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A Combined Field Approach to Scattering
from Infinite Elliptical Cylinders Using the
Method of Ordered Multiple Interactions

Robert J. Adams,Student Member, IEEE, and Gary S. Brown,Fellow, IEEE

Abstract— The method of ordered multiple interactions
(MOMI) is an iterative procedure which has been demonstrated
to provide a rapidly convergent series for the problem of
wave scattering from perfectly conducting surfaces rough in
a single dimension. In this paper, we consider the extension
of this technique to the problem of scattering from infinite
elliptical cylinders. For an incident plane wave having its electric
field polarized along the axis of the cylinder a combined field
formulation of the scattering problem is found to provide a
rapidly convergent MOMI series. The determination of an
optimal combined field representation for the scattering problem
in this case is also discussed. An extension of the MOMI method
is necessary to properly treat the remaining polarization.

Index Terms—Electromagnetic scattering, elliptic cylinders,
multiple interactions.

I. INTRODUCTION

A N important goal of electromagnetic analysis is the
development of efficient numerical schemes which are

applicable to a wide range of problems. One important class
of such techniques is the boundary integral equation method
for time harmonic fields [1], [2]. The use of a moment method
procedure reduces this integral equation formulation to a finite-
dimensional matrix equation of the form where

is a dense matrix [3]. Straightforward inversion of this
system is often computationally prohibitive for realistically
sized problems.

A widely employed alternative to this direct method of
solution is the use of an iterative approach for which the
computational complexity scales as

(1)

where is the number of iterations required to achieve a
given accuracy, is a constant which depends on the method
of solution and is a method and implementation dependent
constant. The method of ordered multiple interactions (MOMI)
discussed herein provides a physically based approach which
can significantly reduce relative to other iterative techniques
which are based on a mathematical minimization procedure
(e.g., [4], [5]). Although MOMI can be used with techniques
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which reduce the cost of a matrix–vector multiply and thereby
reduce [6], in the following, we perform all such computa-
tions in the standard manner such that .

MOMI was originally developed as an iterative method for
solving the magnetic field integral equation (MFIE) encoun-
tered in scattering from extended perfect electric conductors
(PEC’s) rough in one dimension [7]. The convergence prop-
erties of the MOMI series for this problem were found to
be excellent. This success has led to an investigation of the
conditions under which the method can be used to obtain a
rapidly convergent series solution to the problem of scattering
from closed PEC surfaces [8].

Strictly speaking, the MFIE applies only to closed PEC
surfaces [9]. However, in analyzing scattering from extended
rough surfaces some type of tapered incident field is typically
used such that the illuminated surface area is a small fraction
of the total surface area. This effectively results in an open-
surface scattering problem. In investigating the application of
MOMI to closed surfaces we are considering cases in which
it is not possible to determinea priori that the currents over a
significant portion of the surface are zero and, thereby, truncate
the interaction domain. In all cases we are considering, the
support of the illumination is much larger than the support of
the cylinder.

Other authors have discussed similar approaches to the
closed body scattering problem [10], [11]. Of particular inter-
est to this study is the conclusion that the MOMI series for the
MFIE does not converge for scattering from cylinders [10]. In
the following, it is demonstrated that while true in many cases,
this conclusion is not correct in general. We further show that
the convergence difficulties observed in [10] are ameliorated
when a well-behaved formulation of the scattering problem
is used. It is anticipated that a similar formulation will also
remove the convergence difficulties encountered in [11] for
closed body scatterers.

II. SUMMARY OF RESULTS

To simplify the present investigation, we have limited our
consideration to scattering from elliptical cylinders of infinite
extent for which the three-dimensional vector electromagnetic
problem reduces to a two-dimensional (2-D) scalar problem.
The geometric and polarization definitions which will be used
throughout are illustrated in Fig. 1. The infinite axis of the
cylinder is taken to be coincident with the axis of the
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Fig. 1. Problem geometry and polarization definitions. They axis of the Cartesian system is chosen to coincide with the axis of the ellipse. The ellipse’s
semi-major and semi-minor axes are, respectively, denoted bya and b. The TM- and TE-polarization designations specify which field component is
transverse to the plane of incidence (thex-z plane).

Cartesian system. The cylinder’s cross section is an ellipse
defined by its semi-major and semi-minor axis lengths denoted,
respectively, by and . The axial ratio of the cylinder is .
The relationship between the polar coordinate system defined
by the pair to the Cartesian system is also shown. The
TM- and TE-polarization designations in Fig. 1 specify which
field component is transverse to the plane of incidence (the-
plane). Thus, a TE-polarized field has its electric field parallel
to the axis. For all cases considered in this paper the incident
field is a plane wave of unit amplitude traveling in the
direction. The convergence properties observed for this choice
of incident field are representative of those obtained for an
arbitrary incident field.

