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Fractal Analysis of the Signal
Scattered from the Sea Surface

Fabrizio Berizzi,Member, IEEE and Enzo Dalle-Meséyiember, IEEE

Abstract—This paper deals with the problem of the electro- maintains the main fractal characteristics of the sea surface.
magnetic scattering from a sea fractal surface. The purpose of To this end the sea surface is modeled by the one-dimensional
the paper is to demonstrate that the sea-scattered signal retains (1-D) fractal profile proposed in [1] and the expression of sea-

some fractal characteristic of the sea surface. In detail, we analyze ttered si ¥ lculated i | df The th tical
the signal scattered from a sea surface modeled by the one-Scallered signal is caiculated in a closed form. 1he theoretica

dimensional (1-D) sea-surface fractal profile proposed in [1]. result shows that plots of the in-phase and quadrature compo-
The results show the graphs of the in-phase and quadrature nents of the received signal against time are fractal curves with

components of the received signal are fractal curves with box- the same dimension of the sea surface. So, a mathematical
counting fractal dimension equal to the one of the sea profile. 550f that the signal scattered from the sea actually have
These results are validated by presenting and discussing some ) - .
numerical examples. a fractal behavior similar to the one of the sea surface is
obtained.

The paper is organized as follows. We briefly recall the 1-D
sea-surface fractal model proposed in [1]. This model agrees
I. INTRODUCTION with the solution of the hydrodynamic differential equations

. . .5[4 and it is based on the band-limited Weierstrass—Mandelbrot
T HE electromagnetic scattering from the sea surface i

phenomenon on which researchers spent a lot of tirﬁe M) functions [5], [6]. We evaluate the scattering coeffi-

for physical interpretation and analysis. An accurate stucgj%e.nt' which in tm is proportional to the received signal, by

of the sea scattering provides profitable advantages in: ing the Kirchhoff method. We decompose the expression

investigating phenomena like multipath and clutter, whic&/ the scattering coefficient as a sum of time-varying terms.

. L demonstrate that all terms have a box-counting fractal
heavily degrades the performance of telecommunication a ; . ;
) ) . . Imension less than or equal to the fractal dimension of the sea
radar systems; 2) improving and developing some appl- .. . i
. : ] . o : "profile. By invoking a theorem of the fractal theory relevant to
cations in the field of the environmental monitoring lik

sea-surface characterization, sea SAR imaging, and sea-surfate of fractal functions [7] we obtain the previous mentioned

. N . . . result: the real and imaginary parts of the received signal
traffic monitoring; 3) interpreting some sea-surface physica . : : . )
) . ; are fractals with dimension equal to the dimension of the
phenomena like hydrodynamic evolution of the sea waves . . .
a profile. In the last section, we present some numerical

energetic exchange at the sea-atmosphere interface, sea-surtace .. . . .

. . simulations in order to validate the theoretical results.
current analysis. Up to date, the most important results on
electromagnetic sea scattering are obtained from the statistical

analysis of experimental data. Characterization of the sea in II. SEA FRACTAL MODEL
terms of the distribution of the scattered signal amplitude is In this section, we briefly recall the 1-D sea fractal model

achieved and used to developed statistical models. : . S . I
roposed in [1] without entering in a detailed description of
Recently, fractal theory has been proposed as a mean Jor
the parameters (refer to [1]).

the sea-scattered signal analysis. Since natural surfaces ha\zﬁe analvtical expression of the fractal sea-surface model
fractal characteristics [1], [2] it is reasonable to expect that the Y b

. . ; with 1-D roughness is

sea-scattered signal retains some fractal properties of the sea

surface. First results in this direction were obtained by Haykin Ni—1

[3]. He showed that the box-counting fractal dimension of f(z,t) = oC Z pla—2)n sin{ 27
the amplitude of the sea-scattered signal for a given sea-state ’ = (Ao/b™)

situation is a value of about 1.75. This result was attained Ao Q2
X [az+ < ")t} +<I>n(t)} Q)

Index Terms—Fractal, scattering, sea.

trough an analysis of experimental data without giving any V+ b 9
theoretical justification.

The purpose of this paper is to give a mathematical demQppere A, is the fundamental spatial wavelength,is the
stration that the signal scattered from a sea fractal surfagge factor s is the box-counting fractal dimensiofy, is
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Note that the graph of (x,t) for a fixed time instant is
a fractal curve in mathematical senseMf = co. In practical
cases, if the number of components composing the sea is
sufficiently greater than one we can state that sea profiles
behave as a fractal up to a suitable scale depending on the
value of N;. This fact must be carefully considered in the

fractal-dimension estimation algorithms to select the scale >
window under which the signal should be analyzed. X
The phase%,,(¢) are set according to the following rela-
tionship: Fig. 1. Scattering geometry.
Pn 0<n<ng—1
D,(t) = {ﬁn(t) no<n<Ny—1 (2) Ill. SCATTERING COEFFICIENT EVALUATION

In this section, we analyze the problem of the scattering
wheres),, are initial arbitrary phases modeled as independefidm a sea fractal surface and we calculate the scattering co-
random variables uniformly distributed in the interfair, 7]  efficient in a closed form. Note that the scattering coefficient is
and the time-varying phas#,(t) is considered as a white proportional to the complex received signal, so the theoretical
stochastic process independent frggpnand with a probability results we obtain from its analysis can be directly used to
density function (pdf) of the first-order uniform in the intervakharacterize the received signal.
[~ 7]. Because of the complexity involved in the computation, in
The assumption of (2) has the following physical meaninghis section we only report the expression of the scattering
1) The sinusoidal components of the sea-surf@¢e,¢) coefficient and the conditions under which Kirchhoff approx-
at low spatial frequencie§d < n < ng — 1), which imation can be applied. For more details, the reader can refer
represent the sea long waves, simply translate. to [1], [6], and [8].

2) The sinusoidal components of the sea-surfage ¢) at Let us consider the geometry of Fig. 1 whéeandd, are
high spatial frequenciesng < n < N; — 1), which the incident and the scattering angle, respectively, Zids
represent the fine structure of the sea waves, hatve size of the patch illuminated by the antenna beam.
random behavior. The scattering coefficient defined as the ratio between the

