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A Pseudospectral Method for Time-Domain
Computation of Electromagnetic

Scattering by Bodies of Revolution
Baolin Yang and Jan S. Hesthaven

Abstract—We present a multidomain pseudospectral method
for the accurate and efficient time-domain computation of scatter-
ing by body-of-revolution (BOR) perfectly electrically conducting
objects. In the BOR formulation of the Maxwell equations, the
azimuthal dependence of the fields is accounted for analytically
through a Fourier series. The numerical scheme in the(r; z)
plane is developed in general curvilinear coordinates and the
method of characteristics is applied for patching field values in the
individual subdomains to obtain the global solution. A modified
matched-layer method is used for terminating the computational
domain and special attention is given to proper treatment of
the coordinate singularity in the scattered field formulation and
correct time-domain boundary conditions along edges. Numerical
results for monochromatic plane wave scattering by smooth
and nonsmooth axis-symmetric objects, including spheres, cone-
spheres, and finite cylinders, is compared with results from the
literature, illustrating the accuracy and computational efficiency
associated with the use of properly constructed spectral methods.
To emphasize the versatility of the presented framework, we
compute plane wave scattering by a missile and find satisfactory
agreement with method-of-moment (MoM) computations.

Index Terms—Bistatic radar cross section, body-of-revolution
scattering, pseudospectral multidomain methods, time-domain
scattering.

I. INTRODUCTION

W ITH the development of new technologies such as
ultra-short pulse radars comes an increased need for

the accurate and efficient modeling of very broad-band signals
illuminating electrically large scatters.

In the past, the method-of-moments (MoM) has been ex-
tremely successful in addressing the problem of monochro-
matic plane wave scattering by very general objects. However,
this choice of method is less attractive for these new types of
problems for several reasons, e.g., the inherent monochromatic
nature of the MoM makes the computation of broad-band
scattering a very expensive process. Moreover, regions of
multiple scattering or electrically very large objects are known
to cause severe ill-conditioning and extremely large linear
systems, stretching the limits of modern computers.

The need for broad-band excitation suggests the use of
time-domain methods in which plane wave and short pulse
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excitation in handled with equal ease. Indeed, the advent of
finite-difference time-domain (FDTD) methods [1] was partly
driven by the need to solve large scattering problems being
illuminated by a time-dependent source. Moreover, the FDTD
approach has proven very fruitful in enabling the modeling of
problems of very significant geometric complexity, possibly
involving complex materials.

Although alleviating the problems associated with broad-
band excitation, the mainstream FDTD method is troubled
by the need of 10–20 points per wavelength to accurately
resolve the wave dynamics of the scattering problem—and
any other wave problem. The same phenomenon exists in
the MoM approach and is an inherent consequence of these
methods being of low order, e.g., most FDTD schemes are only
second-order accurate. The accurate modeling of electrically
large objects thus becomes prohibitive and either the required
accuracy or the maximum electric size is severely limited.

The quest for high-accuracy time-domain solution and the
ability to handle electrically large problems points toward
high-order finite-difference methods as the proper tool for solv-
ing scattering problems and intensive effort have recently been
put into devising such schemes for the Maxwell equations,
e.g., [2], [3], yielding superior accuracy at the expense of a
somewhat more complicated computational framework.

In the present work, we follow this line of thinking and
develop pseudospectral time-domain methods suitable for the
numerical solution of the scattering problem. To maintain
geometric flexibility essential for the solution of problems
of a practical character, we continue the work initiated in
[4], [5] and formulate a multidomain scheme for the accurate
and efficient computation of scattering by bodies-of-revolution
(BOR). The pseudospectral schemes can be thought of as a
maximum order finite-difference schemes and as such takes the
role of the royals among numerical schemes for the solution
of partial differential equations. As we shall learn properly
formulated pseudospectral schemes yield not only superior
accuracy but does so in a very efficient manner as compared
to traditional low-order FDTD schemes.