As discussed below, in applying MOMI to elliptical cylin-
ders the question arises as to how the surface current unknowns
should be organized in the matrix equation. Different order-
ings of the unknowns lead to MOMI series that incorporate
different multiple scattering interactions in each iterate. In
this paper, we consider the two different ordering schemes
illustrated in Fig. 2. An ordering which is sequential-in-(SIP)
mimics the progression of creeping waves around the cylinder,
while the sequential-in- (SIX) scheme is analogous to the
forward/backward ordering used in [7] for rough surfaces.

Figs. 3 and 4 show the normalized residual error of the
MOMI series for the MFIE formulation of the problem of TE
and TM scattering from circular cylinders. The convergence
properties are illustrated for cylinders of various radii using
both the SIP and SIX ordering schemes. From these figures it
is clear that the MOMI series solution of the MFIE formulation
of the cylindrical scattering problem is not nearly as robust
as the corresponding series solution of the rough-surface
scattering problem.

Fig. 2. Definition of SIP and SIX unknown orderings. For the SIP or-
dering the coefficients of the surface current basis functions are ordered
sequentially-in-� in the unknown vector of (9). In the SIX approach the
unknown coefficients are placed in in the order in which they occur along an
arbitrary line in thex-z plane. In both cases, the first element of is specified
by the central angle�, which is measured counter clockwise from thex axis.

These poor convergence properties are somewhat surprising
given the multiple scattering interpretation of the MOMI series
in [7]. As discussed further below, this behavior results be-
cause MOMI attempts to approximate the integral operator of
the closed body problem with a decoupled multiple scattering
formulation. At and near the resonance points of the interior
problem, this corresponds to the approximation of a singular
or nearly singular operator with an operator which is well
behaved in all cases.

This understanding suggests that the convergence difficulties
illustrated in Figs. 3 and 4 can be remedied by using an integral
formulation of the scattering problem which is well behaved
in all cases. There are several methods available for obtaining
such a formulation. The method we consider in this paper is
a combined field integral equation (CFIE) formulation of the
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(a) (b)

Fig. 3. Normalized residual errornerr (i) versus iteration number for
different radii and TM incidence using the (a) SIP and (b) SIX orderings.
In both cases� = 90�, a=b = 1.

(a) (b)

Fig. 4. Normalized residual errornerr (i) versus iteration number for
different radii and TE incidence using the (a) SIP and (b) SIX orderings.
In both cases� = 90�, a=b = 1.

scattering problem. The CFIE is a superposition of the MFIE
and the electric field integral equation (EFIE)

(2)

where is here taken to be a complex constant.
The use of MOMI with a CFIE formulation of the scattering

problem introduces additional challenges. As previously noted,
MOMI was originally developed for use with the MFIE. The
kernel of the CFIE is a linear combination of the MFIE
and EFIE kernels. In contrast to the nonsingular kernel of
the TM and TE MFIE’s, the EFIE kernels are singular. This
singular behavior produces a coupling between sources on the
surface of a scatterer which cannot be accommodated via the
decoupled multiple scattering representation used by MOMI.
This coupling is especially strong in the TM EFIE due to the
presence of a hypersingular kernel and requires that a modified
form of MOMI be used [12]–[14]. For this reason, in this
paper, we restrict our consideration to the TE problem.

The parameter appearing in the CFIE (2) is only mini-
mally constrained in that it must have a nonzero imaginary
component for the CFIE to provide a unique solution to the

(a) (b)

Fig. 5. Convergence of SIP and SIX MOMI series for TE scattering from
circular cylinders of various radii(� = j�=�; � = 90�).

scattering problem.1 We further constrain the choice of
by seeking the value of this parameter which minimizes the
maximum eigenvalue of the propagator (i.e., the kernel of the
MOMI integral equation, see below) in the MOMI reformula-
tion of the resultant CFIE. This constraint produces an optimal
iterative series in that the minimum rate of convergence is
maximized for an arbitrary excitation. Asymptotic estimates
of the optimal value of are derived in the limits of large
and small cylinders by minimizing the contribution of the
integral term (i.e., the scattered field) appearing in the CFIE.
Numerical computations demonstrate that the resultant closed-
form estimates of the optimal CFIE are accurate. From these
estimates we observe that the optimal CFIE formulation of
the problem is a strong function of the size of the scatterer for
small cylinders. For cylinders whose maximum dimension is
on the order of one wavelength or larger, the optimal CFIE
formulation is independent of the scatterer’s size.

