364 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 2, FEBRUARY 1999
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Abstract— The method of ordered multiple interactions which reduce the cost of a matrix—vector multiply and thereby

(MOMI) is an iterative procedure which has been demonstrated reduces [6], in the following, we perform all such computa-

to provide a rapidly convergent series for the problem of tions in the standard manner such that 2
wave scattering from perfectly conducting surfaces rough in MOMI was originally developed as an iterative method for
a single dimension. In this paper, we consider the extension 9 y p

of this technique to the problem of scattering from infinite SoOlving the magnetic field integral equation (MFIE) encoun-
elliptical cylinders. For an incident plane wave having its electric tered in scattering from extended perfect electric conductors
field polarized along the axis of the cylinder a combined field (PEC’s) rough in one dimension [7]. The convergence prop-
formulation of the scattering problem is found to provide a gtiag of the MOMI series for this problem were found to
rapidly convergent MOMI series. The determination of an be excellent. This success has led to an investigation of the
optimal combined field representation for the scattering problem . : . .
in this case is also discussed. An extension of the MOMI method conditions under which the method can be used to obtain a
is necessary to properly treat the remaining polarization. rapidly convergent series solution to the problem of scattering
Index Terms—Electromagnetic scattering, elliptic cylinders, from _Closed PE(_: surfaces [8]. .
multiple interactions. Strictly speaking, the MFIE applies only to closed PEC
surfaces [9]. However, in analyzing scattering from extended
rough surfaces some type of tapered incident field is typically
used such that the illuminated surface area is a small fraction
N important goal of electromagnetic analysis is thef the total surface area. This effectively results in an open-
development of efficient numerical schemes which asarface scattering problem. In investigating the application of
applicable to a wide range of problems. One important clas®OMI to closed surfaces we are considering cases in which
of such techniques is the boundary integral equation methibds not possible to determing priori that the currents over a
for time harmonic fields [1], [2]. The use of a moment methoslignificant portion of the surface are zero and, thereby, truncate
procedure reduces this integral equation formulation to a finitdwe interaction domain. In all cases we are considering, the
dimensional matrix equation of the formdxz = b where support of the illumination is much larger than the support of
A is a dense matrix [3]. Straightforward inversion of thishe cylinder.
system is often computationally prohibitive for realistically Other authors have discussed similar approaches to the
sized problems. closed body scattering problem [10], [11]. Of particular inter-
A widely employed alternative to this direct method ogst to this study is the conclusion that the MOMI series for the
solution is the use of an iterative approach for which th®FIE does not converge for scattering from cylinders [10]. In

I. INTRODUCTION

computational complexity scales as the following, it is demonstrated that while true in many cases,
this conclusion is not correct in general. We further show that

g cppr . . .
T ~cn; N (1) the convergence difficulties observed in [10] are ameliorated

) _ ) _ _ when a well-behaved formulation of the scattering problem
wheren; is the number of iterations required to achieve @ geq. It is anticipated that a similar formulation will also

given accuracye is a constant which depends on the methadmove the convergence difficulties encountered in [11] for
of solution andc is a method and implementation dependentj,seq body scatterers.

constant. The method of ordered multiple interactions (MOMI)
discussed herein provides a physically based approach which
can significantly reduce; relative to other iterative techniques Il. SUMMARY OF RESULTS

which are based on a mathematical minimizgtion pro_cedureT0 simplify the present investigation, we have limited our
(e.g., [4], [3]). Although MOMI can be used with techniqueg,,gigeration to scattering from elliptical cylinders of infinite
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Fig. 1. Problem geometry and polarization definitions. Fhaxis of the Cartesian system is chosen to coincide with the axis of the ellipse. The ellipse’s
semi-major and semi-minor axes are, respectively, denoted layd b. The TM- and TE-polarization designations specify which field component is
transverse to the plane of incidence (ther plane).

Cartesian system. The cylinder's cross section is an ellipse
defined by its semi-major and semi-minor axis lengths denoted,
respectively, by andb. The axial ratio of the cylinder ia/b. =
The relationship between the polar coordinate system defingg
by the pair(p, ¢) to the Cartesian system is also shown. The
TM- and TE-polarization designations in Fig. 1 specify which ,
field component is transverse to the plane of incidencesthe

plane). Thus, a TE-polarized field has its electric field parallel
to they axis. For all cases considered in this paper the incident
field is a plane wave of unit amplitude traveling in the SIP Ordering SIX Ordering
direction. The convergence properties observed for this choj

T . ; . ﬁ& 2. Definition of SIP and SIX unknown orderings. For the SIP or-
of incident field are representative of those obtained for @Bring the coefficients of the surface current basis functions are ordered

arbitrary incident field. sequentially-ing in the unknown vector) of (9). In the SIX approach the

