
186 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 1, JANUARY 1999

Efficient Eigenspace-Based Array Signal Processing
Using Multiple Shift-Invariant Subarrays

Shiann-Jeng Yu and Ju-Hong Lee

Abstract—This paper deals with the construction of eigensub-
spaces for adaptive array signal processing. An efficient technique
for extracting the eigensubspaces spanned by the data vector
received by anN -element adaptive array is presented. We first
decompose the original array into several subarrays with multiple
shift invariances and find the eigensubspaces corresponding to
each of the subarrays. By solving a least-squares (LS) or total
least-squares (TLS) problem, the signal and noise subspaces
corresponding to the original array can be found from the
eigensubspaces spanned by the subarray data vectors. Hence,
there is no need to perform the eigenvalue decomposition of the N
��� N correlation matrix of the received data vector. The proposed
technique significantly reduces the required computational com-
plexity as compared to the conventional eigenspace-based (ESB)
methods. In conjunction with the spatial smoothing scheme or a
proposed cross-correlation method, this technique can also deal
with the case of coherent signals. The effectiveness of the proposed
technique is demonstrated by several computer simulations.

Index Terms—Adaptive arrays, array signal processing.

I. INTRODUCTION

EIGENSPACE-BASED (ESB) methods have been widely
used for processing the data vector received by an-

element adaptive array. The well-known MUSIC algorithm [1]
utilizes the property that noise subspace is orthogonal to signal
direction vectors to estimate the signal bearings. The ESPRIT
algorithm [2] exploits the shift-invariant property between two
identical subarrays and employs the signal subspaces obtained
from the subarrays to estimate the desired signal parameters.
Later, Swindlehurstet al. [3] presented a multiple invariance
ESPRIT (MI ESPRIT) to enhance the performance of the
ESPRIT algorithm by employing the property of multiple shift-
invariant subarrays. The design of adaptive array beamformers
based on the use of the signal subspace was presented by
Chang and Yeh [4]. It has been shown that the ESB adaptive
beamforming possesses the advantage of faster convergence
speed over conventional adaptive beamforming. In the area
of partially adaptive array beamforming, Van Been [5] has
shown that an ESB partially adaptive beamformer can provide
almost the same performance as its counterpart with full
adaptivity. Moreover, Haimovich and Bar-Ness [6] considered
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the interference cancellers for receiving the desired signal and
found that an interference canceller designed based on the use
of eigenspace property provides better array performance and
faster convergence speed. In the implementation of the above
ESB methods, the computational complexity is since
an eigenvalue decomposition (EVD) of the correlation
matrix of the received data vector is generally required.

In the case of coherent signals, it has been shown [7]
that the above methods cannot successfully process array
signals for bearing estimation and adaptive beamforming. To
tackle the coherent problem, Shan and Kailath [8] presented a
spatial smoothing scheme to reduce the coherence between
the signals for adaptive beamforming. This technique was
later applied to bearing estimation [9], [10]. Recently, it
was further extended to deal with the problem of estimating
two-dimensional (2-D) angles of arrival in the presence of
coherent signals [11]. Although the above techniques can
alleviate the effect of signal coherence, they degrade the array
performance since the degrees of freedom associated with the
original array are reduced. Recently, a method was presented
to solve the problem of the reduction in degrees of freedom
[12], however, it requires an iterative nonlinear optimization
procedure to estimate the noise subspace required for adaptive
beamforming and is only suitable when the array is linearly
periodic.

In this paper, we present an efficient technique for ex-
tracting the eigensubspaces of a correlation matrix of a data
vector received by an -element adaptive array with ar-
bitrary geometry. The original adaptive array is partitioned
into several subarrays with multiple shift-invariant property.
Utilizing the multiple shift invariances, we show that the
problem of finding the eigensubspaces corresponding to the
original array can be formulated as a least-squares (LS) or
total least-squares (TLS) problem. As a result, the signal
and noise subspaces corresponding to the original array can
be found from the eigensubspaces spanned by the subarray
data vectors by solving the resulting LS or TLS problem.
Therefore, the EVD of the correlation matrix, which
is generally required by conventional ESB methods, can be
avoided. In conjunction with the spatial smoothing scheme
for bearing estimation or a proposed cross-correlation method
for interference cancellation, the proposed technique can also
deal with the case of coherent signals without sacrificing
the available degrees of freedom and requiring any nonlinear
optimization process. Computer simulations show that the
proposed technique is effective whether the original array
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is one-dimensional (1-D) or 2-D. Moreover, it demonstrates
better performance than the existing methods.