Furthermore, the use of (2) also provides a few benefits: qc;tual electric scattered field and the electric field scattered in

the computational algorithm for the generation of the sdBe specular direction from a smooth surface with infinite con-

profile is easy to implement; 2) the spatial correlation lerigth ducibility [9] can be calculated by applying Kirchhoff method.
defined as the value for which the autocorrelation coefficiehfie resulting expression, obtained under the assumptions of
p(€) becomes(1/e) is easily to compute [1]; and 3) theinfinite conducibility and vertical (V-V) polarization is

normalization constant’ can be computed in a closed form () = Z G(m) . ImTE(®) 5)
2(1 - 2= B
V1 T pee-an, () wherem = (my,ma,ms,---,my,_1)" with [e]" the trans-
pose operator and
As shown in the next section, the use of Kirchhoff method Np—1

for the evaluation of the scattering coefficient requires loy m) = g(6:,6,) - sinc | | vs + Ko Z mab" | L| - G1(m)
. . . . . . ey - (3] 5 X n SAAS
incident and scattering angles. To satisfy this requirement we

n=0
refer to the case of an airborne or spaceborne radar. In this ©6)
condition: 1) the platform velocity” is so high that sea wave
velocities22 £ can be neglected; 2) in the typical observatiowhere g(6;,6,) = — Ltcos(¥it+vs) nqg
. 7" s cos(¥;) cos(¥;)+cos(ds)
time of the order of one second or less we can assume that the
sea wave height have a sinusoidal law against the time (the v, = Z—W(Sinﬁ; — sind,) )
phases®,,(t) become independent on time). The sea model T ’ '
can be simplified as Ny—1
Gi(m) = [] Jm. [Crao- b7 (8)
Np-1 9 n=0
H=oC Y b Dy 7 Vi +®, b 2
flat)y=o ;;0 sin (Ao /b™) [z + Vi + v, = —T(Cos&; + cosb;). (9)

(4) Symbols in (5) have the following meaningzm =

For the sake of the simplicity, in the theoretical analysis V\E:(J:foo E;.r?l:foo ) "E;?Nfﬂ:foog(t) = [2o(t), 21(D),

always refer to the model of (4). by, (0]7, and @4(t) = Puyr, V'L, where Ko =
The general sea model will be considered in the numericat /Ay is the fundamental wave number. In (6), the sinc

analysis. function is defined asinc(z) = sin(z)/x and in (7) and (9),
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A is the transmitted wavelength. Note that (5) for a fixed timeumming up terms of sum (5) corresponding with vectarsf

instant¢ can be interpreted as th¥;-dimensional discrete the classn’® selected by fixingz;; anda,..! Note that once

Fourier transform of the functio*(m). a; anda;, are chosen, vectors of the clasgn’® differ one
The scattered electric field can be calculated by (5) tib the other for the order and signum of the elements different

Kirchhoff method is applicable. To determine the conditionsom zero. The expression of(¢) can be written as

under which Kirchhoff approximation can be used, we refer to ]

the criterion proposed by Soto—Crespo and Nieto—Vesperinas il (K)

[10]. They state that the electromagnetic field scattered from 7(t) = G[0] + Z Z Z'V (t)

very rough stochastic surfaces with high-incident angle can be

calculated by means of Kirchhoff approximation if the rati _ oo oo xoo _

between the total power flow of the scattering wave and t?% e 2y T Zam Zazfl KZ“K=1' Lo, =

total power flow of the incident wave is less than 2%. For goNs i+t g Ny —au—KA42, ..ZAFijl% and 0 is a

Oé2=1 OéK=1

general random rough surface like the proposed one, suc e%%or with N; zeros.
criterion can be summarized by the following two conditions To determine the fractal characteristics ) we have to

(12)

K=1 a, ap

2

[1]: analyze each term of the sum (12). The goal of this analysis is
r to demonstrate that the termg’)(t) (K = 1,2,---, Ny)
3 > 6 (10) are fractal functions with dimension less than or equal to
o <09 (11) the dimensions of the sea profile. Since the theoretical
Lcos(6;) = manipulations that lead to the result are quit complicated,

we consider as first casds = 1 and X = 2 and then we

IV. THEORETICAL ANALYSIS generalize the result for < K < Ny.

The end of this section is to demonstrate that the se’&\-
scattered signal (which, in turn, is proportional to the scattering
coefficient) retains some fractal characteristic of the sea fracta/As just mentioned above the signaf")(t) is obtained by
surface. The problem is tackled from a theoretical point Umming up terms of sum (5) corresponding with vectars
view and the results show that the graphs of the real affithe classm' selected by fixings; and ;. However, to
imaginary parts of the scattering coefficient (in phase arfdentify a single vector of the class.' is not sufficient to
in quadrature components of the received signal) are frackipvide the values of; anday, the order and signum of the
curves with the same fractal dimension as the sea profiéements ofm different from zero must be specified too. To
The demonstration is performed by following these steps: this purpose let us define the following vectors.
rewrite the expression of(t) as a sum of a finite number of
terms; 2) demonstrate that each term of the expressioitf L - L L L
is a fractal function whose dimension is less than or equal to 2 = {pql}qlzl? T<pg, SNyp—1 pg 1 <Py
the dimension of the sea profile, i.e;, and 3) by using the 1< o <Ny
theorem of the fractal theory under which the sum of fractal
functions with dimension less than or equalsds a fractal ~ p' is a pointer vector whose elemenjt gives the position
with dimensions [7], we conclude that real and imaginary of the g;th elementta; in the vector. For examplg} = 7
parts ofy(¢) are fractals with dimensios, i.e., its dimension ~ means the fifth elementa, is located in position seven
is equal to the one of the sea profile. within the vectorm.

To develop point 1), let us distinguish vectet in the
following Ny classes.

Class 1 m!'; vectors containing; elements of valuesa;
(a1 is a positive integer) an@N; — «;) zeros. 0<of <y
Class 2 m?; vectors containingy; elements of values-a;

(a1 is a positive integer)y, elements of valuesas (ap is ~ Wherea] is the number of positive elementsa, .

a positive integer and; # a2), and(N; — oy — «2) Zeros. The vectork® is a pointer to vectog1 and it locates the
. positions of positive elements in the vectar. Specifically,
° the value ofk,flgives the element of vectgrt containing the
ClassK (1 < K < Ny): m™; vectors witha; elements of position of ther;th positive element-a; in the vector. As an
values+a; (a; is a positive integer)y, elements of values example,k3 = 5 means that the third positive element;;
+ay (as is a positive integer and; # a»), s elements of is located in the position given by the value j@f. If pt =8

Fractal Analysis of the Term()(t)

+
1 1 & 1 1 1
E = {klfl}y1l=l; 1< kul < agj kul—l <ky;

v

valuestas (a9 is a positive integer and, # a» # a3), -+, this element is in position eight in the vectgt. It is clear
ag elements of values-ayx (ax is a positive integer and that whenafr = 0 the elements ofn different from zero are
a; # a; (Vi # 7)), and(Nf —a; — ap — --- — ) zeros. negative and the vectdr' does not exist.

i i = ; K = .
Let us defme thifOI|OW|?? vectorsy = [ailjoy (K LA most suitable symbol for this signal should b& (t,ax,af) (K =
1,2, aNf)L A = [047 i=1 (K = 1a_2a T Nf? and 1,2,---,Ny) to put forward the dependence ap anda, . We prefer the
denote agy")(t) (K =1,2,---,N;), the signal obtained by use of the symbo}* (¢) to simplify the notation.
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0 1 2 3 i, N, -1=8 By substituting (16) in (14) and after some manipulations we
obtain
m= |00 ] a] O0|-a |0 [a ]| OO
L
P [ P Gl[ml(ljl,El)] = N(ahal)uo(l_’l){ H bal(SQ)p“} (18)