The remaining part of this paper is organized as follows. In
Section II, we develop the appropriate theoretical framework
for the solution of the body-of-revolution (BOR) scattering
problem in the time domain, with special attention being
given to the treatment of the coordinate singularity and the
specification of the proper boundary conditions on the per-
fectly conducting scatter. Section III is devoted to a discussion
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of the multidomain pseudospectral framework in which we
shall solve the Maxwell equations. The complete numerical
scheme is studied quantitatively as well as qualitatively in
Section IV, where we present results for scattering by a variety
of objects excited by plane monochromatic waves of axial as
well as oblique incidence and the results are compared with
results from the literature. Section V contains a few concluding
remarks and directions for future research.

II. THE BOR FORMULATION OF THE MAXWELL EQUATIONS

Consider the vacuum Maxwell equations in cylindrical
coordinates

(1)

(2)

where and signify
the electric and magnetic field components whileand
refer to the vacuum permitivity and permeability, respectively,
related to the vacuum speed of light .

To arrive at the BOR formulation of the Maxwell equations,
the azimuthal field variation is accounted for analytically
through a Fourier expansion as

(3)

(4)

where is the mode number and
and likewise for and . Hence,

the first subscript refers to the field component, while the
second subscript refers to its azimuthal variation.

We recall that while the scatterer is assumed to possess an
axis symmetry, this is certainly not the case for the incident
and scattered fields and introducing (3) and (4) only supplied
an efficient way to account for the azimuthal variation of each
individual mode.

Substituting (3) and (4) into (1) and (2) and utilizing the
orthogonality of the trigonometric polynomials results in a pair
of equations for the twelve unknowns, and , for each
azimuthal mode as

(5)

(6)

These twelve equations separate into two independent sets
of equations in six unknowns, representing fields that are
azimuthally orthogonal.

In various special cases, depending on angle of incidence
and polarization of the incident wave, only one of the two sets
of equations are needed to solve the problem. However, in the
general case, we need to advance all twelve equations subject
to an incident field on the form

(7)

where relates to the wavelength of the incident
wave approaching the scatter along the propagation vector

where specifies the direction of the incoming field in
the usual spherical basis and corresponding coor-
dinates with the exception that we have chosen to
measure as the angle to such that for axial
incidence, i.e., . Unless otherwise stated, we shall only
consider the case of for simplicity.

The polarization of the incoming field is specified through
the components along and as

where represents the intrinsic
impedance. In accordance with standard notation, we refer
to the case of as horizontally polarized while

is termed vertically polarized excitation.

A. Treatment of the Axial Singularity

The BOR equations (5) and (6) contain a coordinate sin-
gularity at that requires proper treatment. For the
case of the total field formulation, a popular approach [1]
is to use l’Hospitals rule at the axis to turn the singular
terms into derivatives. However, when using the scattered field
formulation, it remains unknown whether this limit exists and
we must seek an alternative approach.

We apply a change of variables as

which, after being introduced in (5) and (6), yields

(8)

(9)

where we have introduced as the usual perpendicular
vector operator in the plane, i.e.,

Equations (8) and (9) still contains a number of singular terms
at the axis. We shall consider the two cases of and

separately.

: In this case, we only have singularities in the equa-
tions of and . However, for , and
are identically zero due to the nature of the fields at
the axis [1] and we need not discretize the equations
for the azimuthal field components at the axis but
may simply impose the boundary conditions. Since
these arguments are valid only for the total fields
the boundary conditions for the scattered field are
recovered by using the prescribed incident field.

: This case is slightly more complicated in that we have
singularities in all equations. However, for ,
the and components of the total fields are
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identically zero along the axis since any constant-
Faraday’s Law path integral containing

integrates to zero, i.e., and are both identically
zero along the axis [1]. Rather than solving the
equations for the axial components we simply impose
the appropriate boundary condition which then couple
into the equations of the radial variation. As for the
case of , we must recover the scattered field
boundary conditions using the incident fields for the
remaining terms in (8) and (9) as the above argument
is valid only for the total fields.

We note that the boundary conditions are arrived at without
using approximations but rather derived solely on the basis of
the properties of the fields and the knowledge of the prescribed
incident fields along the axis.

B. Boundary Conditions at the Scatterer

To complete the specification of the problem, we need to
address the question of boundary conditions at the scatterer.