II. A RRAY SIGNAL PROCESSINGBASED ON EIGENSTRUCTURE

1) The Eigenstructure of A. Data Correlation Matrix: Con-
sider an -element array with arbitrary geometry. Assume
that far-field narrow-band signal sources are impinging on
the array from different directions. Then the received data of
the th array element is given by

(1)

where is a complex scaler representing the gain and
phase shift of the th signal received by the th array
element. represents the received additive white Gaussian
noise with mean zero and variance. The corresponding data
vector received by the -element array can be written as

(2)

where the direction vector of theth source is
, the signal source vector is

, and the noise vector is
. and are uncor-

related. The superscript denotes transpose operation. Then
the ensemble correlation matrix of is given by

(3)

where the superscript denotes the complex conjugate trans-
pose. has rank .

In the incoherent signal environment, and the EVD
of (3) can be expressed as

(4)

where
and is the eigenvector associated with. The basis matrix

spans the signal subspace, while the
basis matrix spans the noise
subspace, which is orthogonal to the signal subspace. It has
been shown in [1] that and span the same signal
subspace. On the other hand, in the coherent signal
environment. For this case, the rank of is less than .
Hence, does not have enough degrees of freedom to span
the same signal subspace as that spanned by.

To tackle the coherent problem, a spatial smoothing tech-
nique is presented in [8] at the price of reducing the effective
size of the original array. By partitioning the array into
several overlapping subarrays with the same size greater than

, we obtain a smoothed correlation matrix which is the
average of the data correlation matrices of the subarrays. It
has been shown in [8]–[11] that the smoothed correlation
matrix possesses exactly the same form as the data correlation
matrix for an incoherent case. Therefore, using the smoothed
correlation matrix to replace can destroy the coherence

between the signal sources and work successfully regardless
of the coherent signals.

B. Principle of Eigenspace-Based Array-Signal Processing

1) Eigenspace-Based Interference Cancellation:Consider
the case of incoherent signals. For convenience, let
represent the desired signal with direction vector
and the other signals be interferers. Without loss of
generality, we assume that the desired signal is impinging
on the array from the broadside, i.e., . An
interference canceller adjusts the weights such that the array
has zero gain in the interference directions, while maintains a
unit gain in the direction of the desired signal. The optimal
weight vector of an interference canceller is obtained by
solving the following minimization problem

Minimize

Subject to and (5)

where denotes the matrix
containing the interference direction vectors. The optimal
solution of (5) is given by [6]

(6)

where the matrix has rank and is given by

(7)

To obtain , it has been proposed in [6] and [12] to
use a signal blocking matrix to remove the desired signal
from the received data vector and then perform EVD on the
correlation matrix of the signal-blocked data vector. Consider
an signal blocking matrix given by [6]

...
...

...
...

...
...

(8)

Then the data vector at the output of does
not contain the desired signal. The interference subspace or the
noise subspace spanned by is obtained by performing the
EVD on the correlation matrix of .

2) Bearing Estimation:Consider the MUSIC algorithm for
estimating signal bearings. It has been shown in [1] that

and span the same signal subspace. Each of the
signal direction vectors is orthogonal to the noise subspace
spanned by . Therefore, the MUSIC algorithm estimates
the signal bearings by searching the peaks of the following
spatial spectrum:

(9)

where with
denoting the search vector function,

is the wavenumber of the signals, and is the position of
the th sensor.
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(a)

(b)

Fig. 1. Examples of arrays with multiple shift invariances. (a) The uniform
linear array. (b) The uniform rectangular array.