: . . s :~_unknown coefficients are placedqnin the order in which they occur along an
As d'scusse_d bel_ow, in applying MOMI to elliptical cylin arbitrary line in thex-z plane. In both cases, the first element/ois specified
ders the question arises as to how the surface current unknowye central angle, which is measured counter clockwise from thaxis.
should be organized in the matrix equation. Different order-

ings of the unknowns lead to MOMI series that incorporate Th r converaen roperti ; mewhat surorisin
different multiple scattering interactions in each iterate. In, €S€ poor CoNVergence properties are somewnat surprising

this paper, we consider the two different ordering schem@en the myltiple scattering interpretat_ion ofthe_ MOMI series
illustrated in Fig. 2. An ordering which is sequentialdr(SIP) N [7]. As discussed further below, this behavior results be-

mimics the progression of creeping waves around the cylind§RuSe MOMI attempts to approximate the integral operator of
while the sequential-in- (SIX) scheme is analogous to thethe closed body problem with a decoupled multiple scattering

forward/backward ordering used in [7] for rough surfaces. formulation. At and near the resonance points of the interior
Figs. 3 and 4 show the normalized residual error of tHyoblem, this corresponds to the approximation of a singular
MOMI series for the MFIE formulation of the problem of TEOr nearly singular operator with an operator which is well
and TM scattering from circular cylinders. The convergendiehaved in all cases.
properties are illustrated for cylinders of various radii using This understanding suggests that the convergence difficulties
both the SIP and SIX ordering schemes. From these figuredlifstrated in Figs. 3 and 4 can be remedied by using an integral
is clear that the MOMI series solution of the MFIE formulatiorformulation of the scattering problem which is well behaved
of the cylindrical scattering problem is not nearly as robust all cases. There are several methods available for obtaining
as the corresponding series solution of the rough-surfaggch a formulation. The method we consider in this paper is
scattering problem. a combined field integral equation (CFIE) formulation of the




366 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 2, FEBRUARY 1999

5 5
-10
a5t 15
30
25 | 25 R
s € 4l 50 [
> 3 . - -
o <o N = =;
£ £ R g 8
245l o 45 b < LA
-3 o - -
g g : 5
& ] . 8 & |
w
65 | 65 [ M
-
110 Y
75 | 75 b . N
a Y N
: O : .
.85 85 L -130 [ R v : -130 [ . Sy
. :
o 2 i 4 6 o 2 i 4 6 H H i H H H i
0 2 4, s 8 10 0 2 4 6 8 10
(@ (b) '
(@) (b)

Fig. 3. Normalized residual erronerr (9) versus iteration number for ] )
different radii and TM incidence using the (a) SIP and (b) SIX ordering&iig. 5. Convergence of SIP and SIX MOMI series for TE scattering from
In both casesy = 90°, a/b = 1. circular cylinders of various radija = jx /A, x = 90°).

* % scattering problem. We further constrain the choice af
sor by seeking the value of this parameter which minimizes the
maximum eigenvalue of the propagator (i.e., the kernel of the
MOMI integral equation, see below) in the MOMI reformula-
tion of the resultant CFIE. This constraint produces an optimal
iterative series in that the minimum rate of convergence is
maximized for an arbitrary excitation. Asymptotic estimates
of the optimal value ofa are derived in the limits of large
and small cylinders by minimizing the contribution of the
integral term (i.e., the scattered field) appearing in the CFIE.
Numerical computations demonstrate that the resultant closed-
40 ; s : g ‘ : : form estimates of the optimal CFIE are accurate. From these
i i estimates we observe that the optimal CFIE formulation of
@ (b) the problem is a strong function of the size of the scatterer for
Fig. 4. Normalized residual erronerr () versus iteration number for small cylinders. For cylinders whose maximum dimension is
different radii and TE incidence using the (a) SIP and (b) SIX ordering&n the order of one wavelength or larger, the optimal CFIE
In both casesy = 90°, a/b = 1. formulation is independent of the scatterer’s size.
The convergence properties of the MOMI series obtained
scattering problem. The CFIE is a superposition of the MFIESING the CFIE formulation, which is optimal in the limit

and the electric field integral equation (EFIE) of allarge scatterer, are illgstrated in Figs. 5 and 6. Fig. 5
considers scattering from circular cylindefg/b = 1) and
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CFIE, = oFFIE 4+ MFIE (2) Fig. 6 presents results for scattering from elliptical cylinders
. havinga/b = 8. Table | shows the number of MOMI iterations
wherea is here taken to be a complex constant. needed to achieve a normalized residual error (defined below)

The use of MOMI with a CFIE formulation of the scatteringsf 10-3 for circular and elliptical cylinders. The required
problem introduces additional challenges. As previously notegymber of iterations is seen to be independent of the size of
MOMI was originally developed for use with the MFIE. Thethe scatterer over a three-orders-of-magnitude change in the
kernel of the CFIE is a linear combination of the MFIErcumference of the cylinder. The large number of required
and EFIE kernels. In contrast to the nonsingular kernel grations observed for small cylinders is due to the use of a
the TM and TE MFIE's, the EFIE kernels are singular. Thigr|g formulation which is optimal for large scatterers.
singular behavior produces a coupling between sources on the
surface of a scatterer which cannot be accommodated via the
decoupled multiple scattering representation used by MOMI. [lIl. MOMI | TERATION OF
This coupling is especially strong in the TM EFIE due to the SECOND-KIND INTEGRAL EQUATIONS

presence of a hypersingular kernel and req_uires that a_mod_ifieqin the case of TM incidence on a sufficiently smooth surface,
form of MOMI be used [12]-{14]. For this reason, in thishe second-kind integral equation satisfied by theirected
paper, we restrict our consideration to the TE problem.

The parameter appearing in the CFIE (2) is only mini- | )

Ilv constrained in that it must have a nonzero imagina In response to a reviewer comment, we not(_e that the; CFIE parameter
mally : i . 9INA[Y often considered a real number. In our analysigiust satisfylm(a) # 0
component for the CFIE to provide a unique solution to thgcause of the form of the TE MFIE used in (4) below.
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continuous [15]. Finally, in the case of a circular cylinder, the
normal derivatives of the Green'’s function in (3) and (4) are

given by
oG = % = —ﬁ sin M
an, In 74 2

H® (klp—p,|)  (6)

where HfQ) is the first-order Hankel function of the second
kind.