Since we confine our attention to the case of perfectly
electrically conducting (PEC) objects, the boundary conditions
takes the general form

where represents an outward pointing unit-
vector at the object.

For the sake of simplicity we shall deal with the azimuthal
components seperately and introduce the plane outward
pointing normal vector .

Let us introduce the scattered field formulation as

where the incident fields, and , are prescribed at all
times through (7). Considering the electric field we obtain, due
to the symmetry, the condition

(10)

while a second condition is obtained by requesting

(11)

This only yields one equation for the two unknown scattered
field components. However, a third condition is arrived at by
recalling the behavior of hyperbolic problems at solid walls,
at which the outgoing characteristics are simply reflected [6].
Hence, for consistency we must also require that

(12)

where signifies the computed scattered field. This yields
the additional equation required to enforce the boundary
condition on the electric field.

The situation for the magnetic field is very similar. Indeed,
the physical condition yields

(13)

while an additional condition appears as

(14)

where refers to the computed scattered field.

While (10)–(14) uniquely determine the boundary condi-
tions for the scattered field along smooth parts of the scatter,
the formulation of boundary conditions along edges remains
open.

The possibility of singular behavior of the field components
along edges is detailed in [7] from which we infer that only

and can be expected to be finite in the general case.
If we term the angle of the wedge terminating in
the edge, the remaining field components can be expected to
scale as

where signifies the distance to the edge. Hence, for convex
wedges, the field components exhibit a weak
singularity while all field components remain regular for
concave wedges.

We can certainly not hope to resolve such singular behavior.
However, boundary conditions are still required along the
edges of convex wedges and we impose that vanishes
at the edge while the remaining individual field components
are continuous across the edge. While this is physically
correct only for it is a reasonable assumption also for
the remaining field components, which are still allowed to
grow unboundedly in accordance with [7]. Moreover, the
procedure ensures smooth fields for edges of concave wedges
in accordance with the expected behavior.

III. T HE NUMERICAL SCHEME

In the following, we shall describe in some detail the
individual elements of and the reasoning behind the complete
multidomain scheme for the solution of (8) and (9) subject to
the prescribed initial and boundary conditions.

A. Chebyshev Spectral Methods

The schemes presented in this paper are all based on
Chebyshev collocation methods, which, due to their superior
approximation properties, are widely used for the solution of
partial differential equations.

The Chebyshev polynomial of orderis defined as

where . In the following sections we will consider
collocation methods, where the collocation points are
chosen to be the Chebyshev–Gauss–Lobatto points found as
the roots of the polynomial , i.e.,

When applying a Chebyshev collocation method, the function
is approximated by a grid function , where

the grid points are the Gauss–Lobatto points. We construct
a global th order Chebyshev interpolant to obtain the
approximation of the function
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The interpolating Chebyshev–Lagrange polynomials are given
as

where and for . To
seek approximate solutions to a partial differential
equation, we ask that the equation is satisfied in a collocation
sense, i.e., at the collocation points. Hence, we need to obtain
values of the spatial derivatives at the collocation points. This
is accomplished by approximating the continuous differential
operator by a matrix operator with the entries

such that the derivative of at a collocation point is
approximated as

and, likewise, for higher derivatives. For the explicit expres-
sions of the entries of the matrix operator and further details
on collocation methods, we refer to [8].

The extension of this one-dimensional (1-D) framework to a
multidimensional setting is most easily accomplished through
the use of tensor products, e.g., given the function we
construct the two-dimensional approximation

where we have introduced the Chebyshev Gauss–Lobatto grid
along . The advantage of this approach is that derivatives

are still computed through the use of 1-D differentiation
matrices and matrix–matrix products. However, the use of
tensor products also requires that is defined on a
rectangular grid, a restriction that we shall overcome shortly
by introducing a multidomain formulation.

Filtering of the solution may be used when unresolved
gradients are presents, as we may expect to be the case
at edges. In the implementation of the present scheme, we
employ an exponential filter of the type

(15)

where is a cutoff mode number, is the order of the filter,
and , with being the machine accuracy. This
choice of filter function is by no means unique and alternatives
may be found in [8]. The filtering may conveniently be
expressed as a matrix operatorwith the entries

Fig. 1. Illustration of the mapping between physical coordinates,(r; z) and
general curvilinear coordinates(�; �) required for the construction of the
general multidomain scheme.

