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Efficient Eigenspace-Based Array Signal Processing
Using Multiple Shift-Invariant Subarrays

Shiann-Jeng Yu and Ju-Hong Lee

Abstract—This paper deals with the construction of eigensub- the interference cancellers for receiving the desired signal and
spaces for adaptive array signal processing. An efficient technique found that an interference canceller designed based on the use

for extracting the eigensubspaces spanned by the data vector ; ;
received by an N-element adaptive array is presented. We first of eigenspace property provides better array performance and

decompose the original array into several subarrays with multiple faster convergence speed. Ir_‘ the |mplemer1tat|0n of the above
shift invariances and find the eigensubspaces corresponding to ESB methods, the computational complexityQ¢/N?) since
each of the subarrays. By solving a least-squares (LS) or total an N x N eigenvalue decomposition (EVD) of the correlation
least-squares (TLS) problem, the signal and noise subspacesmatrix of the received data vector is generally required.

cprresponding to the original array can be found from the In the case of coherent signals, it has been shown [7]
eigensubspaces spanned by the subarray data vectors. Hence !

there is no need to perform the eigenvalue decomposition of the N that the above_ methqu cannot succe_ssfully process array
x N correlation matrix of the received data vector. The proposed signals for bearing estimation and adaptive beamforming. To

technique significantly reduces the required computational com- tackle the coherent problem, Shan and Kailath [8] presented a
plexity as compared to the conventional eigenspace-based (ESB)spatiaI smoothing scheme to reduce the coherence between

methods. In conjunction with the spatial smoothing scheme or a the sianals for adaptive beamforming. This technique was
proposed cross-correlation method, this technique can also deal 9 P g. q

with the case of coherent signals. The effectiveness of the proposedater applied to bearing estimation [9], [10]. Recently, it
technique is demonstrated by several computer simulations. was further extended to deal with the problem of estimating

Index Terms—Adaptive arrays, array signal processing. two-dimens_ional (2-D) angles of arrival in the presence of
coherent signals [11]. Although the above techniques can
alleviate the effect of signal coherence, they degrade the array
performance since the degrees of freedom associated with the
original array are reduced. Recently, a method was presented
IGENSPACE-BASED (ESB) methods have been widelio solve the problem of the reduction in degrees of freedom
used for processing the data vector received byNan [12], however, it requires an iterative nonlinear optimization
element adaptive array. The well-known MUSIC algorithm [Lrocedure to estimate the noise subspace required for adaptive
utilizes the property that noise subspace is orthogonal to sighaamforming and is only suitable when the array is linearly
direction vectors to estimate the signal bearings. The ESPRiériodic.
algorithm [2] exploits the shift-invariant property between two |n this paper, we present an efficient technique for ex-
identical subarrays and employs the signal subspaces obtaiftggting the eigensubspaces of a correlation matrix of a data
from the subarrays to estimate the desired signal parametgesstor received by anV-element adaptive array with ar-
Later, Swindlehurset al. [3] presented a multiple invariancepitrary geometry. The original adaptive array is partitioned
ESPRIT (MI ESPRIT) to enhance the performance of thato several subarrays with multiple shift-invariant property.
ESPRIT algorithm by employing the property of multiple shiftytilizing the multiple shift invariances, we show that the
invariant subarrays. The design of adaptive array beamformgggplem of finding the eigensubspaces corresponding to the
based on the use of the signal subspace was presentethftyfinal array can be formulated as a least-squares (LS) or
Chang and Yeh [4]. It has been shown that the ESB adaptiyga| least-squares (TLS) problem. As a result, the signal
beamforming possesses the advantage of faster convergefit# noise subspaces corresponding to the original array can
speed over conventional adaptive beamforming. In the anga found from the eigensubspaces spanned by the subarray
of partially adaptive array beamforming, Van Been [5] hagata vectors by solving the resulting LS or TLS problem.
shown that an ESB partially adaptive_beamformer can proviqﬁerefore, theV x N EVD of the correlation matrix, which
almost the same performance as its counterpart with fill generally required by conventional ESB methods, can be
adaptivity. Moreover, Haimovich and Bar-Ness [6] considereg|,oiged. In conjunction with the spatial smoothing scheme

for bearing estimation or a proposed cross-correlation method
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is one-dimensional (1-D) or 2-D. Moreover, it demonstratdsetween the signal sources and work successfully regardless
better performance than the existing methods. of the coherent signals.