III. T HE PROPOSEDTECHNIQUE

For an -element adaptive array with arbitrary geometry,
we partition it into several subarrays with multiple shift
invariances. Fig. 1 plots the array scenarios considered. A
uniform linear array (ULA) has 1-D shift invariance, while a
uniform rectangular array (URA) has both 1-D and 2-D shift
invariances. Let the -element adaptive array be partitioned
into nonoverlapped subarrays and be the number
of array elements of theth subarray for .

First, consider the case of incoherent signals. Let be
the data vector received by theth subarray and its correlation
matrix be denoted by . Performing
the EVD on , we obtain

(10)

where diag contains the sig-
nal eigenvalues associated with the signal eigenvectors
contained in , while
diag diag
contains the eigenvalues associated with the noise eigenvectors
contained in . Using
and , we construct the following two matrices:

...
...

...
...

...
(11)

with size of and

...
...

...
...

...
(12)

with size of . It follows from (11) and (12) that
and , where denotes

the identity matrix and the zero matrix. Furthermore, let
, then it is easy to show that

, i.e., is a unitary transformation matrix with rank .
From (11), we have the following theorem.
Theorem 1: Each column of represents an eigenvector

of corresponding to the eigenvalue . In other words,
each column of is also an eigenvector of .

Proof: For any column of , it can be expressed as

(13)

for , and . Using (3), we
have

(14)

Since denotes a noise eigenvector of , it is orthogonal
to the source direction vectors viewed by theth subarray.
Hence, we can find that

...

...

(15)

where denotes the matrix containing the signal
direction vectors viewed by theth subarray. Substituting (15)
into (14) yields

(16)

Equation (16) reveals thatis also a noise eigenvector of .
This completes the proof.

Theorem 1 shows that distinct noise eigenvectors of
can be obtained from . However, there still remains

noise eigenvectors and signal eigenvectors of
required to be determined. Since is a

unitary transformation matrix with rank , we note that
the remaining noise eigenvectors and signal
eigenvectors must lie in the column span of . Therefore,
there exists two coefficient matrices and with sizes equal
to and , respectively, such that

(17)

and

(18)
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span the same signal and noise subspaces as those spanned by
and , respectively.

To compute these two coefficient matrices and , we
present a theorem as follows.

Theorem 2: For two shift-invariant subarrays with data
correlation matrices given by and , respectively, a
noise eigenvector of is also a noise eigenvector of .

Proof: Assume that the data vectors received by these
two subarrays are given by

(19)

and

(20)

respectively. Using the shift-invariant property, (20) can be
rewritten as

(21)

where denotes a diagonal phase matrix due to the shift
between these two subarrays. and are the noise
vectors received by these two subarrays, respectively. Let
be a noise eigenvector of . Then is
orthogonal to . It follows from (21) that

(22)

where . Equation (22) reveals that the
noise eigenvector is also a noise eigenvector of . This
completes the proof.

Based on the above shift-invariance property, a matrix
is further constructed with each

submatrix given by

...
(23)

with size of for the ULA case,
where denotes a zero matrix with appropriate size. In (23),
the in the th block starts from to

. Following the similar manner, one can form
a similar matrix for an arbitrary
array with multiple shift invariances. However, expressing
for is not an easy task. Here, we only take a
6 6 URA for illustration. Consider that and each 2-D
subarray has size 3 3 as shown in Fig. 1(b). The noise
subspace associated with each subarray contains only one
noise eigenvector. Let the noise eigenvector be designated as

for the th subarray.
Then is given by (24), shown at the bottom of the page.
The main difference between (23) and (24) is that we use
to form the submatrix for the ULA case, while using
to form for the URA case.