Fig. 2. Example of a vector belonging to class . n=l

Cr.o\
N s, ) = (9 T (19)
To better understand the vector notation introduced above, 2
let us consider the example given in Fig. 2. The veetois 4
selected by takingV; = 9, a; = 3, of = 2, p* = [2,4,6],
k= [1,3] - N (5—2)7° ()
= >~ 1y s5—2 g 1
Let us denote asn!(p,k") the vector of the first class po(p’) = H Jo[Crzo - o=t
obtained by fixinga;, «; with a suitable choice of vectors #=0
p, k" and lety™ (¢, pt, k") be the term of (5) corresponding o -
to m!'(pt, k*). The signaly!)(t) can be rewritten as H1 Par(21) - (20)
- q=
(1) Z 227(1) p (13) By inserting (18) in (6) and by using (5) we have the
w0 BB expression of the term®(¢, pt, k")
where 3, = 2 22, 2w = 2wy Y PEpLED
> . Note that whemy = 0 the elements ofn different o .
"7 | | = plaz, ) A(p* £ § [T om0 2Pa
from zero are negative and the vector does not exist. In a=1

this case, the second sum of (13) must be ignored.
As afirst step, we determing? (¢, p*, k") in a closed form. X expl {

a1
ay Z sgn [m;él] (KOprm t 4+ <I>p31 ) }]

Let us rewriteGy (m*(p, k")) for the vectorm?(p, k") by q=1
using (8) (21)
G [m* (" kl)] = (&) ﬁ J [Cll’a.b(s—Q)pél] where mp1 is thep elements of the vectom! ( kY,
o ot sgn(e) is the signum function, and with
N 00 A(pt, EY) = g6, 6,

H Jo [CI/ZO' . b(5—2)p:(2 )] (14) (1_7 B ) 9( ) )NO(Z_J ) .

#=0 x sinc <Um + Koay Z W sgn[mél ]) L|.
where p°(pt) = {p2(p")}}7™ is a pointer vector that n=l
gives the position of the zeros in the vectar We assume (22)

PnO(gl )'n iﬁesg thatBVgs]ig)‘? nc]tv g nﬂ;)eeg;?nd;;toferm Nocf)t(el‘tl%a'Lt\t first, let us con5|der the case = 1 and focus the attention
involving o(®) uncti ( On the real partyly’ (, p', k') of (21)

(s —2) < 0.) As an example the vectq’(p') relevant to

the situation represented in Fig. 27%(p*) =10,1,3,5,7,8]. (1) (£, 9}, kY) = p(aa, 1)A(ph, k2) o™ (s—2)p}

When the positions of the elementsa;, is different (i.e., L

the vectorp! is changed), the vectqi®(p') is changed too. x cos {a1 sgn [m;}} ] (EoVirit + ‘I’p})}-
By remembering that/_, (z) = (-=1)* - J, () we can (23)

argue that the signum minus in (14) only occurs wherand

a] = oq — a;r are odd. Note that apart from a signum, thdo find the real part ofyY(¢), we have to consider that the
quantity G (m*(p*, k1)) only depends on the positions of thepositionp; of the elementta; spans from zero t&V; — 1. So
elementstay, i.e., on the vectop!. To simplify the notation (13) is @ sum of2NVy terms and the result is

let us definex,, as -

o = Cl/zab(s_Q)pél. (15) (1)( p(a, 1 Z Ai(p bal (o=2)pi
1=0
In (14), the Bessel function/,, (z,,) can be expanded in " L
ascending series as x cos{a1 (KoVbt + ‘I’pi)} (24)
T a1
Jay (37(11) = (%) Pay ((Il) (16) where

where Ar(p}) = 9(6:,6,) o (p}) {sinc[ (v, + Koart") L]

ad (z 1/2 + sinc[ (v, — Koa b1 L] (25)

par (@) {Z : ) } (17) ( 1y
CL1 + 7 .
r=0 is a bounded sequence.
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Following Appendix A, we demonstrate that 0 1 2 3 e, N, -1=38
1) the signal of (24) is a fractal with dimensiosn for ,
ay = 1 m= | ai0]|al| 0[-a]0 |a]l| Of-a
2) the signal of (24) is a fractal with dimension less than pr p » I P’
s forag > 1; _ _ .
3) the same result holds for the imaginary part. Fig. 3. Example of a vector belonging to class'.
Let us now consider the general case> 1. As a first step
we rewrite (13) as follows: .
at
4Ot Z SO, k) (26) E={k 5 1<k, <o ki <k,
af=0 k' 0<af <
where whereaf is the number of positive elementsa;.
A (¢, kY Z'V(l) P kY 27) The vectork' is a pointer to vectop! and it locates the posi-

tions of positive elementg-a; in the vectorm. Specifically,
the value ofk} gives the element of the vectpt containing
By using (21), we get the real pawlg)(t,kl) of 7(1)@) in the position of thev;th positive elen?entq—a]L in the vector.
a closed form When af = 0 the elements ofn different from zero are
negative and the vectdrt does not exist.

aq
(1) tk ZN ay, o) A(p aEl){ H b‘“(SQ)pm} *

=1
“ PP =A{p by 1P, SNp -1 pp, o <1l
xcos{alzsgnm1)(Koprq1t+<I> )} lsart+az< Ny
n=l p is a pointer vector whose elemqr;’g gives the position
(28) of the goth elementka, in the vector.

Following Appendix B we get the following conclusions:
4) the real party;’(t, k') is a fractal whose dimension is k2= {kﬁz}f:l; 1<K, <af; kK, _i <kl ;
upper bounded by; 0<at <a
5) the same conclusion holds for the imaginary parts. =2 =
From (26) we note that(1)(¢) is the sum of terms (¢, k). wheread is the number of positive elementsa,.
So, by using the theorem of fractal theory relevant to sulhe vectork? is a pointer to vectop? and it locates the posi-
of fractal functions and by exploiting the results 4) an 5) wgons of positive elements-a, in the vectorm. Specifically,
have that: the value oft2, gives the element of vectgr containing the
6) the real and imaginary part of the terni®)(¢) for posmon of thel/gth positive element-a, in the vector. When
oy > 1is a fractal with dimension upper bounded by od = 0 the elements ofn different from zero are negative

. . . 2 H
For the sake of clarity let us summarize the main results 8pd the vecto” does not exist. _
this section. To clarify the notation above let us consider the example

R1 Real and imaginary part of the terp)(¢) is a fractal 91Ven in Fig. 3. Tﬁe vecto% is obt?ined by takir21g\7f =9,
with dimension equal t@ for oy =1 anda; = 1. = 3, az :22’ af =2,y =1p =[2,4,6], p* =[0,8],
R2 Real and imaginary part of the terpf)(¢) is a fractal & = [1,3], &° = [1].