[l. ARRAY SIGNAL PROCESSINGBASED ON EIGENSTRUCTURE B. Principle of Eigenspace-Based Array-Signal Processing

1) The Eigenstructure of A. Data Correlation Matri€on- 1) Eigenspace-Based Interference Cancellati@onsider
sider an N-element array with arbitrary geometry. Assuméhe case of incoherent signals. For convenience,sgt)
that J far-field narrow-band signal sources are impinging okepresent the desired signal with direction vector= a(6,)
the array from different directions. Then the received data and the other/ — 1 signals be interferers. Without loss of

the ith array element is given by generality, we assume that the desired signal is impinging
; on the array from the broadside, i.64 = [1 1---1]7. An
interference canceller adjusts the weights such that the arra
zi(t) = ) ai()s; () + na(t) (1) ) v /

has zero gain in the interference directions, while maintains a
unit gain in the direction of the desired signal. The optimal

where a;(6;) is a complex scaler representing the gain angeight vector of an interference canceller is obtained by
phase shift of thejth signals;(t) received by theith array solving the following minimization problem

elementn,(t) represents the received additive white Gaussian
noise with mean zero and variangg. The corresponding data

=1

Minimize WHR, W

vector received by thév-element array can be written as Subject toS¥W =1 and EZW =0 (5)
X(t) =[a(6r) a(f2)---a(05)]S(t) + N (t) where E; = [a(f1) a(f2)---a(8;_1)] denotes the matrix
=A(0)S(t) + N(t) (2) containing the/ —1 interference direction vectors. The optimal

solution of (5) is given by [6]
where the direction vector of thgth source isa(f;) = —
[a1(6;) a2(6;) ---an(8;)]*, the signal source vector is W EE; Sy
St) = [s1(t) s2(t)---ss(t)]F, and the noise vector is T sEE,EYS,
N(t) = [n1(t) na(t)---ny(®)]T. S(t) and N(¢) are uncor- ¢ !
related. The superscrigt denotes transpose operation. Thewhere the matriXE; has rank= N — J + 1 and is given by
the ensemble correlation matrix &f(¢) is given by

R, = E{X(O)X" (1)} = A(0)SAZ(6) + 2T  (3)

(6)

E;=1-E (EfE;)'EY. (7

To obtain E;, it has been proposed in [6] and [12] to
where the superscrigil denotes the complex conjugate transgse a signal blocking matrix to remove the desired signal

pose.S = E{S(t)S*(t)} has rankK < J. from the received data vector and then perform EVD on the
In the incoherent signal environmert, = J and the EVD correlation matrix of the signal-blocked data vector. Consider
of (3) can be expressed as an N x (N — 1) signal blocking matrixB given by [6]
N 1 -1 0 --- 0 0
R, =Y Aeief =E,ANE+EANET  (4) . o1 -1 o0 o
=1 B =|. : S . (8)
Where)\l>)\2>--->)\K>)\K+1:---:)\N:a,% 0 0 o --- 1 -1
ande; is the eigenvector associated with The basis matrix .
E,=le; ey --- ex]spans the signal subspace, while th&hen the data vectdr () = B¥ X(¢) at the output ofB does
basis matrixE,, = [ex41 ex42 --- e ] spans the noise Notcontain the desired signal. The interference subspace or the

subspace, which is orthogonal to the signal subspace. It gése subspace spanned¥yt) is obtained by performing the

been shown in [1] thaE, and A(6) span the same signalEVD on the correlation matrix o¥’(¢).

Subspace_ On the other handd, < J in the coherent Signa| 2) Bearing Estimation:Consider the MUSIC algorithm for

environment. For this case, the rank Bf is less thanJ/. e€stimating signal bearings. It has been shown in [1] that

Hence,E, does not have enough degrees of freedom to spka and A(6) span the same signal subspace. Each of the

the same signal subspace as that spanned (s). signal direction vectors is orthogonal to the noise subspace
To tackle the coherent problem, a spatial smoothing teckianned bykE,. Therefore, the MUSIC algorithm estimates

nique is presented in [8] at the price of reducing the effectifB€ Signal bearings by searching the peaks of the following

size of the original array. By partitioning the array intSPatial spectrum:

several overlapping subarrays with the same size greater than 1

J, we obtain a smoothed correlation matrix which is the E(0) = ST(O)E,ES(0) )

average of the data correlation matrices of the subarrays. It e

has been shown in [8]-[11] that the smoothed correlatiovhere S(8) = [s1(8)  s2(8)---sn(0)]F with s;(8) =

matrix possesses exactly the same form as the data correlatiop(j~.d; sin(#)) denoting the search vector function,

matrix for an incoherent case. Therefore, using the smoothedthe wavenumber of the signals, addis the position of

correlation matrix to replac®.,. can destroy the coherencethe ith sensor.
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?OO?OOOOOOOO with size of N x (N — KJ) and