The convergence properties of the MOMI series obtained
using the CFIE formulation, which is optimal in the limit
of a large scatterer, are illustrated in Figs. 5 and 6. Fig. 5
considers scattering from circular cylinders and
Fig. 6 presents results for scattering from elliptical cylinders
having . Table I shows the number of MOMI iterations
needed to achieve a normalized residual error (defined below)
of 10 for circular and elliptical cylinders. The required
number of iterations is seen to be independent of the size of
the scatterer over a three-orders-of-magnitude change in the
circumference of the cylinder. The large number of required
iterations observed for small cylinders is due to the use of a
CFIE formulation which is optimal for large scatterers.

III. MOMI I TERATION OF

SECOND-KIND INTEGRAL EQUATIONS

In the case of TM incidence on a sufficiently smooth surface,
the second-kind integral equation satisfied by the-directed

1In response to a reviewer comment, we note that the CFIE parameter�
is often considered a real number. In our analysis� must satisfyIm(�) 6= 0
because of the form of the TE MFIE used in (4) below.
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(a) (b)

Fig. 6. Convergence of SIP and SIX MOMI series for TE scattering from
elliptical cylinders having an axial ratioa=b = 8 with various values of
semi-major axisa (� = j�=�; � = 90�).

TABLE I
NUMBER OF MOMI I TERATIONS REQUIRED TO ACHIEVE nerr (i) < 10�3.

THE AVERAGE CONVERGENCERATE FOR a=b = 1 WHEN a > 0:5�
IS 22 (SIP)AND 22 (SIX) dB/ITERATION. FOR a=b = 8 THE

AVERAGE RATES ARE 19 (SIP)AND 21 (SIX) dB/ITERATION

magnetic field is [7]

(3)

while in the case of TE incidence the normal derivative of the
directed -field satisfies the second kind integral equation

(4)

In both (3) and (4), is the 2-D free-space Green’s function

(5)

where and is the zeroth order Hankel function
of the second kind and all quantities are to be evaluated on
the surface of the cylinder. The unit-normal vectorpoints
out from the center of the ellipse.

The self-term contributions due to the first normal deriva-
tives of the Green’s function in (3) and (4) have been removed
from the integral terms using an appropriate limiting procedure
[9]. As a result, the kernel functions can be defined to be

continuous [15]. Finally, in the case of a circular cylinder, the
normal derivatives of the Green’s function in (3) and (4) are
given by

(6)

where is the first-order Hankel function of the second
kind.

A. Discretization of (3) and (4)

Equations (3) and (4) can be rewritten in operator form as

(7)

where

(8)

and is termed either the propagator or kernel of the
integral equation. The appropriate definitions of, , and

are clear through a comparison of (8) with (3) and
(4). We approximate the solution to (7) using pulse expansion
and delta testing functions to discretize the integral equation
(7) into a matrix equation of the form

(9)

The details of the discretization procedure are provided in the
Appendix.

B. Ordered Multiple Interactions Formulations of (9)

In developing MOMI to analyze scattering from extended
rough surfaces, the self interaction terms were neglected
[7]. The propagator matrix was thus decomposed into lower
triangular and upper triangular matrices, each having
zero entries along the diagonal

(10)

After a few simple manipulations, this decomposition led to
the MOMI matrix equation (cf. [7, eq. (11)])

(11)

However, consistent discretization of (7) requires that the
diagonal elements be retained. This modification can be
incorporated into (11) in several ways. In applying MOMI
to integral equations having singular kernels, it has been
found that optimal convergence properties are obtained by
decomposing the propagator matrix as

(12)

where is a diagonal matrix with . Physically,
maintaining the self interaction terms inseparate from and

provides better convergence properties when applying the
method to integral equations having singular kernels because
these equations exhibit strong coupling between oppositely
directed fields on the surface of a scatterer [12].
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Following a procedure analogous to that discussed in [7],
the decomposition (12) leads to the matrix equation

(13)

where and the MOMI propagator is defined as

(14)

Iteration of (13) yields the candidate solution

(15)

which is the same as [7, eq. (28)] under the substitution
. Since , the convergence properties of (15)

are essentially unchanged from those of [7, eq. (28)]. When
convergence occurs, the candidate solution (15) converges to
the exact solution of (9). As discussed below, even in cases
for which the infinite series does not converge, the first few
terms of (15) can still provide a good approximation to the
actual solution.