with dimension upper bonded by for a; > 1 and Let us denote agn*(p* 2 k', k%) the vector of the first
a; > 1. class obtained by f|X|ng; anda Wlth a suitable choice of
vectorsp!, p?, k', k* and lety®(z, pt pp 2 k', k) be the terms

B. Fractal Analysis of the Term((¢) of () corresponding tan®(p', p’k", k”). The signaly®)(#)

can be rewritten as
As just mentioned above the signgl®(¢) is obtained by wr

summing up terms of sum (5) corresponding with vectarsf 2 2 2

the classn? selected by fixing: = (a1, a2) anda = (a1, a2). it Z 2 z;z;zz Ve e’ k)

To identify a single vector of the clags® we have to specify [=007=0 &' &* p' P°

the order and signum of the elemetsrofdifferent from zero. (29)

To this purpose let us define the following vectors: where S, = S, S S s e = S g
1 2 g 1 2

L]

Dok - Note that whem{r = 0 the sum ork' must be ignored
+

1 1 1 «
pt= _ 1<pg, SNy=1 py, 1 <p 2
Pty w =T famt ™ P and if af = 0 the sum onk? must be removed

p' is a pointer vector whose the elemes}t gives the  As a first step, we determing® (¢, p*, p2, k*, k%) in a
position of theg;th elementta; in the vector closed form. Let us rewrited: (m?(p', p ,El,ﬁ)) for the
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vector m?(pt, p?, k*, k?) as where
Gi[m*(p", p* kY k%) A(p*,p* k' E)
= = 191‘, 195 la ?
= (i){ [ Jo [Cro - p~DPa] } 9(0s 9 )nolp” p7) L
q=1 X sinc <vm + Ky Z Z (Sgn(mil )albpil
Qo q1
) { H ’]a2 I:CVZO— ) b(S—Q)pgz] } q1=1q2=1
112;1 + Sgn( P2 )aszqZ )) (35)
‘f—oq — Q2 q
xe I o[Creo s (30) _ _
250 is a bounded function. Let us now rewrite (29) as follows:
wherep®(pt, p?) = {p%(p,p?)} 2y **~** is a pointer vector A @t @t kL, k)
A\ 2 S WAL o E z= . Yy (36)
that gives the positions of the zeros in the veetoWe assume az;o az;o %: 22:
po(pt, p*) = oo so that whenv; + a; = Ny the product term T

of (30) involving the.Jy(e) Bessel function becomes one. Bywhere

remembering the Bessel propetty,,(z) = (—1)" - J,,(z) we ) L ) )

can argue that the signum minus in (30) only occurs vvdnien 7@ (t,k" & ZZV( ) 12 12 LED. (D)

anda; = a1 —a] are odd or whemy anda, = az—ag are

odd, i.e. when only one of the two conditions is verified. Note ), 11 2

that, apart from a signum, the quantity [m?(p', p?k*, k2)] BY using (34), we get the real pary,’(t,k", k%) of
" ments differe: )¢, k', k?) in a closed form:

only depends on the position of the elements different froth

zero.

12tk )
By applying the ascending series expansion of (16) to the'

Bessel functions in (30) we get ZZM (a,Q)A(p', p* k" &)
oy 2
1
G1lm*(p', p* B B = (e, apo(pt, p*)3 ] 0O 2ra o RN E .
== == qgl > H bal(S—Q)qu H baz(S—Q)PGQ
az ) q1=1 q2=1
x ¢ JJ b= PP (31) .
do=1 X COS Z Z Sgn 1 al (Ko ViPart + (I)P%)
where a=te=t
Cv,o (araitazasz) +sgn(m 2 ) K prq2t+<1> . (38
u(@,g)z(i)< 5 ) (32) gn (s )as (Ko )¢ (38)
Np—er—az Following Appendix C, we get the following conclusions.
NO(QI,BQ) = H Jo [CI/ZO' . b(s_Q)Pg(f_“lfz)]

1. 1) The real partyg)(t,kl,ﬁ) is a fractal whose dimen-
=0 sion is upper bounded by.

ﬁ (@) ﬁ (22) (33) 2) Same conclusion holds for the imaginary part.
q:1pa1 « q:1pa2 © From (36) we note thaty®(t) is the sum of terms

. o o v (¢, k', k). So, by using the theorem of fractal theory
wherep,,(¢;) (i = 1,2) is given by (17) by substituting,, relevant to sum of fractal functions and by exploiting the

with z,, = Cr.ob® PPa (i = 1,2). results 1) an 2) we have:
By inserting (31) in (6) and by using (5), we have the R3 real and imaginary part of the terpé®(t)

y oy us) ) is a fractal
expression of the termy(® (¢, p, p?k', £7) with dimension upper bounded by
(2) kl k2
( ]—) L ) K2) C. Fractal Analysis of the Term(¢)
CL CY
P p » In this section we extend the analysis performed o=
H par (s=2)py, H paz(s—2)r, 1,2 in the general case dX € (1, Ny).
ot} ot} The identification of a vectorn belonging to the class
o o m™ is obtaining by fixinga = (a1,as,---,ax) and o =
X exp | j {Z Z Sgn 2 al (KOVb“nt + D, ) (a1, 2, -+, ac) @and providing the followingK vectors:
p‘]
q1=1g2=1

+ sgn(m? Jas(KoV et + <1>p22)]} (34) pr=Arg s 1S <K 1<py <Nyj-1
a9 q

Y2l Y2l I’
Pp 1 <pl; 1<an <Ny >, on < Nf
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p" is a pointer vector whose elemeyj}, gives the position with p,, (gn) (n = 1,2,

of the g,th element+a, in the vector;

K =Ny 1<n <Ky 1<K <ap
kp  <kp;0<at <ap
where«;! is the number of positive elementisa,, .
Let us use the following notation:p!---p
(pl’pQ7 o 7pK); El .. .EK — (E17E27 - 7EK), dgnote as
m_K(_Bl o -E",E --- k™) the vector of theith class obtained

by fixing a = (a1,a2, -, ax) andg = (ap, g,
with a suitable choice of vectorg' - - - p/, k* - -
IO, pt - pB kT
to mk (pl B _BK7E1
rewritten as

sy XK )

=X Y Y A i) @)
at gt kK 1. -
where 35, = >3} _0221:0---ZQK 0 2optopK =
EQ Ep E K Ekl KK Ekl EkZ' EkK Note

that wﬁena+ = 0 the sum mvolvmg the vectorg”™ must
be removed.