It is easy to show that each column of is orthogonal
to the signal subspace spanned by. Let the coefficient
matrix be expressed as ,
where each of is a matrix.
Since and span the same signal subspace for
the th subarray, we can write , where

is a transformation matrix with rank . Hence,
. Next, can be set to the identity matrix

without loss of generality. Then . Since
is orthogonal to the signal subspace spanned by, we have

(25)

where contains the first columns of whose
size is , while the other

columns of are contained in . It follows from
(25) that

(26)

Equation (26) reveals that the elements of can be ob-
tained by solving a set of linear equations. The condition of

must be held in
order to obtain a unique solution for . Thus, the solution of

can be found by using an LS method and is given by

(27)

...
(24)

where
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However, the obtained eigensubspaces associated with each
subarray may be perturbed due to the effect of finite data
samples in practical applications. As a result, the matrix
may suffer from errors. To alleviate this difficulty, we resort
to the TLS method for solving . From the singular value
decomposition (SVD) of the matrix , we have [13]

(28)

where and are two and
matrices, respectively. From (26) and (28), the TLS solution
for is given by [13]

(29)

Substituting (29) into and performing the
SVD on yields

(30)
where contains the left-singular vectors with nonzero
singular values in , while contains the other

left-singular vectors with zero singular values in .
Substituting (30) into (17) yields

(31)

Moreover, based on the result of (30), we can show that
(18) is given by

(32)

In the following, we present a procedure for implementing the
proposed technique.

Procedure:

Step 1: Perform the EVD on the data correlation matrix
of the th subarray obtained from the partition

to get and for .
Step 2: Construct the matrices , and using (11),

(12), and (23), respectively.
Step 3: Construct the matrix .
Step 4: Obtain the matrix if the

LS solution is required or perform the SVD on the
matrix to get
and then compute the matrix if
the TLS solution is required.

Step 5: Perform the SVD on the matrix to get
as shown in (30).

Step 6: Finally, form the matrices and
.

Note that we only have to find the eigensubspaces for the
first subarray when the number of array elements for each
subarray is equal to (i.e., uniform partition). Then set

and for in the Step
1 of the above procedure to save computations.

Next, we consider the use of and obtained by
using the proposed technique for the applications discussed
in Section II.

A. Eigenspace-Based Interference Cancellation

For the application of ESB interference cancellation, we
apply the above procedure to find the basis matrix in-
stead of , which spans the same interference subspace
as that spanned by in the incoherent signal situation.
The optimal weight vector can be obtained from (6) by
substituting into (7). To cure the problem of coherent
signals, we present a cross-correlation method based on the
concept of [14] as follows. The desired signal contained in

is first removed by passing through the signal-
blocking matrix as given by (8) to obtain a data vector

. Then
the following matrix is constructed

...
...

...
...

(33)

where is chosen such that its noise component is uncor-
related to the noise component of for

, i.e., must be greater than . Performing
SVD on (33) yields

(34)

where denotes the matrix spanning the
interference subspace and the
matrix spanning the noise subspace associated with theth
subarray. After obtaining and , we utilize the proposed
technique to construct the basis matrix , which spans the
same interference subspace as that spanned by. Finally,
we substitute instead of into (7) to find the optimal
weight vector as given by (6).

B. Bearing Estimation

In this case, we substitute obtained by using the above
procedure into (9) to form the spatial spectrum required by
the MUSIC algorithm as follows:

(35)

When coherent signals are present, we first utilize the spatial
smoothing scheme to obtain the smoothed data correlation
matrix for each of the th subarray, . Then
the smoothed data correlation matrix is used to replace
in Step 1 of the above procedure for finding the required
and .

IV. EVALUATION OF THE REQUIRED

COMPUTATIONAL COMPLEXITY

Here, we only consider the evaluation for a ULA with
uniform partition, i.e., , in
the incoherent signal environment for simplicity. Using shift-
invariant property leads to the fact that and

for any two subarrays . We
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only have to compute the eigensubspaces of of the th
subarray for any selected .

Based on the procedure presented in Section III, in the
following we summarize the required complex multiplications
( ) for finding the eigensubspaces spanned by .