B. The Equations in Curvilinear Form

The first step toward a geometrically flexible spectral
scheme is to extend the use of polynomial expansions to
the general curvilinear quadrilateral domain. We assume
the existence of a smooth nonsingular mapping function
relating the coordinate system to the general curvilinear
coordinate system as

as illustrated in Fig. 1. We shall return to the actual specifica-
tion and construction of the smooth map,, shortly.

Utilizing this notation transforms (8) and (9) into two
hyperbolic systems

(16)

and

(17)

where we have the two state vectors

containing the twelve unknown field components. The form
of (16) and (17) emphasizes that the two sets of equations
differ only through the forcing term, constructed from the two
matrices

and
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The general operator with representing the
local metric, is given as

This operator diagonalizes under the similarity transform
where the diagonal eigenvalue

matrix has the entries

(18)

corresponding to two nonpropagating waves and two waves
propagating along with the speed of light,, while two waves
propagate along at the same speed. Here we have that
represents the length of the vectorsuch that .
The diagonalizing matrix is given as

from which we may obtain

which we recognize as the characteristic variables, propagating
along , with the speeds given by the entries of (18).
Here we have used the general form and
introduced for clarity.

Besides from revealing information about the dynamics of
the fields, the identification and use of characteristic vari-
ables plays (as we shall see shortly) an integral role in the
specification of the multidomain scheme.

C. The Multidomain Formulation

We wish to solve (16) and (17) within a general compu-
tational domain R in the plane with . As
we have briefly discussed, the most natural and computational
efficient way of applying polynomial expansions in several
dimensions is through the use of tensor products. This proce-
dure, however, requires that the computational domain can be
smoothly mapped to the unit square. To surround this quite
severe limitation, we construct using nonoverlapping
general curvilinear quadrilaterals,D R such that

D .
The advantages of such an approach, besides from provid-

ing the geometric flexibility, are many. In connection with
spectral methods, the multidomain framework results in a

lower total operation count and increased allowable time-step
while providing a very natural data-decomposition, well suited
for the implementation on contemporary parallel computers.
We refer to [9] and [10] for a thorough discussion of the
advantages associated with a multidomain formulation when
solving wave-dominated problems.

Once we have split the global computational domain into
subdomains, we need to construct the map D I,

(see Fig. 1) whereI R is the unit square, i.e.,I .
At this point, we have the Cartesian coordinates D
and the general curvilinear coordinates I related
through the map . To establish a one-to-
one correspondence between the unit square and the general
quadrilateral we construct the local map for each subdomain
using transfinite blending functions [11]. We refer to [12] for a
thorough account of this procedure within the present context.

Once the global map has been constructed, we may
compute the metric of the mapping and outward pointing
normal vectors at all points of the enclosing edges of the
quadrilateral.

Within the multidomain setting we need to solve inde-
pendent problems in the individual subdomains. However, to
obtain the global solution we must pass information between
the subdomains in a way consistent with the dynamics of the
Maxwell equations. Since (16) and (17) constitute a hyperbolic
system, it is natural to transfer information between the various
subdomains using the characteristic variables, which are
convected along the normal with a speed given by the
diagonal elements of (18). Hence, once the outward
normal vector at the enclosing boundary of the subdomain is
known we may uniquely determine which characteristics are
leaving the subdomain and which are entering and, thus, need
specification. We observe from (18) that while and are
always leaving the domain and, therefore, need no boundary
conditions, and are always entering the computational
domain and require specification to ensure wellposedness.
Based on this observation, we sketch in Fig. 2 the scheme for
patching of two subdomainsD andD sharing the common
edge . The two characteristic variables and leaving
D supply the sought-after boundary conditions for and

and, reversely, for the specification of and . For
the nonpropagating and , we use the average across

. Once the characteristic variables have been adjusted, the
physical fields are recovered through the relation .
This procedure is applied along all interface points, including
the vertices where it is done dimension-by-dimension, to
arrive at the global solution at each times-step. As we shall
see shortly, this procedure of patching hyperbolic systems
is stable as well as accurate. Moreover, in a parallel setting
the communication between subdomains grows only like the
surface of the geometric building block rather than the volume.