By extending the result obtained from (30) to (34) we can

provide the expression ofX)(¢,pt - pX k' - k") in a
closed form
,Y(K)(t’ﬂl ) _BK’El - .EK)

K Qg
= e, )A(p* - p B - B ] { I1 ban(s—?)pin}

n=1 \g,=1

AR
exp[ {ZZ Z Z sen( Aq)
n=lg=1 qr=1 Ln=1
X an (K, oVbPant + (I)Pq) H (40)
where
A(]_)l p h EI()
= 9(6i, 0)po(p" -+ p")
X sinc Um—i_KOZZ Z
n=le=1 qx=1
K
X [Z sgn (. ) b5 ) Ll @
n=1
K
Cr.o Z,,,:l A Qi
(e, @) = (%) <T) .
Np=YOF e
I’LO(]_)l .. .]_)I\’) = JO I:O’/ZO' . b(S_Q)pg(glzK)]
2=0
K o
) { H pan(Qn)} (43)
n=1 In=

K and let By using (40), we get the real pan'’(t, k-
kl‘) be the term of (5) corresponding~y () (¢, k* - -

k™). The signal y&)(t) can be
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K) given by (17) by substituting

zq With z,, = Cr, O’b(s 2)7’% (n=12---,K).
Let us now rewrite (39) as foIIows
=> > Ok k) (44)
at Bk
where
,Y(K)(t’EI . .EK) _

Z ’V(K)(t,ﬂl"'QK,EI"'EK)-
1,,,pK

(45)

'EI() of
kl‘) in a closed form

(B)(

n=1 \g,=1
ar Q2 (e3¢ K
K
COs Sgnim
DD D0 D sen(my )
q1=1g2=1 g =1 Ln=1

X an(KoV Pt + Gy )

}. (46)

Following Appendix D, we get the following conclusions:

1) the real partyl (¢, k' --- &™) is a fractal whose di-
mension is upper bounded by
2) the same conclusion holds for the imaginary part.
From (45), we note thaty")(t) is the sum of terms
yE) (k' - k™). So, by using the theorem of fractal theory
relevant to sum of fractal functions and by exploiting the
results 1) an 2) we have:

R4 the real and imaginary part of the terf(¢) is a
fractal with dimension upper bounded by

D. Theoretical Result

By exploiting partial results R1, R2, R3, R4, and by using
the theorem on sum of fractal functions we get the main result
of the paper:

In operating conditions in which Kirchhoff method is
applicable, the graphs of the real and imaginary parts
of the scattering coefficient (in-phase and quadrature
components of the received signal) are fractal curves with
box-counting dimension equal to the dimension of the sea
profile, i.e.s.

V. NUMERICAL RESULTS

In order to verify the theoretical results obtained in
Section IV-D, we have developed a computer program to
calculate the scattering coefficien{t) for the sea-surface
model f(x,t) recalled in Section II.

The dimension of the scattering coefficient is estimated
by using the morphological covering algorithm proposed by
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Maragos [11] and optimized as in [12]. This method calculates 0.1
the box-counting dimension by linearly fitting the log-log plot
of the morphological cover area obtained at different scales. L ; 1
The optimization consists of a suitable selection of the scale 0.05 | i plyp- S S S p— .
interval on which the linear fitting must be performed. The ¢ : P i
main steps of the algorithm are the following. =
1) Determine a raw estimatg of the fractal dimensio -g’ 0
by applying the morphological covering technique in the ﬁ
scale interval[e'y’) = 1,4 = 10]. ?
2) Let us calculate the new minimum scalg as -0.05 1
em=as; +
and the new maximum scale as 0.1 ‘ : : :
-150 -100 -60 0 50 100 150
EpM = min{max{w, (Em + 65\14))} , g} x {m)

. . Fig. 4. Sea fractal profile at = 0 ands = 1.3.
where N is the number of samples of the signal to be

analyzed.
3) Compute the final estimateof the fractal dimension by decay Of’Y%)(tvkl) with respect to the dominant term goes as
applying the morphological covering technique in thé%. So, if we assume as significant terms the ones
- srzzle |nterval[5m,§M]. o _ for which (0.75221!;1—0
uce computation difficulties and errors in the nyzue of ay.
merical evaluation of the scattering coefficient we consider gimilar remarks can be made for the termi2 (¢).
a situation in which the dominant terms in (5) ayé)(¢) and By looking at the expressions ofi(a,a) and o(p', p?)

7(2)(t). As we see later, this condition also permit us a bettgf (32) and (33), respectively, we note that the
interpretation and prediction of the numerical results. amplitude of ~®(t,p!,p?k! k%) goes to zero as

1 2 H £l
To ha_lvery( >(_t) ar_ld fy.( )(t) as dominant terms, we have( L( }nz)(czza)(alaﬁalal) and it decays faster
to consider a situation in which the ter6i;(m) in (8) and (®:)" (a2
consequentlyZ(m) in (6) both assume their maximum valuehan vr” (t,£7). . _
in correspondence of vectors belonging to the first and If we repeat the same considerations for terms correspond-

second class. To get this condition we have to select model 4@ t© class 3 and more, we note that their amplitudes decay
geometry parameters so that the argument C,ob>=2n faster than the ones of the clas#és= 1, 2. So, we can assume

in (8) spans in a interval in which the behavior of the that the most important terms aré")(t) and v (t) with
Bessel function can be easily controlled. This occurs whé&fall values ofa; and a;.

< 0.1 we have thata; < 3 for any

I = [0,1.5], i.e., when This analysis permits us to predict the result we expect from
’ the numerical example carried out under the assumption (47).
|Cr.o| < 1.5. (47) Since the main term of the scattering coefficientyid)(t)

. . : with a; = 1 and oy = 1 [see (24)], the plots of the real and
In fact for = spanning from 0 to 1.5 in the mtervalima inary part of the scattering coefficient should be similar to
I, the Bessel functionJy(x) decreases andJ,(x)| with ginary p g

(¢ = +1,42 43,---,00) increases. Furthermore, for anythe graph of a WM function and its fractal d.|menS|on should
.. “be equal to the one of the sea-surface profile.
m, |Jg(x)] > |J(z)] (¢ = 0,£1,£2,£3,---,00) if : o . .
. ; . Let us consider a situation of a radar carried on an aircraft
k = g + sgu(g) andsgn(e) the signum function. In this case,

Gi(m) and G(m) have their absolute maximum value forplatform flying at a velocityy’ = 540 Km/h and illuminating

. .~ the sea with an incident angig, = —, = 80°. The radar
m = 0 and they assume values comparable with the maximym oo lses of /& at a frequencyfy — 5 GHz with a
for vectorsm that belong to the first classes, namely class P q o~

1 and 2. In other words terms of expansion (12) that giverepetmon rate of 1 KHz and it observes the sea for 1 s. By

significant contribution toy(¢) can be reasonably assumed tct)a ing one sample per range cell, the number of samples

be v(1(¢) and v (t). To give a more rigorous justificationwe acquire in the observation time is 1000, which is a value

of this assumption, let us consider the following analysis. suﬁ|C|_entIy|Iargehto successfully apply of the morphological
: Dt 1) of (28) and note that: covering algorithm. N
Let us pay attention on terryﬁ% (t,47) of (28) an * To satisfy both the condition of (47) and of (10) and (11),

D play, 1) = (.i)(%)am decreases as a power ofa, have considered the case of a sea modeled by assuming in
[the argument is less than onfz_gg?au/s;?f condition (47)];( Ao = 60m, N = 8, b= e/2 and a significant wave height
due to the term{J["_, (372, ﬁ)} po(pt) and, 1, of about 15 cm. The standard deviatieris obtained from
consequentlyA(p!, k') in (22) decreases as/(a;!)*. hs by hy = 40 [13].