\ . [Es; O - o) O ]
e : O E, -- o) o)
e L. O O : :
., Q= 7 S 12)
_— ' , : : : O O
1-D Shift-invariance L ' o O - Egq_, O
(@ O O ... o) E.x |
1-D shift invariance with size of N x K J. It follows from (11) and (12) that
s . QEQ, =1, QiQ, =1, and Q¥ Q. = O, wherel denotes
- O Ox “ the identity matrix andO the zero matrix. Furthermore, let
o o o Q=[Q: Q] thenitis easyto show th@Q” = Q7 Q =
g i X26 I, i.e., Q is a unitary transformation matrix with rank N.
5 ..0..% O From (11), we have the following theorem.
£} o o Theorem 1: Each column ofQ; represents an eigenvector
= . .
g of R, corresponding to the eigenvalu€. In other words,
o O each column ofQ; is also an eigenvector ®.,.
o o Proof. For any column ofQ, it can be expressed as
*oso X v=1[0--0cf;0---0]" (13)
2-D shift invariance
(b) fork=1,2,.---,K,andj=.J+1, ---, Ni. Using (3), we
Fig. 1. Examples of arrays with multiple shift invariances. (a) The unifomh]ave
linear array. (b) The uniform rectangular array. Rov— (A(Q)SAH(G) + O_QI) v (14)

Sinceey; denotes a noise eigenvectorRf;, it is orthogonal

) ) ) to the source direction vectors viewed by theh subarray.
For an N-element adaptive array with arbitrary geometri.yance. we can find that

we partition it into several subarrays with multiple shift
invariances. Fig. 1 plots the array scenarios considered. A
uniform linear array (ULA) has 1-D shift invariance, while a :
uniform rectangular array (URA) has both 1-D and 2-D shift v A(f) = [0---065j0---0] AL(6)
invariances. Let théV-element adaptive array be partitioned .
into K nonoverlapped subarrays aid, > J be the number :

of array elements of théth subarray fork =1, 2, ---, K. An(0)

First, consider the case of incoherent signals. Xgtt) be =ciAx(f) =0 (15)
the data vector received by th¢h subarray and its correlation
matrix be denoted bR, = E{X;(¢) X (¢)}. Performing
the EVD onR,;, we obtain

Ill. THE PROPOSED T TECHNIQUE

AL(0)

where A, (8) denotes theV,, x .J matrix containing the signal
direction vectors viewed by tHeth subarray. Substituting (15)
into (14) yields

Equation (16) reveals thatis also a noise eigenvector &,..
where Ay, = diag{\e1. A2, -+, Ars} contains the sig- This completes the proof.
nal eigenvalues associated with the signal eigenvectorslheorem 1 shows tha¥ —K.J distinct noise eigenvectors of
contained iNE,, = [ex1, ca2, -+, cxs], While A, = Re can be obtained fronR.,. However, there still remains
diag{ M s41)s Me(at2)s < s AN} = diag{c?, 62, ---, 02} (K — 1)J noise eigenvectors and signal eigenvectors of
contains the eigenvalues associated with the noise eigenvecBssrequired to be determined. Sin€® = [Q: Q:] is a
contained iNEnx = [ex(+41)> Ck(s+2)> = *» Ckn ). USINGEyy, unitary trgn_sformation matri_x With rank N, we note_ that
and E,.;,, we construct the following two matrices: the remaining(KX — 1)/ noise eigenvectors and signal

eigenvectors must lie in the column span@§. Therefore,
A there exists two coefficient matric€s andH with sizes equal

E,. O o O '
01 o, o o to (KJ) x Jand(KJ) x ((K — 1).J), respectively, such that
. : : E, = QG ()
Q= O O : ' . (11)
: : : o o and
o O E.x-1 O
L 0] O .. O En[&' 1 En = [Ql QQH] (18)
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span the same signal and noise subspaces as those spannedthysize of N x (N, — J)(N — Ny + 1) for the ULA case,