D. Far-Field Boundary Conditions

A long-standing problem in computational electromagnetics
is the issue of finding infinite space solutions on a finite
computational domain. The central problem is how to construct
appropriate boundary conditions that prevent outgoing waves
from being reflected from the artificial numerical boundaries.
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Fig. 2. Illustration of the patching of subdomains through the use of char-
acteristic variables.

Characteristic boundary condition is used in different nu-
merical schemes in many types of applications (see, e.g., [13]).
It can serve as an absorbing boundary condition by imposing
the incoming characteristic variables to be zero. However, it
was shown in [4] that the accuracy of the approach is limited,
in particular when the artificial boundary is placed close to
the scatterer.

The introduction of the perfectly matched layer (PML)
methods [14] has spawned significant research into such
methods. Moreover, the development of well-behaved PML
methods suitable for the BOR formulation of the Maxwell
equations remains an open challenge.

In [4], we introduced a matched layer (ML) method, well
suited for use in connection with multidomain methods, al-
though not perfectly matched. An absorbing layer introduced
through terms like in (16) and (17), is put in the
outermost subdomain at some distance from the subdomain
interface and a cubic grid mapping is used to generate a mesh
that is coarse in the part of the outer subdomain covered by
the layer. With the help of a low-pass filter, the reflections
in the ML region (being of high frequency relative to the
local grid) is then being filtered out. Despite its simplicity, the
ML method was shown to perform very well in [4], with the
additional advantage of being simple to implement.

IV. NUMERICAL EXPERIMENTS

To validate the accuracy and computational efficiency of the
complete computational framework discussed in the previous
sections, we have computed plane wave scattering by a num-
ber of perfectly conducting bodies of revolution, previously
studied through the use of analytic methods or alternative
numerical schemes, e.g., BOR MoM [15].

To assess the accuracy of the computational framework we
use the bistatic radar cross section (RCS) representing
a measure between the time-averaged incident and scattered
fields as [16]

Fig. 3. Typical multidomain grid for the computation of scattering by a
sphere. Note the stretching of the grid in the outer subdomains in order to
successfully absorb outgoing waves in the ML layer without increasing the
computational work.

where measures the angles between the incident wave
vector and the scattered wave vector, given as

where and signifies the far-field values of the
scattered fields. Unless otherwise stated, we normalizewith
the square of the wavelengthof the incident wave and define

As we are only computing the near fields, we apply a near-
field to far-field transformation [1] with the enclosing sur-
face being chosen to coincide with grid lines. A Cheby-
shev–Clenshaw–Curtis integration [8] is used for approximat-
ing the integrals.

Only the scattered fields are computed and the objects are
illuminated through the boundaries as discussed in Section II-
B. To advance the fields in time, we use a fourth-order
Runge–Kutta scheme [8] and we enforce the boundary condi-
tions as well as perform the patching of the local solutions at
the intermediate time-steps of the integration. The time-step
is chosen below the stability limit to avoid severe dispersion
errors and we apply a filter, as described in Section III-A,
with and following the completion of each
time-step.

A. Scattering by a Sphere

Scattering by perfectly conducting spheres serves as an
optimal test case since the analytical solution is known through
a Mie series [17]. We need only consider axial illumination,
i.e., only the mode in (3) and (4) is required due to
the symmetry of the scatterer and the properties of the fields.
In accordance with standard notation, the RCS is normalized
with rather than with the wavelength of the incident wave.

In Fig. 3, we show a typical grid layout for the computation
of scattering by the sphere. We use eight subdomains in two
layers surrounding the upper half of the sphere with
the number of modes in each subdomain depending on the
electrical size of the problem.

In Fig. 4, we compare the analytic solution for plane wave
scattering by a sphere with the solution obtained
using the multidomain scheme with as in Fig. 3
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Fig. 4. RCS(�; 0) for a perfectly conducting sphereka = 8:3. We com-
pare the exact Mie series (dashed), the spectral multidomain solution with
characteristicboundary conditions (dashed-dotted), and using theML far-field
boundary conditions (full).