From these comments we can draw the following con- Figs. 4 and 5 show the sea-surface profiles at the initial
clusions. The dominant term is obtained fef = 1 and time ¢ = 0 with fractal dimensions = 1.3 and s = 1.7,
a1 = 1. In the worst case|Cv.o| = 1.5 the amplitude respectively. Figs. 6 and 7 represent the plots of the real part
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0.15 ; 1 ; : 0.0015 : ; , !
0.1 0.001 |- oo L T N S
T oos o 00005 R B b
bt ko]
= 2
(=] =
= 0 o o}
2 £
© <
8 005l -0.0005 |-
01 -0.001
-0.15 i ‘ ‘ l i -0.0015 \ i i i
-150 -100 -50 o 50 100 150 0 0.2 04 0.6 0.8 1
x (M) Time (sec)
Fig. 5. Sea fractal profile at = 0 ands = 1.7. Fig. 7. Real part of the scattering coefficient relevant to the sea profile of
Fig. 5.
0.0015 : ‘ 1 T
1 ; : : TABLE |
: : ; : SIMULATION RESULTS FORs = 1.3,1.5,1.7
0.001 oo e R e P pome e o]
Real Qmaginary
00005 il s=13 [§=1.299 |5=1.263
3 L s £,=0.07 % |&.=2.84 %
R (R 1 S LRR s=1.5 |5=1558 [§=1.509
£ : | i £,=3.86 % |£,=0.60%
- Lo SRR 0 3 1R [ OO , — —
0.0008 3 : z 1 s=1.7 [5=1.741 [5=1.713
s s 3 & £.=241 % |¢e,=0.76 %
20,001 roreeeeenenees e B L . s
0.0015 i i i i calculated by including the effects of the shadowing and the
0 02 0.4 08 08 1 finite conducibility of the sea. The angular frequengy,
Time (sec) follows the dispersion relationship [4] and the shadowing
Fig. 6. Real part of the scattering coefficient relevant to the sea profile eﬁeCtS are taken into account by multlplylng the sea pI’OfI|e

Fig. 4. (x,%) by a masking functionn(z,¢) that assumes a value
ual to zero in the shadowing zones and one otherwise. The

. . . . e
of the scattering coefficient related to the sea of Figs. 4 andsgattering coefficient is calculated by considering the scattering

respectively. As expected from the theory, this function l10ok§; 1, the modified rough profilef(a: ) = flz, t)ym(z,t)

like WM's functions and their shape is quite similar to the ong.4 v introducing the finite conducibility of the sea in the
of sea fractal profiles of Figs. 4 and 5. reflection coefficient [6].

hTofvahdlatg concl_usmnf o; Section I_V -D we f?aye estltr)nated This example makes use of the same parameters of the
the r_acta Imension o the scatterlng coefficien(tt) by revious case. Because of the more general model used, we
applying the morphological cover algorithm procedure pre\}ll:—

) ) . gve to also introduce the following parameters.
ously mentioned. The numerical computation was performe 1 _10. Thi | _ ¢ th "
for different values of the sea-surface fractal dimension ) no =10. This value arises from the common assumption

The results are reported in Table I, wheseis the fractal that capillary waves have wavelengths less than 30 cm.

dimension estimate anek denotes the relative error defined 2) @n(t), n > no are assumed to be identically distributed
ase; = |5 — s|/s. wh_lte stqchasnp processes, with pdf of the first order

Let us discuss the results we obtained. uniform in the interval[—, ]. _

The mean error is always less than 4%, which is the typical3) The ratio between the sea-surface tensipand water
estimation error of the morphological algorithm when applied ~ densityp is 7,/p = 74.45 cm® 72, which is the value
on WM functions [12]. So, this errors can be reasonably  IN standard conditions.
attributed to the estimation algorithm and the theoretical result4) The water conducibility igr, = 4 mho/m [4].
is confirmed: the received signal and the sea-surface profile®) The relative dielectric constant is 80 [4].
has the same fractal dimension. The results are presented in Table Il relevant 40 =

To remove the limitations that the use of the simplified.3,1.5,1.7, respectively.
sea model of (4) could give rise, we have also analyzed aWe note that the introduction of physical and geometric ef-
numerical example referred to the most general model f&fcts in the sea-scattering phenomenon do not significantly per-
(1) with phases given by (2). The scattering coefficient isirb the final result. The theoretical conclusions are still valid.
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TABLE || where
SIMULATION RESuLTs FORs = 1.3,1.5,1.7 Ny—1
Real Smaginary 2(t) = o Z bal(S—Q)T& cos {alK()VbP}t + (I);’i} (A.2)
s=13 1 §=1.367 §=1.326 p}=0
£.=515% | &=2% and
s=1.5 ] §=1.521 §=1.477 Ny—-1
£.=1.40% | £,=1.53 % y(t) =4 Y Bi(ph)b D0 cos {ar KoVbrit + @, ).
s=1.71 §=1.750 §=1.759 p1=0
£.=294% | £.=3.47 % (A-3)

By using the theorem on sum of fractal functions, the demon-
ation that the fractal function ofyg)(t) is equal to or
s thans can be obtained by showing that: 1}¢) has a
Imension equal to or less tharand 2)y(¢) has a dimension

s thans.
By imposingb® =271 = p(3-2)r1 we note that the function
{t is a WM with dimension given by

The possibility of measuring the fractal dimension of the s?%r
profile by means of a fractal analysis of the received sign
could be very interesting in practical applications. In fact, b
considering that the fractal dimension of the sea is a meas
of the sea roughness and that this geometry characteristic
modified by physical perturbations like surface wind, oil spot,
presence of a target, and so on, we can state that the fractal {s +2-95)(1-ay), f0<a <1/(2—5)

analysis of the sea is an useful tool for sea-surface monitoring‘? 1 otherwise - (A4)

Note thats < s. In fact, whena; = 1 the fractal dimension
of z(t) is s otherwise it is less thas. To demonstrate that
In this paper, we have shown that the scattering coefficiefaihction y(¢) has dimension less than or equal&ave have

of the sea surface is a fractal function with the same dimensitmnverify the following inequality [15]:
of the model used for the sea surface. This result is ver s
important for two main aspects. ’ Ay(t) = ly(t+ 1) = y(B)] < | (A-5)
1) A new characterization of the sea-scattered signal Werec > 0 is independent o and|h| < ¢ for someé > 0.
performed. As an example, the possibility of estimatéhe proposition of (A.5) is usually demonstrated for function
the fractal dimension of the sea surface by a fractg¢) with ¢ € [0, 1], however, it can also be applied to our case
analysis of the received signal permit us to have iiwe suitably scale the time coordinateg(f). By substituting
measure of the sea-surface roughness. This informati@h3) in (A.5), by reminding tha{B(p})| < By = |40 — 1|
could be used for classification purposes or for semd incorporating the constai, in p/ we have
parameters extraction. Ay(t)
2) It represents the basis for a rigorous formulation of a ° N
new theory of target fractal detection. The basic idea, / 5—2)pt ! /
proposed by Haykin in [3], consists of comparing the < I Z b )pl|COS {alKOprl (t+h)+ (I)pi}