In Step 1: Performing the EVD using the method presented
in [13] on requires about in order to find

and .
In Step 3: Since for any ,

when using multiple shift-invariant subarrays, we note from
(23) that and, thus, can be set to for
further saving . Hence, only the values of
different entries in must be computed. This costs about

.
In Step 4: If the LS solution is used, then computing the

product requires about
, while computing the product costs

about . Obtaining
from (27) requires .
In Step 4: If the TLS solution is used, then performing the

SVD of requires about
, while computing the product

to obtain requires about .
In Step 5: Performing the SVD of requires about

.
In Step 6: Finally, computing the products and

to obtain and costs .
Therefore, the total number of complex multiplications

required for obtaining the basis matrices and is
approximately given by

(36)

if the LS solution for is employed. In contrast, based
on conventional ESB methods which directly perform the
EVD of , the number of the required is about [13]

in order to obtain the basis matrices and .
Taking the ratio of and yields

(37)

if . Next, the total number of complex multipli-
cations required for obtaining the basis matricesand
is approximately given by

(38)

if the TLS solution for is employed. Again, taking the ratio
of and yields

(39)

Fig. 2. The ratio of the amounts of flops using the conventional ESB and
the proposed techniques.

if . From (37) and (39), we note that the com-
putational complexity required by the proposed technique is
approximately equal to of that required by existing ESB
methods when the number of the array elements is large
enough. To further show the computational saving for an array
with not large enough, we here perform the simulations
on the software implementation of the conventional ESB and
the proposed techniques using the MATLAB programming
system. Fig. 2 plots the curves showing the comparison for
the case of using a ULA with and , and .
The RAT is defined as the ratio of the amounts of the flops
required by these two techniques. We note that the proposed
technique significantly reduces the required flops, especially
the ratio is over 11 when the number of subarrays used is five
in the case of .

Considering the URA case, we can follow the similar
manner as for the ULA case to compare the complex multipli-
cations required by the proposed and existing ESB techniques.
Our experience shows that the proposed technique also costs
less computational complexity than the existing ESB tech-
niques. However, the evaluation is very complicated for the
URA case and is omitted.

V. COMPUTER SIMULATION EXAMPLES

Several simulation examples are presented in this section
for illustrating the effectiveness of the proposed technique.
We consider both the cases of using ULA and URA. For all
simulations, the array interelement spacing is set to one half
of the signal wavelength. The ensemble correlation matrix
is replaced by the sample correlation matrix given by

, where is the number of data
snapshots. The original whole array is uniformly partitioned
into subarrays, i.e., for .

1) Eigenspace-Based Interference Cancellation:First, in
the case of coherent signals, an interference canceller using
a ULA with is considered. The desired signal with
SNR dB is impinging on the array from the broadside,
while three coherent interferers with equal INR dB
are impinging on the array from 20, 30, and15 degrees,
respectively. Fig. 3 shows the array output SINR versus
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Fig. 3. The output SINR versus the number of snapshots. The proposed
technique using two subarrays (solid curve) and three subarrays (dash curve).
Dash-dot curve: the eigenspace-based interference canceller with spatial
smoothing.

Fig. 4. The output beampatterns. Solid curve: the proposed technique using
two subarrays. Dash curve: the eigenspace-based interference canceller with
spatial smoothing.

the number of snapshots using the proposed technique in
conjunction with the proposed cross-correlation method as
described in (33) and (34) with and 12, while
Fig. 4 shows the corresponding array output beampatterns with

. The simulation results of using the eigenspace-based
interference canceller of [6] are also given for comparison.
To eliminate the coherent interferers, we incorporate the
interference canceller with the spatial smoothing scheme based
on 12-element subarrays. These two figures show that the
eigenspace-based interference canceller of [6] possesses faster
convergence speed. However, the proposed technique provides
better steady-state performance because it does not sacrifice
the degrees of freedom available from the original array. The
simulation result of the output SINR versus the numberof
subarrays is plotted in Fig. 5. Again, as expected, the array
performance degrades as increases since the degrees of
freedom available for extracting the noise subspace of the
subarray reduces as increases.

Next, we consider the use of eigenspace-based interference
cancellers in the incoherent signal situation. The array scenario
and signal characteristics are the same as those for the above

Fig. 5. The output SINR versus the number of subarrays.

Fig. 6. The output SINR versus the number of snapshots. The proposed
technique using two subarrays (solid curve) and three subarrays (dash curve).
Dash-dot curve: the eigenspace-based interference canceller.

coherent case except that the three interferers are now inco-
herent. Fig. 6 shows the array output SINR versus the number
of snapshots using the eigenspace-based interference canceller
of [6] and the proposed technique with and . We
note that using the proposed technique provides satisfactory
convergence speed and array performance. Each of the above
simulation results is obtained by taking the average of 100
independent runs.