E, and E,,, respectively. whereO denotes a zero matrix with appropriate size. In (23),
To compute these two coefficient matrices and H, we the E,;, in the ith block starts fromIl, (¢, i(Ny, — J)) to
present a theorem as follows. 11 (i + Ny, iNy,). Following the similar manner, one can form
Theorem 2: For two shift-invariant subarrays with dataa similar matrixIl = [II; II, --- Il ] for an arbitrary
correlation matrices given bR.; and R.;, respectively, a array with multiple shift invariances. However, expressihg
noise eigenvector aR,;; is also a noise eigenvector &,;. fork =1, 2, ---, K is not an easy task. Here, we only take a
Proof: Assume that the data vectors received by the$ex 6 URA for illustration. Consider thal = 8 and each 2-D
two subarrays are given by subarray has size % 3 as shown in Fig. 1(b). The noise

subspace associated with each subarray contains only one

Xit) = Ai(0)5(8) + Ni(t) (19) noise eigenvector. Let the noise eigenvector be designated as
and ek = [enn(1)  enr(2) -+ enr(9)]7 for the kth subarray.
X;(t)=A,;(6)S(t) + N;(¢), (20) ThenIly is given by (24), shown at the bottom of the page.

The main difference between (23) and (24) is that welisg
respectively. Using the shift-invariant property, (20) can b form the submatrixl,, for the ULA case, while using,..
rewritten as to form 11 for the URA case.

N AL ' It is easy to show that each column §f is orthogonal
Xit) = AiO)0S (1) + Ny(t) (21) to the signal subspace spanned By. Let the coefficient
where® denotes &/ x J diagonal phase matrix due to the shifmatrix G be expressed a& = [G] G --- Gi |7,
between these two subarrays;(¢) and N;(t) are the noise Where each ofG,, &k = 1,2,.--, K is a J x J matrix.
vectors received by these two subarrays, respectivelyulesSince E;;. Gy and A (6) span the same signal subspace for
be a noise eigenvector ®&,; = E{X;(#)X/(t)}. Thenw is the kth subarray, we can writ#,; Gy = Ax(¢)Ty, where
orthogonal toA;(6). It follows from (21) that Ty is aJ x J transformation matrix with rank= J. Hence,
. ) ) Gy = Ef} A;(6)T+. Next, G, can be set to the identity matrix
Roju = (Ay(0)2SST AT (0)) u + opu = oy u (22) 1 without loss of generality. The = [I G7]7. Sincell

whereR,,; = E{Xj(t)X]H(t)}. Equation (22) reveals that theis orthogonal to the signal subspace spanne®bywe have

noise eigenvector, is also a noise eigenvector #t,;. This He  H B B I]
completes the proof. IIME, = II"QG =VG = [V, U] G|~ 0 (25
Based on the above shift-invariance property, a matrix _ _
II = [II; I, ---Ig] is further constructed with eachwhere\lfllpontalns the first/ columns of¥ = 117 Q, whose
submatrixIl;, k = 1,2, ---, K given by size iszk‘:l(Nk — JY(N — Ny +1) x (i.J), while the other
i ) (K — 1)J columns of¥ are contained inl». It follows from
(25) that
Enk _
(0] VUG = -V, (26)
Enk
Equation (26) reveals that the elements Gf can be ob-
H = (23) tained by solving a set of linear equations. The condition of
K K Ny —J)(N = N, +1) > (K — 1).J must be held in
order to obtain a unique solution f&. Thus, the solution of
(o) B G can be found by using an LS method and is given by
- . G = — (Vv i, (27)
Tnk
o)
Tnk
1= (24)
k
O Trnk

where

Tnkz[an(l)enk(2)6nk(3) 000 Gnk(4)6nk(5)6nk(6) 000 Gnk(7)6nk(8)6nk(9)]T
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However, the obtained eigensubspaces associated with eAclitigenspace-Based Interference Cancellation
subarray may be perturbed due to the effect of finite datagy the application of ESB interference cancellation, we
samples in practical appllcatlon_s. As a re_,-s_ult, the madrix apply the above procedure to find the basis maEix in-
may suffer from errors. To alleviate this difficulty, we resorlieaq of £, which spans the same interference subspace
to the TLS method for solvings. From the singular value 5q that spanned bE; in the incoherent signal situation.
decomposition (SVD) of the matri, —WV, ], we have [13] e optimal weight vecto#V, can be obtained from (6) by
v v, 17 substituting E; into (7). To cure the problem of coherent
[Ty — U, | = UgSe VE = Ugty {Vll VIQ} (28) signals, we present a cross-correlation method based on the
2 ve concept of [14] as follows. The desired signal contained in
where Vi, and Vs, are two (K — 1)J) x J and J x J X (t) is first removed by passind((¢) through the signal-
matrices, respectively. From (26) and (28), the TLS solutig}ocking matrix B as given by (8) to obtain a data vector