A. Discretization of (3) and (4)
Equations (3) and (4) can be rewritten in operator form as

0o 2 4, 5 o 2 s 5 P = O 4 PP @)
(@) (b) where
Fig. 6. Convergence of SIP and SIX MOMI series for TE scattering from
elliptical cylinders having an axial ratia/b = 8 with various values of Pd = / KO(P, po)cb(po) ds, (8)
semi-major axist (o = jw /A, x = 90°). s

TABLE |

NumMmBER OF MOMI | TERATIONS REQUIRED TO ACHIEVE nerr (1) <« 1073,
THE AVERAGE CONVERGENCE RATE FOR a/b = 1 WHEN a > 0.5\
Is 22 (SIP)AND 22 (SIX) dB/ITERATION. FOR a/b = 8 THE
AVERAGE RATES ARE 19 (SIP)AND 21 (SIX) dB/ITERATION

and Ko (p, p,) is termed either the propagator or kernel of the
integral equation. The appropriate definitionsdaf®»¢, and
Ky(p, p,) are clear through a comparison of (8) with (3) and
(4). We approximate the solution to (7) using pulse expansion
and delta testing functions to discretize the integral equation
(7) into a matrix equation of the form

Major a/b=1 afb=8
Axis | SIP  SIX | SIP  SIX W = ™ + Pip. 9)
0022 || 27 27 77 91 ) . o . .
012 8 ; 10 . The details of the discretization procedure are provided in the
) Appendix.
1A 2 2 3 2
2 A 2 2 3 2 . . :
o) ) ) X R B. Ordered Multiple Interactions Formulations of (9)
39\ 2 9 3 2 In developing MOMI to analyze scattering from extended
198 X 9 9 3 9 rough surfaces, the self interaction terifig were neglected
512 2 5 9 5 5 [7]. The propagator matrix was thus decomposed into lower
N ) s ) triangular(L) and upper triangula¢l/) matrices, each having

magnetic field is [7]

H:2Hi“C+2/H
S

G
an,

ds,

3)

zero entries along the diagonal
P—L+U (10)

After a few simple manipulations, this decomposition led to
the MOMI matrix equation (cf. [7, eq. (11)])

while in the case of TE incidence the normal derivative of the = ( — U)™'(I — L) 9™ + (I — U)~Y(1 — L)™' LU%.

y directed E-field satisfies the second kind integral equation

OE 0G
. 3 05

8Eim
on

9E _
on

2 -2

(4)

(11)

However, consistent discretization of (7) requires that the
diagonal elementd’; be retained. This modification can be

In both (3) and (4)@ is the 2-D free-space Green’s functiorincorporated into (11) in several ways. In applying MOMI

1
G(kolp — pol) = —HS (kolp — po))

J4

(5)

to integral equations having singular kernels, it has been
found that optimal convergence properties are obtained by
decomposing the propagator matrix as

wherek? = w?ue andHS? is the zeroth order Hankel function
of the second kind and all quantities are to be evaluated on
the surface of the cylinder. The unit-normal vecfopoints where D is a diagonal matrix withD,, = P,;. Physically,
out from the center of the ellipse. maintaining the self interaction termsfhseparate frond. and

The self-term contributions due to the first normal derivd? provides better convergence properties when applying the
tives of the Green'’s function in (3) and (4) have been removedethod to integral equations having singular kernels because
from the integral terms using an appropriate limiting proceduteese equations exhibit strong coupling between oppositely
[9]. As a result, the kernel functions can be defined to h#rected fields on the surface of a scatterer [12].

P=L+D+U (12)
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Following a procedure analogous to that discussed in [7],For either an SIP or SIX ordering of the unknowns, the
the decomposition (12) leads to the matrix equation MOMI series can still be written as indicated in (15). A
. reordering of the unknowns simply requires a corresponding
% = (D—U)"'D(D — L)y """ + Py (13)  redefinition of the matrice&, D, andlJ. For this reason, in the
case of scattering from closed bodies, it is appropriate to speak
of L andU as multiple scattering operators instead of the more
specific forward and backward propagator designations used
in the case of scattering from one-dimensional rough surfaces

whereD = I — D and the MOMI propagataP,, is defined as
Py=D-U)"'D(D-L)y'LD'U. (14)
Iteration of (13) yields the candidate solution [16].

C. Solution of (9) Using (15) for TM and TE

_ 7 _ —1 _ —1 _sinc
Y= Z Py(D=U)7 DD - L)™y (15) Scattering from Circular Cylinders

n=0
o ] To facilitate the investigation of the properties of the pro-
which is the same as [7, eq. (28)] under the substitufioR-  posed iterative solution (15) to the MOMI matrix equation
I. SinceD = I+ O(Ax), the convergence properties of (15)13) it is convenient to define the normalized residual error
are essentially unchanged from those of [7, eq. (28)]. When ‘
convergence occurs, the candidate solution (15) converges fo. (i) _ [{(D—U)""D(U = L)' LD7'U}*+ O],

the exact solution of (9). As discussed below, even in cases H(/)(O)HQ ’

for which the infinite series does not converge, the first few fori >0 (16)
terms of (15) can still provide a good approximation to the

actual solution. where ¢(® is the order zero iterate of the MOMI series.