VI. CONCLUSION

estimated fractal dimension of the received signal with Pi=0 .
a suitable threshold. Haykin validated this idea by using ~ — cos {alKObe’lt + (I);} }|
experimental data without giving any mathematical Ny—1

demonstration. The result of this paper could represent 4 Z p—2)p1 | cos {alKOpr} (t+h)+2,}

an useful support for a theoretical demonstration of the P41 P
fractal detection. ' . )

The authors are now working on: 1) analysis of the two- ~ — €8 {a Ko VFet + CbpiH (A.6)

dimensional (2-D) sea fractal model proposed in [14]—somgin A an arbitrary value belonging to the interjel Ny — 2.

results in this direction are reported in [16]; 2) extension of By maximizing the quantity cos(ct) — cos(3)| with |o— 3|

theoretical results to the case of a 2-D sea fractal model; ;3)he first sum and with 2 in the second sum of (A.6), we have
mathematical definition of the fractal detection theory.

N Ny—1
<1y (3-1)py ! (5-2)p1
APPENDIX A Ay(t) < i/ | KoVas|h] > b 2| > b
pl=0 pr=N+1
In this section, we show that function of (24) is a fractal (A7)
function with dimension less than or equal 4oLet A be a
constant such that the sequenég!) has an absolute valueBy expanding the sums in (A.7) we get
less thanAy, i.e., |[A(p})] < Ag. By denoting as<1>;)1 = pN+LG-1) _
r_ o, 1y — Afpl)_ Ay(t) < || KoVa |h|—————
a1®,1 |2, 1’ = 2p(a, 1), and by defining3(p}) = A(p}) -1, -0 1
(24) can be rewritten as a sum of two terms HINHD(5=2) _ pN,(5—2)

+ 124/

TR () = 2(t) + y(t) A1) D (A8)
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By considering that: 1p(¥V+DG-1 _ 1 < p(N+1)(-1) and 2) Equation (B.1) can be further maximized by means of the
pNHD(E=2) _ pNs(5=2) < p(N+1)(3-2) gand by assuming that following manipulations.

1/bNV+D < || < 1/bY, we obtain 1)
- 1 7.1
Ay(#) < clh2~ (A.9) 42" £)] < 4o
2) Extend each sum OZ with the indexega}l spanning
where from 1 to ¥y — 1 and denote the result aEAf L=
p3-1 1 Alf_ ! Alf_ Lo Alf _1 This operation adds posi-
cC = |LL/|KOVCL1W + |2M/|m (AlO) ;=0 ;=0 Pay =0

tive terms to the second member of (B.1).

. . 3) Decompose the multiple sum as SN 1 =
is a constant greater than zero and independerit.on ) P P (E ' E

. . v Nyp—1
Due to the arbitrary choice a¥, (A.9) also holds for any 2pt=ot 2y With IV an arbitrary value belong-
value of ~ such that/h| > 1/6"7. In other words, inequality ing to the iﬁterval[ Nf — 2] with Ny > 1 and where
(A.5) is satisfied for anyh such that1/6™7 < |h| < 6 SN = E _02 0 "EN o andEAl _1\1’+1
with & > 0. The latter condition means thatt) is a fractal %f 1 Af 1 P2 1
up to a scale level corresponding tgb™r. It is clear that Ep 1=N+1 Ep L=N+1 "E L =N+1
when Ny — oo the functiony(t) becomes a fractal in a 4) MaXImlze|Cosa — cos f3] with | — /] in the multlple
mathematical sense. sumz 1 _oand with 2 in the multiple sunE o N+1
re;ﬁ:sthe sake of clarity let us summarize partial and final 5) Consider the following maximizatior?s: < balpqll
' . : . . By applying the steps above to (B.1) we have
rl The functionz(¢) is a band-limited WM fractal function (1))/ pply g P (B-1)
with dimension less than or equal fo(see A.4) Ayg’(t k) < |u(ar, ar)||Aola1 KoVl
r2 The functiony(t) is a fractal function with dimension N o« oyt o1 L
upper bounded by. SIS I L TR P
RAI) From the theorem on sum of fractal functions and p'=0 ta=1 a=1
by using the result rl) and r2) we obtain the final Np—1 ay :
conclusion: + 2|par, a1)|| Aol Z { H poa(s=2)pg, }
a) the signal okyk(#) is a fractal with dimension for pr=N+1 lai=1
a = 1, (B 2)
b) the signal of (24) is a fractal with dimension les$ et ys explicit the first term of (B.2) apart from the constant
than s for a; > 1; lay, a1)||Aolar KoV |R|
c) the same result holds for the imaginary part. (The o o
demonstration can be resort to that of the real parE: H o (s—=2)pg, Z Py,
by rewriting the sine function as a cosine functlor})l “o La=t =1
and by including a phase/2 in <I>’ ) . N N \
Z par(s—1)pi Z par(s=2)ps . Z por(s—=2pa, 4
APPENDIX B pl}\fo pz}\?o p%]l\,zo
In this section, we demonstrate that the signal Z per(s—2)pr Z per(s=1ps . Z par(e=2pay 4
(1)(t k') of (28) is a fractal whose dimension is= pl=0 pL=0 pL, =0
upper bounded bys. To do that, we show that L
AR = (4 k) <R E)] < R fe
for some constant, independent onh,. a.nd f(()lr)|h| <16 with Z par (s—2)p} Z pat(s—2)ph .. Z par (3=1ph,
6 > 0. By means of (28), let us maximiz&~y’(¢t,k") as et =0 Pt 0 )
ar(N+1)(s—1) _ _ par(N+1)(s—2)\ 171
bal(s—l) -1 1— ba1(5—2)

< Z |(az, cn)|| A(p" { H b >} (B.3)

=l The second term of (B.2) apart from the constant term

2|p(aq, «q)||Ao|can be expanded as
{al Z sgn m 1 K()prql (t‘i‘h)‘i‘q) )} N;—1 &
Q=1 Z { H b”rl(S—Q)Pél}
- 1 1 pl=N+1 \q1=1
—cos {al Z Sgn(mpé1 ) (K()prqlt + (I)Pél ) } ‘ p
q1=1

por(N+1)(s—2) _ pa1Ny(s—2)\ '
_ < ) (B.4)

(B.1) 1 b (2
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By inserting (B.4) and (B.3) in (B.2) and considering that:

)ba1(]\+l)(s 1) _ 1 < ba1(]\+l)(s 1) 2 baq(]\r—l—l)(s 2) _
parNr(s=2) < par(N+1)(s— 2). 3)1— bal(N-i—l)(s 2 < 1: and
4) par(N+1)ar (s—2) < pa(N F)(s— 2) we obtain