for G is given by [13] Y(t) = () w@) - yv-1(H)]" = BYX(t). Then
the following matrix is constructed
G =-V»aV,,. 29
12V 29 w®  owl  wal)

Substituting (29) intoG = [I G”]” and performing the , _ . vt)  ws(t) o wa(t) ‘()

SVD on G yields vk = ; ; ; : Yj
s.. O yn () et UNa—2)
G = [Ugs Ugn ]Egi = [Ugs Ugn][ 8 0} Vf (33)

(30)
whereU,, contains the/ left-singular vectors with nonzero
singular values irt,,, while U, contains the othefK —
1)J left-singular vectors with zero singular values iy,
Substituting (30) into (17) yields

wherey;(¢) is chosen such that its noise component is uncor-
related to the noise componentipft) fori =1, 2, -- -, Np+

J — 2, i.e., 7 must be greater tha®v;, + .J — 1. Performing
SVD on (33) yields

~ _ H
B, = QU,. (31) Pur = [Bak Buac] 2k Vi (34

Moreover, based on the result of (30), we can show thatcre By denotes they, x (/ — 1) matrix spanning the
(18) is given by interference subspace ar¥,; the Ny x (N, — J + 1)

matrix spanning the noise subspace associated withktine
E.=[Q QU] (32) subarray. After obtainingg;, andE,,;, we utilize the proposed
technique to construct the basis matky, which spans the
In the following, we present a procedure for implementing thgame interference subspace as that spanneli (by. Finally,
proposed technique. we substituteE; instead ofE; into (7) to find the optimal
Procedure: weight vectorW, as given by (6).
Step 1: Perform the EVD on the data correlation matrix
R, of the kth subarray obtained from the partitionB. Bearing Estimation
to getE,; andE,; fork=1,2,---, K.
Step 2: Construct the matrice€);, Q. , and ] using (11),
(12), and (23), respectively.
Step 3: Construct the matrixt = [¥; Wy ] =117 Qs.

In this case, we substitu®,, obtained by using the above
procedure into (9) to form the spatial spectrum required by
the MUSIC algorithm as follows:

Step 4: Obtain the matrixG = — (U U,)~ 1T ¥, if the B(0) = 1 . (35)
LS solution is required or perform the SVD on the SHE(OHE,EHXS(6)
matrix [¥s — W, ] to get[¥y — ¥, | = Uy Ny VE i _ - )
and then compute the matri@ — —V12V2_21 if When c_oherent signals are present, we first utilize the spayal
the TLS solution is required. smogthlng scheme to obtain the smoothed data correlation
Step 5: Perform the SVD on the matriG to get G = matrix for each of thekth su.barray,kizll, 2,---, K. Then
[, Ugn]Egi as shown in (30). Fhe smoothed data correlation matrlx_ls _used to repBgg
Step 6: Finally, form the matriceds, — Q.U,, andE, — in jtep 1 of the above procedure for finding the requiag
Q@ QU and Eni
Note that we only have to find the eigensubspaces for the
first subarray when the number of array elements for each IV. EVALUATION OF THE REQUIRED
subarray is equal t&V/K (i.e., uniform partition). Then set COMPUTATIONAL COMPLEXITY
E, =E, andE,; = E,; for k=2, 3, ---, K in the Step Here, we only consider the evaluation for a ULA with
1 of the above procedure to save computations. uniform partition, i.e., N, = N/K, k = 1,2,---, K, in

Next, we consider the use df, and E, obtained by the incoherent signal environment for simplicity. Using shift-
using the proposed technique for the applications discussedariant property leads to the fact th&,, = E,; and
in Section Il. E., = E,; for any two subarrays, j = 1,2, ---, K. We
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only have to compute the eigensubspace®Rgf of the ith 12
subarray for any selecteld = 1, 2, ---, K.