2) Bearing Estimation:First, the bearing estimation of co-
herent signals using a ULA with is considered. Three
coherent signals with equal SNR dB are impinging on the
array from 5 , 2 , and 5 , respectively. Fig. 7 shows the
spatial spectra of using the proposed technique with ,
subarray size for employing the spatial smoothing scheme,
and the TLS solution for finding the matrix . The spatial
spectra of using the conventional MUSIC algorithm with and
without the spatial smoothing scheme based on eight-element
subarrays are also given for comparison. The number of data
snapshots used is 100. From this figure, we observe that the
proposed technique provides better resolution capability. This
is the expected result from the fact that unlike the conventional
MUSIC algorithm, the proposed technique does not sacrifice
the degrees of freedom in extracting the noise subspace when
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Fig. 7. The spatial spectra. Solid curve: the proposed technique using three
subarrays. Dash curve: the MUSIC algorithm with spatial smoothing. Dash-dot
curve: the MUSIC algorithm without spatial smoothing.

Fig. 8. The probability of successfully resolving two signals versus the input
SINR. Solid curve: the proposed technique using two subarrays. Dash curve:
the MUSIC algorithm.

using the spatial smoothing scheme to tackle the problem
of signal coherence. Each of the above simulation results is
obtained by taking the average of 100 independent runs.

Next, we use a ULA with to estimate the
bearings of two incoherent signals with direction angles

and , respectively. Fig. 8 shows the probabilities for
successfully resolving the signals under different input SNR
using the proposed technique with two ten-element subarrays
and the conventional MUSIC algorithm, while Table I lists
the estimation bias and mean-square error. For this case, 200
independent runs are performed and the probability is defined
as the number of successes in resolving two signals divided
by 200. We note that the proposed technique can resolve the
signals with higher probability and less bias.

Finally, we consider the 2-D bearing estimation of coherent
signals using a 6 6 URA. Three coherent signals with equal
SNR dB are impinging on the 2-D array from

, and (0.15, 0.15), respectively, where
and . For each signal

source, its elevation and azimuth angles are designated as
and , respectively. We partition the 6 6 URA into

uniform rectangular 3 3 subarrays when using

TABLE I
THE ESTIMATION BIAS AND MEAN SQUARE

ERROR (MSE) FOR BEARING ESTIMATION

(a)

(b)

Fig. 9. (a) The 2-D spatial spectrum using the MUSIC algorithm with spatial
smoothing. (b) The 2-D spatial spectrum using the proposed technique.

the proposed technique in conjunction with the 2-D spatial
smoothing scheme of [11] based on 33 subarrays. Fig. 9
plots the simulation results after 300 data snapshots. For
comparison, the simulation using the conventional MUSIC
algorithm with the spatial smoothing scheme based on 3
3 subarrays is also performed. Again, we note that the 2-D
spatial spectrum of using the proposed technique shows bet-
ter resolution than that of using the conventional MUSIC
algorithm.

VI. CONCLUSION

This paper has presented an efficient technique for
eigenspace-based array signal processing. Utilizing the
multiple shift-invariant property of an -element array and
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partitioning it into subarrays with multiple shift invariances,
the problem of finding the eigensubspaces spanned by the array
data vector has been formulated as a least-squares or a total
least-squares problem. The theoretical result shows that the
required computational complexity is significantly reduced
to when for signal sources.
Simulation examples have been provided for illustrating
the computational savings. In conjunction with the spatial
smoothing scheme for bearing estimation or the proposed
cross-correlation method for interference cancellation, the
proposed technique can effectively deal with the case of
coherent signals without sacrificing the available degrees
of freedom. Computer simulations show that the proposed
technique demonstrates better performance as compared to the
existing methods. Although the proposed technique possesses
several advantages over the existing techniques, it is worth
further investigating its sensitivity to perturbations in sensor
locations which may occur in practical applications.
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