The MOMI series (15) provides a very robust and rapidlgerr (9 provides a measure of the error in thith order
convergent solution to the MFIE for scattering from extenddtkrative approximations() obtained by truncated the infinite
rough surfaces in two dimensions. These desirable propertsesies (15) to + 1 terms.
have been attributed to the manner in which the MOMI Figs. 3 and 4 utilize this error norm to illustrate the conver-
series resums the multiple scattering terms present in tence rates of the MOMI series for various radii in the cases
Neumann series for the original integral equation (7). Tref TM and TE incidence using SIP and SIX orderings of the
Born term in the MOMI seriesD — U/)~1D(D — L)1y surface current unknowns. From these examples it is apparent
includes the contributions to the current due to all ordetbat the MOMI series for the MFIE is not nearly as robust
of continuous forward scattering D — L)~!), all orders of as observed for the case of scattering from rough surfaces.
backscattering((D — U)~!), and one order of interactionIn several cases, the series actually appears to be diverging.
between the backward and forward traveling waves on tfidis is somewhat surprising given the physical interpretation
surface (resulting from the multiplication of these operatorspf MOMI as a procedure for resumming the multiple scattering

For this reason, the ordering of the unknowns in the origerms present in the Neumann series for the original integral
inal matrix equation (9) can have a drastic effect on thequation.
convergence of the MOMI series. This is in contrast to the Before further examining the cause of these convergence
Neumann series for (9) whose convergence properties difficulties, it is instructive to consider the Born term of the
independent of the manner in which the unknowns are ordefd®MI series, i.e. thex = 0 term in (15). As is well known,
in the matrix equation. A different ordering of unknowns irthe solution of the integral equation (7) is nonunique at a
the MOMI series will result in the summation of differentdiscrete set of radii corresponding to the zero-source solutions
multiple scattering terms. In the case of a random orderimg the interior problem [9]. Figs. 7 and 8 illustrate the behavior
of the unknowns in the original matrix equation (9) foof the Born term of the MOMI series at a resonant point of
the rough surface scattering problem, the number of MONhe interior problem. Also shown in these figures is the exact
iterations required to converge to a given error tolerance caolution to the scattering problem obtained using a special
be significantly larger than in the case of the physically bas&ghction expansion technique [17]. For a proper choice of
forward/backward ordering. origin and proper ordering of the surface current unknowns,

It is not immediately clear how the unknowns in (9) shoulthe Born term is seen to provide a good approximation to
be ordered for the application of MOMI to closed-bodyhe actual solution. This implies that the MOMI series is
scattering problems. In the case of elliptical cylinders, at leaale to incorporate the physically important multiple scattering
two ordering schemes incorporate important physical aspentgeractions. Similar results are obtained away from resonance.
of the scattering problem. These methods of ordering theFig. 9 shows the three largest eigenvalues of the MOMI
unknowns in the matrix equation are illustrated in Fig. 2. Apropagator matrix”,, for TM scattering from circular cylin-
ordering which is sequential-ia-(SIP) produces an iterative ders with radii in the rang@ to 1.5A. Fig. 10 shows similar
series which mimics the progression of creeping waves arourasults for the TE scattering problem. Although not indicated,
the surface of the cylinder. An alternative approach is ortlee variation of these largest eigenvalues has been computed
which is sequential-in: (SIX). This ordering results in a for cylinders having radii of up t@0A and the same general
MOMI series for the closed-body problem, which is somewhgiattern continues. There is no radius in the TE problem for
analogous to the forward/backward approach used in [7]. which the largest modulus eigenvalue Bf; is less than one
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cylinder (a = 7.37543X) using an SIX ordering with (ay = 90° and (b) = o . .
Y = 180°. The dashed line is the exact solution. in Figs. 3 through 8 are significantly different, the behavior of

the three largest modulus eigenvalues is very similar. This
suggests that the convergence difficulties of MOMI when

and therells no radius above~ 9'386)‘ n the ™ problgm applied to the MFIE are largely independent of the ordering
(the first interior resonance point) for which the mMaximumd hame chosen

eigenvalue modulus is less than unity.

The behavior of the eigenvalues Bf; illustrated in Figs. 9
and 10 explains the convergence properties of the MOMI _ ) )
series illustrated in Figs. 3 and 4. As illustrated in Fig. 9, for 1h€ general failure of the MOMI series as applied to
a < 0.386) the largest eigenvalue in the TM problem is lesd'® MFIE for scattering from circular cylinders is somewhat
than unity and the MOMI series converges with the rate GHPrSINg given the interpretation of MOMI as a method for

convergence decreasing as the radius approaches this u %L{Tmlr!g_thel mu![tl_ple sca?erlng; te;_msblnttthe Nzum?nndsi_les
limit. For larger radii the series does not converge. In the r the original matrix equation [7]. To better understand this

problem convergence is not obtained even in the limit: 0 ailure we observe that the MOMI propagator can be rewritten

: ) . as

since the modulus of the largest eigenvalue is greater than

or equal to unity for all values of the cylinder radius(see Py=I-U)"YI-L)y'LU

Fig. 10). The differences between the SIP and SIX orderings  — (I-U)"YI-L)y ' [I-L)I-U)-(I-P)

in Figs. 3 through 8 result because the corresponding MOMI - (I-U)" I =L)"Y - P) (17)
series incorporate different multiple scattering terms. Observe,
however, that although the behavior of the SIP and SIX serietere for simplicity we have replacdd — I andP = L+ U.