The MOMI series (15) provides a very robust and rapidly
convergent solution to the MFIE for scattering from extended
rough surfaces in two dimensions. These desirable properties
have been attributed to the manner in which the MOMI
series resums the multiple scattering terms present in the
Neumann series for the original integral equation (7). The
Born term in the MOMI series
includes the contributions to the current due to all orders
of continuous forward scattering , all orders of
backscattering , and one order of interaction
between the backward and forward traveling waves on the
surface (resulting from the multiplication of these operators).

For this reason, the ordering of the unknowns in the orig-
inal matrix equation (9) can have a drastic effect on the
convergence of the MOMI series. This is in contrast to the
Neumann series for (9) whose convergence properties are
independent of the manner in which the unknowns are ordered
in the matrix equation. A different ordering of unknowns in
the MOMI series will result in the summation of different
multiple scattering terms. In the case of a random ordering
of the unknowns in the original matrix equation (9) for
the rough surface scattering problem, the number of MOMI
iterations required to converge to a given error tolerance can
be significantly larger than in the case of the physically based
forward/backward ordering.

It is not immediately clear how the unknowns in (9) should
be ordered for the application of MOMI to closed-body
scattering problems. In the case of elliptical cylinders, at least
two ordering schemes incorporate important physical aspects
of the scattering problem. These methods of ordering the
unknowns in the matrix equation are illustrated in Fig. 2. An
ordering which is sequential-in-(SIP) produces an iterative
series which mimics the progression of creeping waves around
the surface of the cylinder. An alternative approach is one
which is sequential-in- (SIX). This ordering results in a
MOMI series for the closed-body problem, which is somewhat
analogous to the forward/backward approach used in [7].

For either an SIP or SIX ordering of the unknowns, the
MOMI series can still be written as indicated in (15). A
reordering of the unknowns simply requires a corresponding
redefinition of the matrices, , and . For this reason, in the
case of scattering from closed bodies, it is appropriate to speak
of and as multiple scattering operators instead of the more
specific forward and backward propagator designations used
in the case of scattering from one-dimensional rough surfaces
[16].

C. Solution of (9) Using (15) for TM and TE
Scattering from Circular Cylinders

To facilitate the investigation of the properties of the pro-
posed iterative solution (15) to the MOMI matrix equation
(13), it is convenient to define the normalized residual error

nerr

for (16)

where is the order zero iterate of the MOMI series.
nerr provides a measure of the error in theth order
iterative approximation obtained by truncated the infinite
series (15) to terms.

Figs. 3 and 4 utilize this error norm to illustrate the conver-
gence rates of the MOMI series for various radii in the cases
of TM and TE incidence using SIP and SIX orderings of the
surface current unknowns. From these examples it is apparent
that the MOMI series for the MFIE is not nearly as robust
as observed for the case of scattering from rough surfaces.
In several cases, the series actually appears to be diverging.
This is somewhat surprising given the physical interpretation
of MOMI as a procedure for resumming the multiple scattering
terms present in the Neumann series for the original integral
equation.

Before further examining the cause of these convergence
difficulties, it is instructive to consider the Born term of the
MOMI series, i.e. the term in (15). As is well known,
the solution of the integral equation (7) is nonunique at a
discrete set of radii corresponding to the zero-source solutions
of the interior problem [9]. Figs. 7 and 8 illustrate the behavior
of the Born term of the MOMI series at a resonant point of
the interior problem. Also shown in these figures is the exact
solution to the scattering problem obtained using a special
function expansion technique [17]. For a proper choice of
origin and proper ordering of the surface current unknowns,
the Born term is seen to provide a good approximation to
the actual solution. This implies that the MOMI series is
able to incorporate the physically important multiple scattering
interactions. Similar results are obtained away from resonance.

Fig. 9 shows the three largest eigenvalues of the MOMI
propagator matrix for TM scattering from circular cylin-
ders with radii in the range to . Fig. 10 shows similar
results for the TE scattering problem. Although not indicated,
the variation of these largest eigenvalues has been computed
for cylinders having radii of up to and the same general
pattern continues. There is no radius in the TE problem for
which the largest modulus eigenvalue of is less than one
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(a) (b)

Fig. 7. Born term of MOMI series obtained for TM scattering from a circular
cylinder (a = 7:37543�) using an SIP ordering with (a)� = 90� and (b)
� = 180�. The dashed line is the exact solution.