Based on the procedure presented in Section lll, in the 1o}
following we summarize the required complex multiplications
(CM) for finding the eigensubspaces spannedXiy). 8

In Step 1: Performing the EVD using the method presented
in [13] on R requires abou6(N/K)> CM in order to find < of
E . and E, «.

In Step 3: SinceE,,;, = E,; foranyi = 1,2, ---, K, al
when using multiple shift-invariant subarrays, we note from ° e g "
(23) that II; = II; and, thus,II can be set toll; for sl

further savingC'M. Hence, only the values &J(N/K — J)
different entries in¥ must be computed. This costs about 0

J(N/K)(N/K + 1)(N/K — J) CM. 2 4 6 ; o1z ”
In Step 4: If the LS solution is used, then computing the Number of Subarrays
product \1151\112 requires abou(K — 1)2J2(N/K — J) (N —  Fig. 2. The ratio of the amounts of flops using the conventional ESB and

N/K + 1) CM, while computing the product}/ ¥; costs e Proposed techniques.

about(K — 1)J?(N/K — J)(N — N/K +1) CM. Obtaining

G from (27) require§ K — 1)3J% + (K — 1)2J3 CM. if 6N > KJ2. From (37) and (39), we note that the com-
In Step 4: If the TLS solution is used, then performing thePutational complexity required by the proposed technique is

SVD of [T, —W, ] requires abouti(K.J)2(N/K — J)(N — approximately equal ta/K*® of that required by existing ESB

N/K + 1) + 8(KJ)® CM, while computing the product methods when the numbeY of the array elements is large

—V1,V5, to obtainG requires abouk (K — 1)J3 CM. enough. To further show the computational saving for an array
In Step 5: Performing the SVD of G requires about with N not large enough, we here perform the simulations

4K(K —2)J® CM. on the software implementation of the conventional ESB and
In Step 6: Finally, computing the product€),U,, and the proposed techniques using the MATLAB programming

Q,U,, to obtainE, andE,, costsN.J? CM. system. Fig. 2 plots the curves showing the comparison for

Therefore, the total number of complex multiplication§h® case of using a ULA withV = 30 and J = 1, 2, and3.

approximately given by required by these two techniques. We note that the proposed
5 technique significantly reduces the required flops, especially
CMy, = (6 +.7) <E> +KJ2N? £ NJ? 4+ (KJ? (36) Fhe ratio is over 11 when the number of subarrays used is five
K in the case of/ = 1.
Considering the URA case, we can follow the similar
) ) _ anner as for the ULA case to compare the complex multipli-
on conventional ESB methods which directly perform the,ions required by the proposed and existing ESB techniques.
EVD of Rw?’) Fhe number of ,thejM re'quwed.ls about [13] Our experience shows that the proposed technique also costs
CM_f = 6N n order to obtain the b§15|s matrics andE,. less computational complexity than the existing ESB tech-
Taking the ratio ofCM;, and CMj yields niques. However, the evaluation is very complicated for the

CM,, _< ]>< 1 )3 K.J? 1<K.]>3 1 < J) URA case and is omitted.

=11 —
ci; \" "% 6N e\

if the LS solution for G is employed. In contrast, baseokn

K

6

3 N V. COMPUTER SIMULATION EXAMPLES
~ <1 + %) <%) (37) Several simulation examples are presented in this section
for illustrating the effectiveness of the proposed technique.
if 6V > KJ?. Next, the total number of complex multipli- We consider both the cases of using ULA and URA. For all
cations required for obtaining the basis matri®@sand E,,  Simulations, the array interelement spacing is set to one half
is approximately given by of the signal wavelength. The ensemble corrglation marjix
3 is replaced by the sample correlation mati. given by
CM,, = (6+J)<E> FBKJIN? + NJ2+9(K ) (38) R, = L, X(#)XH(t)/L, where L is the number of data
K snapshots. The original whole array is uniformly partitioned
into K subarrays, i.eN, = N/K fork=1,2, ---, K.
1) Eigenspace-Based Interference Cancellatidtirst, in
the case of coherent signals, an interference canceller using
CMy. <1 J) < 1 )3 5KJ? 3 <K,]>3 1 <,]>2 a ULA with N = 24 is considered. The desired signal with

CM; 6 6N + o\ N SNR = 0 dB is impinging on the array from the broadside,

if the TLS solution forG is employed. Again, taking the ratio
of CMy, and CM; yields

K

6

N
) while three coherent interferers with equal INR 30 dB

3
s <1+ _> <_> (39) are impinging on the array from 20, 30, andl5 degrees,
respectively. Fig. 3 shows the array output SINR versus
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Fig. 3. The output SINR versus the number of snapshots. The propo$ed. 5. The output SINR versus the number of subarrays.
technique using two subarrays (solid curve) and three subarrays (dash curve).