Interpretation
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Thus, for (15) to exhibit desirable convergence properti@hie CFIE for the TE case is obtained by adding this to the

we must have MFIE for this problem (4) using the complex constantThis
(I-U)y I -L)"Y(I-P)~1. (18) leadsto

For this approximation to be good the decoupled inverse oF — o Eme QaEm - 2/ 8_EKa ds, (20)

(I —U)~Y(I — L)~! must closely approximate the inverse of an an s Ong

(I — P). At and near resonance, howevéf,— P) is singular
or nearly singular. In contrast/ — L) and (I — U) are always
well-behaved as they correspond to Volterra integral equations K. = <aG n %)
of the second kind having nonsingular kernels [18]. Thus, > on )’
we should not expect MOMI to provide good convergence
properties when applied to the MFIE formulation of the closedRiscretization of this equation is discussed in the Appendix.
body problem. The resulting matrix equation can be put in the form of (9).
This convergence failure is equivalently understood byhe corresponding MOMI series is of the same form as (15).
observing that in attributing the convergence success of thelhe CFIE (20) is guaranteed to have a unique solution
MOMI series to its ability to resum the terms in the Neumanyhenevera has a nonzero imaginary component [22]. This
series for the original matrix equation, it is implicitly assumefeduirement provides significant freedom in the choicevof
that coupling between thé and U components of the orig- We further constrainy by requiring that it provide optimal
inal matrix equation is weak and can be accommodated \@nvergence properties for an arbitrary incident field. This
decoupled forward and backward iterations. This assumptie@rresponds to the value afwhich minimizes the maximum
makes good physical sense in the PEC rough surface probl@@dulus eigenvalue ofy;.
to which MOMI was originally applied. However, the MFIE A physically intuitive way of determining this optimal
formulation of the closed body Scattering pr0b|em gives rise %]Oice is to minimize the contributions to the total field in
a much stronger coupling between surface currents which c4&0), wWhich are due to the integral term. Observe that if
not be recovered via the MOMI decoupled multiple scatterirfgfiosen such that’, = 0 then no iteration is required to obtain

where

(21)

approximation. the exact solution to the scattering problem. This is physically
interpreted as the case of zero multiple scattering, an example
|V A COMB|NED F|ELD FORMULAT|ON Of Wthh OCcurs in the MFIEO{ = 0) fOI’mu|ati0n Of Scattering
Given this understanding, we next consider a formulation I)rtom an infinite PEC planar surface. In this case
the scattering problem which does not give rise to a singular oG
or nearly singular integral equation. Several such methods are O = 0 (22)

available (e.g., [19]-[22]). In the following, we consider a

CFIE representation [22]. The CFIE is a linear combination Gd the integral term in (20) provides no contribution to the
the MFIE and the EFIE as indicated above in (2). total surface current. This results for the flat surface scattering

While the CFIE can be used to provide a unique solution {:Uc_)blem because the magnetic field radiated to an observation
the scattering problem, the use of MOMI as formulated in (upplnt on the_ surface by sources that are also on th(_a surface has
with a combined field description of the scattering problefi® t@ngential component. Thus, the MFIE for which MOMI
introduces additional difficulties associated with the kernels ¥fas originally developed can be viewed as the specialization
the EFIE’s. The EFIE kernel for the TE problem is simphPf (20) to the rough surface case whereis selected such
the Green’s function (5) of the Helmholtz equation. For TMhat K, is identically zero in the unperturbed geometry of the
scattering, the kernel function is the second normal derivati{@Ugh surface scattering problem. _
of the Green’s function [9]. In applying the MOMI series to T POssible, the optimal choice for would in general be
scattering from dielectric surfaces, it has been found that the 186G
singularities of these kernel functions produce strong coupling = =aon (23)
between oppositely directed fields [12]. The singularity present
in the EFIE for TM scattering is particularly strong andas this would giveK, = 0 in all cases. Because this choice
requires that a modified form of (15) be used. The singulariig not generally possible, we instead consider asymptotically
of the EFIE kernel for TE scattering is much weaker andetermined estimates ef. In addition to providing optimal
is, therefore, more amenable to the MOMI series solutiontegral formulations, these asymptotic estimates provide in-
technique. For this reason, in the following we investigate tHermation on how the optimal value ef depends on the size
application of MOMI to the CFIE for TE scattering only.  and shape of the scatterer. To simplify the following analysis,

we consider only the case of circular cylinders for which the
A. Selecting an Optimal CFIE: A Multiple normal derivative of the Green'’s function is given in (6).
Scattering Approach For small cylinder radi{ka < 1), the normal derivative of

The EFIE for TE scattering from a PEC object is [9] the electric field on the surface is approximately constant. Thus

. E E E
hﬂk/aam. (19) /i&M%i/&M (24)
s aTLO s aTL aTL S
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and the contribution of the integral term to the total field in
(20) is minimized by choosing

(8G/In) 2

=———"" 25 B0

a @ (25) 2

where (-) denotes an average of the source point over the '

surface of the cylinder. Using the small argument forms of the o = = =) b - - = )

zero and first order Hankel functions [23] Rolah) Retat)

= 2u5) ]

Jj2
H () ~ =

v4

(26)

sin

in (25) gives Y
. . . —1 ;
J2 J2y\ a2
o~ — 1 _ s " _ < 111 ka 0 5 10 15 20 () 5 10 15 20
a << T ) T Re (o) Re{ad)
Fig. 11. Contours of largest eigenvalue in decibeld’gf as a function of

1. _
= _E[JW + 2(In(ka) — In2 + )] ! (27)  the complex constant for circular cylinders (SIP ordering).

