. Hall, “Transfinite element methods: Blending-

issues remain open in the quest toward a general purpoSe function interpolation over arbitrary curved element domaimé/mer.
multidomain pseudospectral scheme. Apart from issues like Math, vol. 21, pp. 109-129, 1973.

: - : J. S. Hesthaven, “A stable penalty method for the compressible
grid generation (a severe problem independent of the met Navier-Stokes equations. Ill. Multi dimensional domain decomposition

of choice) we need to address problems beyond the pure schemes,SIAM J. Sci. Comp.to be published.
Scattering problem discussed here. Indeed, the developm@ﬁl J. S. Shang, “Time-domain electromagnetic scattering simulations on

. . multicomputers,’J. Computat. Physvol. 128, no. 2, pp. 381-390, 1996.
and evaluation of high-order/pseudospectral schemes for prefy ; "p “Berenger, “A perfectly matched layer for the absorption of

lems involving various types of materials remains the most electromagnetic waves,J. Computat. Phys.vol. 114, pp. 185-200,
i i i 1994.
immediate op.en IS.Sue and we hope to report on developmeﬂﬁ J. R. Mautz and R. F. Harrington, “Radiation and scattering from bodies
along these lines in the near future. of revolution,” Appl. Sci. Res.vol. 20, pp. 405-435, 1969.
[16] E. F. Knott, J. F. Shaeffer, and M. T. TuleRadar Cross Section
Boston, MA: Artech House, 1993.
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