Dash-dot curve: the eigenspace-based interference canceller with spatial
smoothing. AR 1
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20 0 20 40 60 80 Fig. 6. The output SINR versus the number of snapshots. The proposed

technique using two subarrays (solid curve) and three subarrays (dash curve).
Dash-dot curve: the eigenspace-based interference canceller.
Fig. 4. The output beampatterns. Solid curve: the proposed technique using

two subarrays. Dash curve: the eigenspace-based interference canceller (%tﬂerent case except that the three interferers are now inco
spatial smoothing. ) -
herent. Fig. 6 shows the array output SINR versus the number

the number of snapshots using the proposed techniqueofnsnapshots using the eigenspace-based interference canceller
conjunction with the proposed cross-correlation method 86[6] and the proposed technique with, = 8 and 12. We
described in (33) and (34) withV, = 8 and 12, while nhote that using the proposed technique provides satisfactory
Fig. 4 shows the corresponding array output beampatterns wifivergence speed and array performance. Each of the above
L = 500. The simulation results of using the eigenspace-basgifhulation results is obtained by taking the average of 100
interference canceller of [6] are also given for comparisoildependent runs.
To eliminate the coherent interferers, we incorporate the?2) Bearing Estimation:First, the bearing estimation of co-
interference canceller with the spatial smoothing scheme ba§&dent signals using a ULA witlV = 24 is considered. Three
on 12-element subarrays. These two figures show that g®herent signals with equal SNR10 dB are impinging on the
eigenspace-based interference canceller of [6] possesses fatéy from—5°, —2°, and 5, respectively. Fig. 7 shows the
convergence speed. However, the proposed technique proviglegtial spectra of using the proposed technique With= 8,
better steady-state performance because it does not sacrigearray size-= 8 for employing the spatial smoothing scheme,
the degrees of freedom available from the original array. Tia@d the TLS solution for finding the matré. The spatial
simulation result of the output SINR versus the numhAeof spectra of using the conventional MUSIC algorithm with and
subarrays is plotted in Fig. 5. Again, as expected, the arrajthout the spatial smoothing scheme based on eight-element
performance degrades d§ increases since the degrees ofubarrays are also given for comparison. The number of data
freedom available for extracting the noise subspace of theapshots used is 100. From this figure, we observe that the
subarray reduces ak increases. proposed technique provides better resolution capability. This
Next, we consider the use of eigenspace-based interfereiscthe expected result from the fact that unlike the conventional
cancellers in the incoherent signal situation. The array scena®SIC algorithm, the proposed technique does not sacrifice
and signal characteristics are the same as those for the abireedegrees of freedom in extracting the noise subspace when

Angle (degree)
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THE ESTIMATION BiAs AND MEAN SQUARE
40 i 1 ERROR (MSE) FOR BEARING ESTIMATION
35k o ‘:"‘ b The Proposed Technique The Conventional MUSIC Algorithm
it Bias MSE Bias MSE
= 30F i . / ". T
2 / M } SNR (dB) | -2° % -2 2 —-2° 2° -20 2
E, B 1 2 0.0554 | 0.0012 | 1.1530 | 1.5289 || 0.3676 | -0.3795 | 0.4117 | 0.4657
4
g 2ok 1 6 0.1078 | -0.0519 | 0.4793 | 0.4550 || 0.3511 | -0.3052 | 0.2677 | 0.2239
i s 10 -0.0143 | -0.0466 | 0.0964 | 0.1117 || 0.1240 | -0.1490 | 0.0498 | 0.0673
con 16 -0.0018 | -0.0160 | 0.0169 | 0.0165 || 0.0286 | -0.0471 | 0.0105 | 0.0118
10 1 20 0.0025 ; -0.0008 | 0.0062 | 0.0062 || 0.0132 | -0.0114 | 0.0036 | 0.0034
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of signal coherence. Each of the above simulation results is L0 < Y
] . . 0.1 '
obtained by taking the average of 100 independent runs. e
Next, we use a ULA withN = 20 to estimate the ®)

bearings of two incoherent signals with direction angtes _ o (a) The 2-D spatial . 7 the MUSIC alaorithm with spatial