(/)_d)o
2

which is seen to be inversely related to the size of the cylinder.
For large cylinder radiika > 1) the approximation (24) Where

is not valid. Instead we attempt to minimize the contribution

of the integral term appearing in (20) by choosing fothe

average of (23), i.e.,

. 7
_— 33
K |Sin —"5_2“5” (33)

andn is the free-space impeQanqe: v 1t/e. Recalling that a

o= _<%> (28) plane wave propagating in thedirection satisfies the relation
o _ nkxH=—E (34)
Substituting the large argument forms of the zero and first-
order Hankel functions [23] we see that the choice af specified by (30) results from
the fact that the field at an observation point excited by a
HP(2) 1/;@—W—W/@ distant source point is locally planar. THen(é — ¢,)/2]

(29) in the denominator of (33) [which is not present in (34)]
H(2)(7) N \/Ze_j(z_gﬂ/@ arises because the CFIE imposes a boundary condition on the
(2 . : L
T tangential components of the total field. For TE incidence,
the electric field is always tangential to the cylinder while the
component of the magnetic field tangent to the cylinder varies
. 2k j4 with the location of the source point.
o jk< > T TN B0) " rhe optimality of the asymptotic estimates foprovided by
27) and (30) can be evaluated by calculating the eigenvalues
Unlike the smallka limit (27) for which the optimal choice f)f t%e resglti%g  ropagator matricgs4. Figs, 12 and 15 chom
of o was found to vary withs, the value of suggested by the magnitude of the largest eigenvalue of the MOMI propa-

(3O)hi5 irrl]deper:de_nt _]?_f the cylfinier’s Tize. taiven b gator Py, for the TE CFIE (20) as a function of the complex
The physical significance of the value afgiven by (30) constanta for various cylinder radii. Table Il contains the

is understood by observing that, on the surface of the Cy"nqﬂlues ofe predicted by (25), (27), and (30).

in the TE problem As anticipated by the above asymptotic analysis, for small
orE . . H e iwnH. % 31 radii, the choice ofx, which yields the minimum maximum
on Y T vk X H = Jwitiany (1) gigenvalue ofP,,, varies significantly with the radius of the

an
L . . 1 . : cylinder. The estimates ok provided by (25) and (27) are
Multiplying this equation through byv—* and inserting the good througha = 0.05). Equation (25) provides a good

asymptotic value otx given by (30) prior to averaging (i.e., estimate of the optimal value of for a = 0.2\. For the larger

a = jklsin(¢ — ¢,)/2|) we have radii cases of; = 1\ anda = 5, the value ofx which yields
10E Jwp the minimum maximum eigenvalue remains fairly constant at
adn jk|sin% tan a = j4/A, which is in good agreement with the asymptotic

(32) value provided by (30).
From these figures we also notice that the minimum max-
2Alth0ugh the ‘averaging performed in (30) has been perfOrmedIOVer ﬂ:l’hum elgenvalue ofP]w as a function ofa increases as

., the contributions to the average from points near the observation pojpt lind di . f I\ 5. Thi

(for which the large argument approximations of the Hankel functions are e cylinder radius Increases frofn0 1o 5A. IS occurs

valid) are negligible whetka is large. because for large cylinder radii we are able to minimize the

simplifies (28) t8

sin

d)_d)o
2

= 7:JI-E[tan
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Fig. 12. Contours of largest eigenvalues in decibel#pf as a function of Fig. 13. Contours of largest eigenvalues in decibel®pf as a function of
the complex constant for circular cylinders (SIP ordering). the complex constant for elliptical cylinders havingt/b = 8 (SIP ordering).

TABLE I
ASYMPTOTIC ESTIMATES OF THE OPTIMAL CHOICES FOR«r. ESTIMATES FROM
BoTH EQUATIONS (25) AND (27) ARE PROVIDED TO DEMONSTRATE - s
THAT THE ASYMPTOTIC FORM (27) PROVIDES INACCURATE RESULTS 3
BEFORE THEESTIMATE (25) BreAKs DowN (cf. « = 0.2\ CASE) £ X R
Cylinder al from al from ai from 10
. -5
Radius Eqn (25) Eqn (27) Eqn (30) ® etan) 10 -5 ® retan) 10
0.01 x 13.60 + 57.30 13.37 + 57.28 74
0.02 A 8.00 + 55.46 7.54 + j5.41 74 0
0.03 A 5.95 + 74.74 5.26 + j4.63 74 5
-
0.04 A 4.90 + 74.35 3.97 + j4.17 j4 % oS
= 10
0.05 A 4.26 + j4.10 3.11 + j3.84 j4 of T e
0.2 A 3.66 + 53.31 —0.11 + 51.58 74
5 10 5 o 5 10
1A —2.78 4+ 53.15 —0.16 + j0.14 j4 Re(ah) Re (o k)
5 A —3.06 +73.14 —0.02 +50.01 J4 Fig. 14. Contours of largest eigenvalues in decibel®pf as a function of

the complex constant for elliptical cylinders having:/b = 8 (SIP ordering).

integral term’s contribution to (20) only by minimizin, in B, Effect of Asymptotically Optimal on Eigenvalues oP
an average sense. In the small radius limit the approximatio

in (24) allowed us to determine the value @by minimizing choices fore was motivated by the physical consideration that

the contribution from the integral term itself. the eigenvalues of; are related to the multiple scatterin
Figs. 13 and 14 show the magnitude of the largest eigens. -3 M P 9

value of Py, for TE scattering from elliptical cylinders hr:lvingcomr'kJUtlon of the integral term appearing in (20) to the total

axial ratios ofa/b = 8. For small radii we see that the optimalSurface current. Since the optimal choicenoivas determined

choice ofor changes significantly with the size of the eIIipseW|thout reference to the MOMI reformulation of the problem,