Fig. 5. RCS(�; 0) for a perfectly conducting sphereka = 40:0. We
compare the exact Mie series (dashed) and the spectral multidomain solution
using the ML far-field boundary conditions (full).

and in all domains. For the numerical solution, we
use either characteristic boundary conditions or the ML layer
technique discussed in Section III-D. Indeed, we clearly ob-
serve the second-order accuracy of the characteristic boundary
conditions [4] in the back scatter region while the ML solutions
and the analytic solution overlap completely, illustrating the
expected accuracy of the spectral multidomain framework.

To emphasize the strength of spectral methods when ad-
dressing electrically large problems, we show in Fig. 5 a
comparison between the analytic solution and the computed
solution obtained with a and spectral
multidomain solution for a sphere. Indeed, we
find (even in the highly sensitive backscatter region) close
to perfect agreement between the two solutions. The solution
shown in Fig. 5 is obtained in about 20 min using an average-
sized work station.

Although scattering from a sphere may serve as an excellent
starting point for the evaluation of a new numerical scheme,

Fig. 6. Fraction of a typical multidomain grid for the computation of plane
wave scattering by a smooth sphere cone.

Fig. 7. RCS(�; 0) for smooth cone sphere with axial incidence. The refer-
ence solution, marked by “+,” is taken from [15].

it is certainly of only marginal practical importance. In the
following, we shall study the performance of the multidomain
scheme for scattering problems of a more general charac-
ter. Due to lack of analytic solutions we shall compare the
computed RCS with results taken from the open literature.

B. Scattering by Generic Objects—Axial Incidence

Due to the simplicity of the problem, i.e., we only need to
consider the mode in (3) and (4), let us first look at
scattering of plane waves impinging axially.

In Fig. 6, we show part of a typical grid for the computation
of scattering by a 20cone smoothly joined with a spherical
cap having a radius of 0.2. This case was first considered in
[15] in which the problem is solved using a MoM scheme.

The RCS, as computed using and in all
domains, is compared in Fig. 7 with the results reported in
[15] for horizontal and vertical polarization of the incident
fields. As this is an electrically small object, we should expect
excellent agreement between the MoM result [15] and the
multidomain solution as is observed in Fig. 7.

A more challenging test is that of plane wave scattering
by a 45 cone joined nonsmoothly with a spherical cap of
radius . The length of the scatter is , similar
to the problem considered in [18]. We recall that the field
components in the plane may exhibit weak singular
behavior as discussed in Section II-B.

In Fig. 8, we compare the computed RCS for axial incidence
with the results reported in [18]. Indeed, compared with the
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Fig. 8. RCS(�; 0) for nonsmooth cone sphere with axial incidence. The
reference solution, marked by “+,” is taken from [18].

Fig. 9. Typical multidomain grid used for the computation of scattering by
a nonsmooth sphere cone.

scenario in Fig. 7, we observe a dramatic increase in the
dynamic range of the RCS due to the larger electric size and
increased geometric complexity, but we maintain excellent
agreement between the reference and the results obtained
using the multidomain spectral scheme. The grid, a fraction
of which is shown in Fig. 9, consists of domains, each
employing a resolution of modes in each direction.
We note, in particular, that no effort has been put into selective
refinement of the grid around the edges, something that would
have been crucial in case a low-order scheme was used.

C. Scattering by Generic Objects—Oblique Incidence

As the next level of added complexity, we consider scat-
tering by generic objects much as in the previous sections,
however, subject to oblique illumination. This problem is
more complicated in that the number of modes required in
the azimuthal expansions of the fields (3) and (4) is larger
than for axial incidence.

The number of modes required in the azimuthal expansion
is naturally problem dependent. However, since the fields can
be assumed to possess a high degree of regularity one can
expect that only a few modes will yield accurate results.

The first case, the grid of which is shown in Fig. 9, is
the nonsmooth cone sphere considered in the last section, but

Fig. 10. RCS(�; 0) for scattering of a 20� obliquely incident wave by a
nonsmooth cone sphere. The reference solution, marked by “+,” is taken
from [18].