(a) (b)

Fig. 8. Born term of MOMI series obtained for TM scattering from a circular
cylinder (a = 7:37543�) using an SIX ordering with (a)� = 90� and (b)
� = 180�. The dashed line is the exact solution.

and there is no radius above in the TM problem
(the first interior resonance point) for which the maximum
eigenvalue modulus is less than unity.

The behavior of the eigenvalues of illustrated in Figs. 9
and 10 explains the convergence properties of the MOMI
series illustrated in Figs. 3 and 4. As illustrated in Fig. 9, for

the largest eigenvalue in the TM problem is less
than unity and the MOMI series converges with the rate of
convergence decreasing as the radius approaches this upper
limit. For larger radii the series does not converge. In the TE
problem convergence is not obtained even in the limit
since the modulus of the largest eigenvalue is greater than
or equal to unity for all values of the cylinder radius(see
Fig. 10). The differences between the SIP and SIX orderings
in Figs. 3 through 8 result because the corresponding MOMI
series incorporate different multiple scattering terms. Observe,
however, that although the behavior of the SIP and SIX series

Fig. 9. Magnitude of three largest eigenvalues ofPM versus radius for the
TM problem (a=b = 1).

Fig. 10. Magnitude of three largest eigenvalues ofPM versus radius for the
TE problem(a=b = 1).

in Figs. 3 through 8 are significantly different, the behavior of
the three largest modulus eigenvalues is very similar. This
suggests that the convergence difficulties of MOMI when
applied to the MFIE are largely independent of the ordering
scheme chosen.

D. Interpretation

The general failure of the MOMI series as applied to
the MFIE for scattering from circular cylinders is somewhat
surprising given the interpretation of MOMI as a method for
resumming the multiple scattering terms in the Neumann series
for the original matrix equation [7]. To better understand this
failure we observe that the MOMI propagator can be rewritten
as

(17)

where for simplicity we have replaced and .
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Thus, for (15) to exhibit desirable convergence properties
we must have

(18)

For this approximation to be good the decoupled inverse
must closely approximate the inverse of

. At and near resonance, however, is singular
or nearly singular. In contrast, and are always
well-behaved as they correspond to Volterra integral equations
of the second kind having nonsingular kernels [18]. Thus,
we should not expect MOMI to provide good convergence
properties when applied to the MFIE formulation of the closed-
body problem.

This convergence failure is equivalently understood by
observing that in attributing the convergence success of the
MOMI series to its ability to resum the terms in the Neumann
series for the original matrix equation, it is implicitly assumed
that coupling between the and components of the orig-
inal matrix equation is weak and can be accommodated via
decoupled forward and backward iterations. This assumption
makes good physical sense in the PEC rough surface problem
to which MOMI was originally applied. However, the MFIE
formulation of the closed body scattering problem gives rise to
a much stronger coupling between surface currents which can-
not be recovered via the MOMI decoupled multiple scattering
approximation.

IV. A COMBINED FIELD FORMULATION

Given this understanding, we next consider a formulation of
the scattering problem which does not give rise to a singular
or nearly singular integral equation. Several such methods are
available (e.g., [19]–[22]). In the following, we consider a
CFIE representation [22]. The CFIE is a linear combination of
the MFIE and the EFIE as indicated above in (2).

While the CFIE can be used to provide a unique solution to
the scattering problem, the use of MOMI as formulated in (15)
with a combined field description of the scattering problem
introduces additional difficulties associated with the kernels of
the EFIE’s. The EFIE kernel for the TE problem is simply
the Green’s function (5) of the Helmholtz equation. For TM
scattering, the kernel function is the second normal derivative
of the Green’s function [9]. In applying the MOMI series to
scattering from dielectric surfaces, it has been found that the
singularities of these kernel functions produce strong coupling
between oppositely directed fields [12]. The singularity present
in the EFIE for TM scattering is particularly strong and
requires that a modified form of (15) be used. The singularity
of the EFIE kernel for TE scattering is much weaker and
is, therefore, more amenable to the MOMI series solution
technique. For this reason, in the following we investigate the
application of MOMI to the CFIE for TE scattering only.

A. Selecting an Optimal CFIE: A Multiple
Scattering Approach

The EFIE for TE scattering from a PEC object is [9]

(19)

The CFIE for the TE case is obtained by adding this to the
MFIE for this problem (4) using the complex constant. This
leads to

(20)

where

(21)

Discretization of this equation is discussed in the Appendix.
The resulting matrix equation can be put in the form of (9).
The corresponding MOMI series is of the same form as (15).