; . : it is informative to consider the effect of this choice on
The smallest maximum eigenvalue 8%, is larger for small

elliptical cylinders than for small circular cylinders due tothe eigenvalues of the propagaibr of the original integral

the breakdown of approximation (24) as the axial ratjth equation. The eigenvalues of the propagdfassociated with

increases. Also note that the optimal choicecofippears to (20) are [24]
bifurcate into two distinct regions in the complexplane for

Mrhe preceding determination of the asymptotically optimal

2J),(ka) + 22 J,,(ka)

small ¢. This is due to the loss of rotational symmetry when Gm =1~ 7 (ka) + nTEHD (ka) (35)
a/b # 1 and suggests that it may be more appropriate to nm M Hm
choosex as a function of position in this case, i.e.= a(p). where
For larger values of; the estimate in (30) derived for circular

. . ; o _— I (ka)
cylinders is seen to provide an excellent choice in the case T =~ 3= (36)
of a/b = 8. Hy/ (ka)
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—e— a=01k x=90° —e— a=01i x=9%0" [
a=01x x=180"
a=51 x=w° [
a=5x y=180" [

|n the Sma.” I’adIUS ||m|t form — 0 (35) reduces to ) ,. ................................................ . N .

rrrrrrr a=01A x=180°"f
——-— a=5i x=9%° [

& ~1-— 2aa<;r—2 —v—In %) (37) o §

&
3

where v = 0.577 is Euler's gamma. Whenn # 0 (35)
becomes

4
S
T

£rn ~ _a% (38)

20 Log 4 nerr )
20 Log 4o( nerr @)

&
8

wherem must be sufficiently small relative tha for this to a10
provide a good approximation. This limitation arises because 5
the asymptotic expressions used to derive this result from (35)"* | ol . :
are not uniformly valid with respect to. P o+« s s w0

Inserting the asymptotic value of given by (27) into (37)
and (38) we have thajy ~ 0 while

-110

Fig. 15. Dependence of convergence rates of SIP and SIX MOMI series on
choice of unknown origin for TE plane wave scattering from circular cylinders
1 having radii values of: = 0.1X anda = 5\ (a = jn/A).
y E[jﬁ +2(In(ka) —In2 +)]*
for jm| =1,2,3,---. (39) figures it is apparent that both SIP and SIX orderings of the

. ) ) ) surface current unknowns produce rapidly convergent series
Thus, the asymptotic value af given in (27) is the value for medium to large-sized cylinders. The slower rate observed
for which § ~ 0 as ka — 0. This is not surprising for the small cylinders results because of the value ofsed.
since the eigenfunction associated withis a constant. This g gbtain a rapid convergence rate in these casssould be
corresponds to the constant surface current assumption mgggsen according to (27).
in (24) in determining the optimal value af in the small |5 Fig. 15 we consider the effect of the choice of unknown
radius limit. Them™! decay of the¢,, specified by (39) is origin on the convergence properties of the MOMI series.
likely the result of integrating the relatively slowly varyingpreviously, it was demonstrated that the accuracy of the Born
kernel K, in the small radius limit against the surface currenfbrm of the MOMI series for the MFIE depends strongly

&n

eigenfunctionse’™. on the choice of unknown origin (cf. Figs. 7 and 8). The
In the limit of large ka (35) reduces to present figure demonstrates that for the examples chosen the
sin(8) + (j — 22) cos(8) convergence rate of the MOMI series for the CFIE is relatively

™~ T Gn(8) 1 j cos(F) (40) insensitive to the choice of unknown origin.
Finally, in Table | the number of MOMI iterations required
where3 = ka— " — 7. As above, this asymptotic form @f, to achieve a normalized residual error less than®1i8 given
is valid only form sufficiently small such that the asymptoticas a function of the semi-major axis for an incident TE
forms of the Bessel functions used to derive this result aptane wave andr = jx/\. The number of required iterations
valid. In this limit, the modulus of,,, is minimized over all appears to reach an asymptotically constant value of two or
B for eachm whena = jk/2 = jm/A. This result is close three for the examples chosen. It should be noted that, since
to the value ofj4/X specified in (30). Thus, in both the largethe calculation of the Born term of the MOMI series requires
and smallka limits, the asymptotically optimal estimates ofthe same computational effort as the other terms in the series,

« derived above also minimize the maximum modulus of the computational effort required to obtain the second iterate

class of eigenvalues of the propagafor of the MOMI series is similar to that required to compute
the third iterate in the Neumann series for the original matrix
C. Convergence of the MOMI Series for equation (9).

Scattering from Elliptical Cylinders

The asymptotically optimal values af have been deter-
mined by requiring that they minimize the maximum eigen- The MOMI series exhibits poor convergence properties
value of Py, as this provides an upper bound on the numb&rhen used with the MFIE formulation of the closed-body
of MOMI iterations required to achieve a given error tolerancgcattering problem. This result is somewhat surprising given
for an arbitrary excitation. We now consider the convergentige physical interpretation of the MOMI series presented in
of the resultant series for the physically realistic case ¢f] for extended rough surfaces. We have suggested that these
an incident plane wave. Furthermore, since we are typicajppor convergence properties are due to the use of an integral
interested in achieving a rapid rate of convergence for largepresentation which contains internal resonance points. A
scatterers, in the following, we choose= jx /A in all cases. properly chosen combined field formulation of the TE problem