Fig. 11. RCS(�; 60) for scattering by a finite cylinder, illuminated by a
horizontally polarized plane wave impinging at 45�. The reference solution,
marked by “+,” is taken from [19].

illuminated with a wave impinging at 20. We use 12 Fourier
modes to approximate the azimuthal field variation. The grid
is similar to the case of axial illumination and in Fig. 10
we compare the computed RCS with the solution reported in
[18] and observe excellent agreement over a more than 40-dB
dynamic range.

As a second example of oblique scattering we consider
scattering by a finite cylinder, illuminated by a plane wave
impinging at 45. The length as well as the radius of the
cylinder is 2 and we use a and grid for
solving the problem which was considered in [19].

In Fig. 11 we show the computed cross section, obtained
using 14 Fourier modes that was found to be enough to arrive
at a converged result and compare with the results of [19] for
horizontal polarization. The result for vertical polarization is
given in Fig. 12 and we observe close agreement between the
different approaches to the scattering problem, confirming the
accuracy, and efficacy of the spectral multidomain scheme.
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Fig. 12. RCS(�; 60) for scattering by a finite cylinder, illuminated by a
vertically polarized plane wave impinging at 45�. The reference solution,
marked by “+,” is taken from [19].

Fig. 13. Typical multidomain grid for the solution of the scattering by a
missile.

D. Scattering by General Objects

As a final illustration of the versatility of the multidomain
scheme for the accurate modeling of scattering by objects of
arbitrary geometric complexity, we consider the problem of
scattering by a perfectly conducting missile illuminated by a
4-GHz plane wave at axial/nose incidence. The missile is about
7.25 wavelengths long and the diameter of the main body is
one wavelength.

In Fig. 13 we show a fraction of the computational grid,
illustrating that while the object is of only moderate electric
size, it is of considerable geometric complexity and contains
features like a sharp wedge at the tail. The grid is constructed
using subdomains, each employing a resolution of

.
For axial incidence of a horizontally polarized plane wave,

in Fig. 14 we show the computed cross section compared
with that obtained using a standard MoM approach [20]. We
observe excellent agreement to within a few decibels over a
dynamic range of close to 60 dB. The difference between the
present solution and the MoM solution is most pronounced
in the backscatter region, which is well known to be very
sensitive to modeling errors. In Fig. 15 we compare the results
for the case of vertical polarization.

V. CONCLUDING REMARKS

The purpose of this paper has been twofold. We wanted,
on one hand, to illustrate to the reader the benefits of using
high-order/spectral multidomain schemes for the solution of

Fig. 14. RCS(�; 0) for a missile subject to axial illumination by a hori-
zontally polarized plane wave. The reference solution, marked by “+,” was
provided by [20].

Fig. 15. RCS(�; 0) for a missile subject to axial illumination by a hori-
zontally polarized plane wave. The reference solution, marked by “+,” was
provided by [20].

problems in electromagnetics—in this case, the scattering
problem. As we have shown through numerous examples,
the use of pseudospectral multidomain methods for the time-
domain solution of scattering problems yields not only results
of superior accuracy, but does so in a very efficient manner
compared with more conventional low-order FDTD schemes.
Indeed, computational electromagnetics of the future will
require long time integration of problems involving elec-
trically large structures—a scenario for which the use of
high-order/pseudospectral methods is likely to be the optimal
choice of method.

The second objective of this paper was to continue the de-
velopment and evaluation of the pseudospectral time-domain
method initiated in our previous work [4], [5] in which
we dealt with two-dimensional problems. Here, we have
developed a multidomain scheme for the computation of
scattering by arbitrary bodies of revolution and illustrated
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the superior properties of such a scheme through numerous
computations and comparisons with results from the literature.

Although the development of the BOR scheme opens up
for the computation of large complex axis-symmetric bodies,
hitherto intractable through direct numerical modeling, many
issues remain open in the quest toward a general purpose
multidomain pseudospectral scheme. Apart from issues like
grid generation (a severe problem independent of the method
of choice) we need to address problems beyond the pure
scattering problem discussed here. Indeed, the development
and evaluation of high-order/pseudospectral schemes for prob-
lems involving various types of materials remains the most
immediate open issue and we hope to report on developments
along these lines in the near future.
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