The CFIE (20) is guaranteed to have a unique solution
whenever has a nonzero imaginary component [22]. This
requirement provides significant freedom in the choice of.
We further constrain by requiring that it provide optimal
convergence properties for an arbitrary incident field. This
corresponds to the value of which minimizes the maximum
modulus eigenvalue of .

A physically intuitive way of determining this optimal
choice is to minimize the contributions to the total field in
(20), which are due to the integral term. Observe that ifis
chosen such that then no iteration is required to obtain
the exact solution to the scattering problem. This is physically
interpreted as the case of zero multiple scattering, an example
of which occurs in the MFIE formulation of scattering
from an infinite PEC planar surface. In this case

(22)

and the integral term in (20) provides no contribution to the
total surface current. This results for the flat surface scattering
problem because the magnetic field radiated to an observation
point on the surface by sources that are also on the surface has
no tangential component. Thus, the MFIE for which MOMI
was originally developed can be viewed as the specialization
of (20) to the rough surface case whereis selected such
that is identically zero in the unperturbed geometry of the
rough surface scattering problem.

If possible, the optimal choice for would in general be

(23)

as this would give in all cases. Because this choice
is not generally possible, we instead consider asymptotically
determined estimates of. In addition to providing optimal
integral formulations, these asymptotic estimates provide in-
formation on how the optimal value of depends on the size
and shape of the scatterer. To simplify the following analysis,
we consider only the case of circular cylinders for which the
normal derivative of the Green’s function is given in (6).

For small cylinder radii , the normal derivative of
the electric field on the surface is approximately constant. Thus

(24)
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and the contribution of the integral term to the total field in
(20) is minimized by choosing

(25)

where denotes an average of the source point over the
surface of the cylinder. Using the small argument forms of the
zero and first order Hankel functions [23]

(26)

in (25) gives

(27)

which is seen to be inversely related to the size of the cylinder.
For large cylinder radii the approximation (24)

is not valid. Instead we attempt to minimize the contribution
of the integral term appearing in (20) by choosing forthe
average of (23), i.e.,

(28)

Substituting the large argument forms of the zero and first-
order Hankel functions [23]

(29)

simplifies (28) to2

(30)

Unlike the small limit (27) for which the optimal choice
of was found to vary with , the value of suggested by
(30) is independent of the cylinder’s size.

The physical significance of the value of given by (30)
is understood by observing that, on the surface of the cylinder
in the TE problem

(31)

Multiplying this equation through by and inserting the
asymptotic value of given by (30) prior to averaging (i.e.,

) we have

(32)

2Although the averaging performed in (30) has been performed over all
�o, the contributions to the average from points near the observation point
(for which the large argument approximations of the Hankel functions are not
valid) are negligible whenka is large.

Fig. 11. Contours of largest eigenvalue in decibels ofPM as a function of
the complex constant� for circular cylinders (SIP ordering).

where

(33)

and is the free-space impedance . Recalling that a
plane wave propagating in thedirection satisfies the relation

(34)

we see that the choice of specified by (30) results from
the fact that the field at an observation point excited by a
distant source point is locally planar. The
in the denominator of (33) [which is not present in (34)]
arises because the CFIE imposes a boundary condition on the
tangential components of the total field. For TE incidence,
the electric field is always tangential to the cylinder while the
component of the magnetic field tangent to the cylinder varies
with the location of the source point.

The optimality of the asymptotic estimates forprovided by
(27) and (30) can be evaluated by calculating the eigenvalues
of the resulting propagator matrices . Figs. 11 and 12 show
the magnitude of the largest eigenvalue of the MOMI propa-
gator for the TE CFIE (20) as a function of the complex
constant for various cylinder radii. Table II contains the
values of predicted by (25), (27), and (30).

As anticipated by the above asymptotic analysis, for small
radii, the choice of , which yields the minimum maximum
eigenvalue of , varies significantly with the radius of the
cylinder. The estimates of provided by (25) and (27) are
good through . Equation (25) provides a good
estimate of the optimal value of for . For the larger
radii cases of and , the value of which yields
the minimum maximum eigenvalue remains fairly constant at

, which is in good agreement with the asymptotic
value provided by (30).

From these figures we also notice that the minimum max-
imum eigenvalue of as a function of increases as
the cylinder radius increases from to . This occurs
because for large cylinder radii we are able to minimize the
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Fig. 12. Contours of largest eigenvalues in decibels ofPM as a function of
the complex constant� for circular cylinders (SIP ordering).