The convergence of the MOMI series for the TE CFIE (2M)as been shown to ameliorate these difficulties.
for this choice of« is illustrated in Figs. 5 and 6 for SIP and A method of determining the asymptotically optimal CFIE
SIX unknown orderings for scattering from elliptical cylinderdias been proposed using a multiple scattering interpretation
having axial ratios of:/b = 1 (Fig. 5) anda/b = 8 (Fig. 6) of the integral term appearing in this equation. It has been
and various values of the semimajor axis lengttirrom these demonstrated that the resultant estimate of the optimal CFIE

V. CONCLUSION
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corresponds also to the minimization of a class of eigenvalughere ¢, = iA¢ — A¢p/2 + x. Using this discretization
of the CFIE’s propagator matrix. For small elliptical cylindersprocedure, the off-diagonal elements of the propagator matrix
the optimal integral formulation has been shown to depedd are
strongly on the cross sectional size of the cylinder. However, .
for elliptical cylinders having major axis lengths on the order Bij = —2Ka(pis pj)AS; 1 7] (43)
of a wavelength or larger, the optimal integral formulatiowhereKa is defined in (21) and, for an ellipse having semi-

quickly approaches an asymptotically constant limit. major and semi-minor axis lengthsand b
The resultant MOMI series in the large scatterer limit con-

verges rapidly. The number of iterations required to achieve 10p\2 1/2

a normalized residual error of 1® was observed to be  AS; =Ad|p() <1+ <_8_¢) )

independent of the electromagnetic size of the scatterer for “ b=d;

elliptical cylinders having major axis lengths in the range of _ 2y 2 1172

1-2048 wavelengths and axial ratios of one and eight. This f(g)) N a[11+ < L)sin” ¢}

is in contrast to conjugate gradient iteration of the CFIE for -2 — _=n 2002 — 1][1 4+ (r* — 1) sin? ¢] ¢

which the number of iterations increases with the size of the * 2

cylinder [25]. Furthermore, we note that MOMI can be viewe@here» = a/b. To determine the diagonal elements of the

as a preconditioning procedure to which a Krylov iterativgropagator matrix we recognize that the MFIE kernel function

scheme can be applied. This was not necessary here dugstvell defined asp — p, [15]. The contribution to the

the rapid convergence of (15). diagonal term associated with the EFIE kernel in the TE case
We are currently investigating the extension of the approagBntains a logarithmic singularity which can be integrated.

presented in this paper to the TM problem. This requires amjs leads to the following result for the diagonal elements
extension of the MOMI method to more adequately account fgf TE CFIE propagator:

singular kernels. Two methods of achieving this generalization

(44)

.2
have been developed for extended rough surfaces [13], [14].p, — % !
It is anticipated that these results will also lead to improved m 147%—(rt —1)cos2¢;
convergence properties for the MOMI series discussed here. aApuy [ LT ka
An alternative method for handling singular kennels is dis- T U9 vty 2 +ln 2 us AP (45)
cussed in [11]. Finally, we are also investigating the useh
of MOMI with other methods which provide resonance-fre¥ €€
formulat_ions_ of the closed body scatteri_ng problem, as well as r (r2 — 1)%sin? 2¢; 3
the application of MOMI to more complicated scatterers. The up = 1+ A1+ (12— 1)sin® ¢)?2
use of MOMI with a dual-surface MFIE formulation [21] of 3 N o 1 Y-
a corner scatterer is discussed in [26]. uz = [1+4 (r” — 1)sin” ¢;]? : (46)
- 4L
. — 1+7* —(r*—1)cos2p; |7
APPENDIX ST @+ = (12— 1) cos 2:)? |

In this appendix, we consider the discretization of (3), (4), For all cases considered in this paper, we have chdéen
and (20). Since the discretization procedure used for (3) is thagch that

same as that used for (4) and since (4) is a special case of a A

(20), we only consider the discretization of (20) here. ~ < 7000 (47)
A moment-method procedure [3] with pulse basis and delta

testing functions is used to translate the infinite-dimensional ACKNOWLEDGMENT

CFIE into a finite-dimensional matrix equation having the form The views and conclusions contained herein are those of

(41) the authors and should not be interpreted as necessarily repre-

senting the official policies or endorsements, either expressed
or implied, of the Air Force Office of Scientific Research or
ghe U.S. Government.

”(/) _ ,(/}inc + P”(/}

The central anglep is sampled uniformly such thah¢ =
27 /N where N is the number of pulse-expansion function
used. We evaluate all resultant integrals over the expansion
functions to orderA¢. The vector) contains theV expansion
coefficients 2y contains the pointwise samples of the forcing[1] E. K. Miller, “A selective survey of computational electromagnetics,”
term in the CFIE evaluated at the center of the angular interve# IEEE Trans. Antennas Propagatol. 36, pp. 1281-1305, Sept. 1988.

. . . . . ] W. C. Chew, J. H. Jin, C. C. Lu, E. Michielssen, and J. M. Song, “Fast
over which each pulse-basis function is defined. Thus, for an” gojution methods in electromagnetictEEE Trans. Antennas Propagat.

unknown ordering which is SIP having an unknown origin of  vol. 45, no. 3, pp. 5653-543, Mar. 1997.

i ; inc ; [3] R.F. HarringtonField Computation by Moment MethadsPiscataway,
x (cf. Fig. 2), the entries of the vectgr™< are given by NJ: IEEE Press, 1993,

. [4] A. F. Peterson and R. Mittra, “Convergence of the conjugate gradient
inc _ of o fpinc oL 42 method when applied to matrix equations representing electromagnetic
1/)7‘, = « + an ( ) scattering problems,|EEE Trans. Antennas Propagatol. AP-34, pp.
P=c; 1447-1454, Dec. 1986.
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