° ° . . e 1g. 9. a, e Z-D spatial spectrum using the algorithm with spatia
—2° and 2°, reSpeqtlvely' F'_g' 8 shows the_ prObat_)I“tleS foEmoothing. (b) The 2-D spatial spectrum using the proposed technique.
successfully resolving the signals under different input SNR

using the proposed technique with two ten-element subarrays proposed technique in conjunction with the 2-D spatial
and the conventional MUSIC algorithm, while Table | “St%moothing scheme of [11] based onx33 subarrays. Fig. 9
the estimation bias and mean-square error. For this case, 2Qs the simulation results after 300 data snapshots. For
independent runs are performed and the probability is defingglnparison, the simulation using the conventional MUSIC
as the number of successes in resolvmg_two signals d'V'dgﬁorithm with the spatial smoothing scheme based or 3

by 200. We note that the proposed technique can resolve §1§parrays is also performed. Again, we note that the 2-D
signals with higher probability and less bias. afatial spectrum of using the proposed technique shows bet-

Finally, we consider the 2-D bearing estimation of coherepl, resolution than that of using the conventional MUSIC
signals using a & 6 URA. Three coherent signals with equa!algorithm.

SNR = 20 dB are impinging on the 2-D array frofu, v) =
(0.4, 0.1), (0.25, 0.35), and (0.15, 0.15), respectively, where
u = sin(f) cos(¢) and v = sin(f)sin(¢). For each signal
source, its elevation and azimuth angles are designated a¥his paper has presented an efficient technique for
# and ¢, respectively. We partition the & 6 URA into eigenspace-based array signal processing. Utilizing the
uniform rectangular 3x 3 subarray N, = 9) when using multiple shift-invariant property of arV-element array and

VI. CONCLUSION
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partitioning it into K subarrays with multiple shift invariances,[10] S. U. Pillai and B. H. Kwon, “Forward/backward spatial smoothing

the problem of finding the eigensubspaces spanned by the array techniques_ for coheren_t signal identificatiolEEE Trans. Acoust.,
Speech, Signal Processingpl. 37, pp. 8-15, Jan. 1989.

data vector has been formulated as a least-squares or a t@tgl c.c. Yeh, J.-H. Lee, and Y.-M. Chen, “Estimating two-dimensional
least-squares problem. The theoretical result shows that the angles of arrival in coherent source environmelEE Trans. Acoust.,

; ; ; ; inifi Speech, Signal Processingpl. 37, pp. 153-155, Jan. 1989.
required computational complexity is significantly reduceﬂa Y.pBresler,gv. U Reddy’”g?]d 4 Ir(’g”ath' “Optimum beamforming for

to O((N/K)*) when 6N > KJ* for J signal sources. coherent signals and interferencéZEE Trans. Acoust., Speech, Signal
Simulation examples have been provided for iIIustratinﬁg> Processingyvol. 36, pp. 833-843, June 1988.

. . . . . :J13] G. H. Golub and C. F. Van LoarMatrix Computations. Baltimore,
the computational savings. In conjunction with the spati MD: Johns Hopkins Univ. Press, 1983,

smoothing scheme for bearing estimation or the proposgd] A. K. Luthra, “A solution to the adaptive nulling problem with a look-
cross-correlation method for interference Cance”ation' the direction constraint in the presence of coherent jammeEEE Trans.
proposed technique can effectively deal with the case of AMennas Propagatvol. AP-34, pp. 702710, May 1986.
coherent signals without sacrificing the available degrees

of freedom. Computer simulations show that the proposed

te(?hr_]ique demonstrates better performance as (_:ompared tosHihn-Jeng Yuwas bor in Tainan, Taiwan, on May 16, 1967. He received
existing methods. Although the proposed technique possesbe$.S. degree from Chung Yuan Christian University, Chung Li, Taiwan, in

several advantages over the existing techniques, it is wol{f§® 2”dintheele'::/lt'r?c'a??e?gﬁ;é?ir:gthe National Taiwan University, Taipei, in

further investigating its sensitivity to perturbations in SenNsor e currently works for the National Space Program Office (NSPO) in Tai-

locations which may occur in practical applications. wan. His interests include adaptive signal processing, array signal processing,
and satellite communication.
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