TABLE II
ASYMPTOTIC ESTIMATES OF THE OPTIMAL CHOICES FOR�. ESTIMATES FROM

BOTH EQUATIONS (25) AND (27) ARE PROVIDED TO DEMONSTRATE

THAT THE ASYMPTOTIC FORM (27) PROVIDES INACCURATE RESULTS

BEFORE THEESTIMATE (25) BREAKS DOWN (cf. a = 0:2� CASE)

integral term’s contribution to (20) only by minimizing in
an average sense. In the small radius limit the approximation
in (24) allowed us to determine the value ofby minimizing
the contribution from the integral term itself.

Figs. 13 and 14 show the magnitude of the largest eigen-
value of for TE scattering from elliptical cylinders having
axial ratios of . For small radii we see that the optimal
choice of changes significantly with the size of the ellipse.
The smallest maximum eigenvalue of is larger for small
elliptical cylinders than for small circular cylinders due to
the breakdown of approximation (24) as the axial ratio
increases. Also note that the optimal choice ofappears to
bifurcate into two distinct regions in the complex-plane for
small . This is due to the loss of rotational symmetry when

and suggests that it may be more appropriate to
choose as a function of position in this case, i.e., .
For larger values of the estimate in (30) derived for circular
cylinders is seen to provide an excellent choice in the case
of .

Fig. 13. Contours of largest eigenvalues in decibels ofPM as a function of
the complex constant� for elliptical cylinders havinga=b = 8 (SIP ordering).

Fig. 14. Contours of largest eigenvalues in decibels ofPM as a function of
the complex constant� for elliptical cylinders havinga=b = 8 (SIP ordering).

B. Effect of Asymptotically Optimal on Eigenvalues of

The preceding determination of the asymptotically optimal
choices for was motivated by the physical consideration that
the eigenvalues of are related to the multiple scattering
contribution of the integral term appearing in (20) to the total
surface current. Since the optimal choice ofwas determined
without reference to the MOMI reformulation of the problem,
it is informative to consider the effect of this choice on
the eigenvalues of the propagator of the original integral
equation. The eigenvalues of the propagatorassociated with
(20) are [24]

(35)

where

(36)
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In the small radius limit for (35) reduces to

(37)

where is Euler’s gamma. When (35)
becomes

(38)

where must be sufficiently small relative to for this to
provide a good approximation. This limitation arises because
the asymptotic expressions used to derive this result from (35)
are not uniformly valid with respect to .

Inserting the asymptotic value of given by (27) into (37)
and (38) we have that while

for (39)

Thus, the asymptotic value of given in (27) is the value
for which as . This is not surprising
since the eigenfunction associated withis a constant. This
corresponds to the constant surface current assumption made
in (24) in determining the optimal value of in the small
radius limit. The decay of the specified by (39) is
likely the result of integrating the relatively slowly varying
kernel in the small radius limit against the surface current
eigenfunctions .

In the limit of large (35) reduces to

(40)

where . As above, this asymptotic form of
is valid only for sufficiently small such that the asymptotic
forms of the Bessel functions used to derive this result are
valid. In this limit, the modulus of is minimized over all

for each when . This result is close
to the value of specified in (30). Thus, in both the large
and small limits, the asymptotically optimal estimates of

derived above also minimize the maximum modulus of a
class of eigenvalues of the propagator.

C. Convergence of the MOMI Series for
Scattering from Elliptical Cylinders

The asymptotically optimal values of have been deter-
mined by requiring that they minimize the maximum eigen-
value of as this provides an upper bound on the number
of MOMI iterations required to achieve a given error tolerance
for an arbitrary excitation. We now consider the convergence
of the resultant series for the physically realistic case of
an incident plane wave. Furthermore, since we are typically
interested in achieving a rapid rate of convergence for large
scatterers, in the following, we choose in all cases.

The convergence of the MOMI series for the TE CFIE (20)
for this choice of is illustrated in Figs. 5 and 6 for SIP and
SIX unknown orderings for scattering from elliptical cylinders
having axial ratios of (Fig. 5) and (Fig. 6)
and various values of the semimajor axis length. From these

Fig. 15. Dependence of convergence rates of SIP and SIX MOMI series on
choice of unknown origin for TE plane wave scattering from circular cylinders
having radii values ofa = 0:1� anda = 5� (� = j�=�).

figures it is apparent that both SIP and SIX orderings of the
surface current unknowns produce rapidly convergent series
for medium to large-sized cylinders. The slower rate observed
for the small cylinders results because of the value ofused.
To obtain a rapid convergence rate in these casesshould be
chosen according to (27).

In Fig. 15 we consider the effect of the choice of unknown
origin on the convergence properties of the MOMI series.
Previously, it was demonstrated that the accuracy of the Born
term of the MOMI series for the MFIE depends strongly
on the choice of unknown origin (cf. Figs. 7 and 8). The
present figure demonstrates that for the examples chosen the
convergence rate of the MOMI series for the CFIE is relatively
insensitive to the choice of unknown origin.

Finally, in Table I the number of MOMI iterations required
to achieve a normalized residual error less than 10is given
as a function of the semi-major axis for an incident TE
plane wave and . The number of required iterations
appears to reach an asymptotically constant value of two or
three for the examples chosen. It should be noted that, since
the calculation of the Born term of the MOMI series requires
the same computational effort as the other terms in the series,
the computational effort required to obtain the second iterate
of the MOMI series is similar to that required to compute
the third iterate in the Neumann series for the original matrix
equation (9).

V. CONCLUSION

The MOMI series exhibits poor convergence properties
when used with the MFIE formulation of the closed-body
scattering problem. This result is somewhat surprising given
the physical interpretation of the MOMI series presented in
[7] for extended rough surfaces. We have suggested that these
poor convergence properties are due to the use of an integral
representation which contains internal resonance points. A
properly chosen combined field formulation of the TE problem
has been shown to ameliorate these difficulties.

A method of determining the asymptotically optimal CFIE
has been proposed using a multiple scattering interpretation
of the integral term appearing in this equation. It has been
demonstrated that the resultant estimate of the optimal CFIE
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corresponds also to the minimization of a class of eigenvalues
of the CFIE’s propagator matrix. For small elliptical cylinders,
the optimal integral formulation has been shown to depend
strongly on the cross sectional size of the cylinder. However,
for elliptical cylinders having major axis lengths on the order
of a wavelength or larger, the optimal integral formulation
quickly approaches an asymptotically constant limit.

The resultant MOMI series in the large scatterer limit con-
verges rapidly. The number of iterations required to achieve
a normalized residual error of 10 was observed to be
independent of the electromagnetic size of the scatterer for
elliptical cylinders having major axis lengths in the range of
1–2048 wavelengths and axial ratios of one and eight. This
is in contrast to conjugate gradient iteration of the CFIE for
which the number of iterations increases with the size of the
cylinder [25]. Furthermore, we note that MOMI can be viewed
as a preconditioning procedure to which a Krylov iterative
scheme can be applied. This was not necessary here due to
the rapid convergence of (15).

We are currently investigating the extension of the approach
presented in this paper to the TM problem. This requires an
extension of the MOMI method to more adequately account for
singular kernels. Two methods of achieving this generalization
have been developed for extended rough surfaces [13], [14].
It is anticipated that these results will also lead to improved
convergence properties for the MOMI series discussed here.
An alternative method for handling singular kennels is dis-
cussed in [11]. Finally, we are also investigating the use
of MOMI with other methods which provide resonance-free
formulations of the closed body scattering problem, as well as
the application of MOMI to more complicated scatterers. The
use of MOMI with a dual-surface MFIE formulation [21] of
a corner scatterer is discussed in [26].

APPENDIX

In this appendix, we consider the discretization of (3), (4),
and (20). Since the discretization procedure used for (3) is the
same as that used for (4) and since (4) is a special case of
(20), we only consider the discretization of (20) here.

A moment-method procedure [3] with pulse basis and delta
testing functions is used to translate the infinite-dimensional
CFIE into a finite-dimensional matrix equation having the form

(41)

The central angle is sampled uniformly such that
where is the number of pulse-expansion functions

used. We evaluate all resultant integrals over the expansion
functions to order . The vector contains the expansion
coefficients. contains the pointwise samples of the forcing
term in the CFIE evaluated at the center of the angular interval
over which each pulse-basis function is defined. Thus, for an
unknown ordering which is SIP having an unknown origin of

(cf. Fig. 2), the entries of the vector are given by

(42)

where . Using this discretization
procedure, the off-diagonal elements of the propagator matrix

are

(43)

where is defined in (21) and, for an ellipse having semi-
major and semi-minor axis lengthsand

(44)

where . To determine the diagonal elements of the
propagator matrix we recognize that the MFIE kernel function
is well defined as [15]. The contribution to the
diagonal term associated with the EFIE kernel in the TE case
contains a logarithmic singularity which can be integrated.
This leads to the following result for the diagonal elements
of TE CFIE propagator:

(45)

where

(46)

For all cases considered in this paper, we have chosen
such that

(47)
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