Ay (k)

< pfar, o) Aolar KoV e

) bal(s—l) 1 al—l(b]\r)al(s_l)|h|
pai(s—1) _ 1 1 — par(s—2)

1 M
o+ a1(N+1)(s—2)
+2|N(a17a1)||A0|<1_ba1(5—2)> o '

(B.5)
By assuming that /62t (N+1) < |a] < 1/6%N, we have
Ay (8, k) < fhf*? (8.6)
where

per(s—1)
¢ = |p(ay, a1)|[Aol{ a1 KoV <ba1<51> - 1)

1 Oél—l 1 (s 51
'<1—ba1<s—2>> +2<1—ba1(8—2)> :

(B.7)

is a constant greater than zero and independerit.on

Due to the arbitrary choice oV, (B.6) also holds for any
value ofh such thath| > 1/6°+7Ns . In other words, inequality
(B.6) is satisfied for any» such thatl /6% ™7 < |h| < § with
6 > 0. The latter condition means tha 1)(t, k') is a fractal
up to a scale level corresponding I¢b‘“Nf It is clear that
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+ Sgn(mpz )az (Kovbpqz (t+h)+ p )] }

a1 Xz

— COS{ E E [sgn(mil )al (Koprélt + o )
g1 q1
q1=1g2=1

+ Sgn(miiz)ag (KOpr?zzt—i- @ng)] }‘ (C.1)

Equation (C.1) can be maximized by using the following
conditions.
1) |A(p',p% kB < Ao
2) Extend each sum of_ . (n = 1,2) with the indexes
py, spanning from 1 taV, — 1 and denote the result as
Z]\:f_}l = Zﬁf{_ol E]\J_J ~~~Zﬁnf .. This operation
adds positive terms to the second member of (C 1).
3) Decompose the multiple sum (ﬁj . as E n_o

an_OJrZ ,1_N+1 with n = 1,2, and N an arbi-
trary value belongmg to the mterv@l) N; — 2] with

T

Ny > 1 and 3, pr=0 = E _02 "Ep”,—oa
Np—1 N;—1 Nj-1 1\ -1

Ep CREDY ”f—N+1 > ”f—N+1 Epg =N+1°

4) MaX|m|ze |cos @ — cos 3| with o — 3] in the multlple
sumz . _o and with 2 in the multiple surrE ,_N+1

5) Consider the following maximizatioh?a~ g b Pan
(n = 1,2).
By applying the steps above to (C.1) we have

APt kLK)

whenN; — oo the functlonfyg)(t k') becomes a fractal in="&

a mathematical sense.
From (B.6) we can conclude that:

RAII) The functionfyg)(t, k') is a fractal whose dimension

is upper bounded by.

The conclusion RAII) is also valid for the imaginary part.
We can follow the same demonstration by rewriting the sine

function as a cosine function and by including a terp® in
the phasesb,.

APPENDIX C

In this section, we demonstrate

X
that the signal {qz—l

N N @y
< (@, @)|| Aol Ko VIR D~ > { 1T ba‘(S_Q)p”}
p'=0p?=0 q1=1

}{al i balpzln + as iz: bazpiz

(11—1 g2=1

{ H bal(S*Q)Pél
q1=1
(C.2)

, {f—[ pae(a=2)r2,

g2=1

)

+ 2|p(a, a)|| Aol Z Z

pl=N+1p2=N+1
Qg

H 2 (572)]); } .

2
i) (t, k' k”) of (38) is a fractal whose dimension is| et ys explicit the first term of (C.2) apart from the term

upper bounded bys. We show thatA~P(# k' k?) =
e (8 + b B B — (B B < clhf2 e for some
constante, independent ork, and for|h| < & with § > 0.
By means of (38), we have

APk E)
<N ()| Alpt PP KN B
pt p?

{(111

Xz

i

H po=(s=2)rg,
> Z sgn (m

{’11 =1g2=1

H po (5=2)rg,

}

(17 al(KOprq1(t+h)+<I> )

(a1, a1)|[Ao| KoV |R|

£ (fpo

Qg
i poz (5—2)1’32 }
} {qgl

=0p?=0 \q1=1
{al Z balpql} + Z Z { ﬁ bal(S—Q)leu}
q1=1 pl=0p?>=0 \q1=1

o

. 2 (s —2)])32
{qgl

£ )
q2=1

N N
Z par (s—1)pk Z per(s=2)py ..

N

1

E : par(s=2)p,,
Ph, =
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N
Z ba1(5—2)1’}11

P8, =0

N N
+ Z par(s=2)py Z par(s=1)p;

pr=0 pL=0

N
4+t Z pot(s—=2)py

py =0

N
« Z B (sfl)p(l\1
=0

N

3 G-k

p3=0

N
Z ba2(572)pi2

Pey =0

N N
Z bag(s—?)pf Z bag(s—?)pg

N N
tay Z baz(sfl)pf Z baz(S*Q)Pg

p3=0 p2=0
N N N
v E : paz(s=Dro, 4 E : pz(s—2)pF E paz(s=1ps
Pay, =0 p;=0 p3=0
N N
X § b2 (5_2)17,1\2 4+ 4 § baz(S—Q)Pf
Pe, =0 p;=0
N N
% § pee(s=2)p3 |, § pe2(s—pa,
pi=0 Pay =0
N N N
E ba1(572)pi E ba1(572)p§ E : bal(s—Q)p(l\1
pi =0 pé:O pﬁI:O

per(N+D)(s-1) _
bal(s—l) -1

)
X

o

<1 _ ba,l(l\’—l—l)(s—Q)

1— ba1(5—2)
ba,z(l\f—l—l)(s—l) -1
o (P

baz(s—l) -1
<1 _ poa(N+1)(5—2) )az—l <1 _ per(N+1)(s—2)

1— ba2(5—2) 1— ba1(5—2)
The second term of (C.2) apart from the constant term can

expanded as
i) 3 )
2‘=N+1 22=N+1

q1=1
<ba1(l\’—|—1)(s—2) — o N;(s—2)

1— b(lz(N'Fl)(S—Q)
1— ba2(5—2)

)}
)}

(C.3)

Ny—1 Ny—1

g2=1

- 1_ba1(5—2)
paz(N+1)(s—2) _ pazN;(s—2)\ ¥

By inserting (C.3) and (C.4) in (C.2) and considering thaty;,

l) ban(]\f—l—l)(s—l) -1 S ban(]\f—l—l)(s—l); 2) ba,,,(]\‘r-l-l)(s—Q) _
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ba”Nf(S_Q) < ban(N-I-l)(s—Q); 3) 1— ban(N-I-l)(s—Q) < 1; and
4) ban(N-I-l)ozn(s—Q) S ban(N-I-l)(s—Q) we obtain

AvD (4, kY )

< [1la; )| Aol KoV [A|
{ { < ba1 (s—l)
-4 10

1
1 — par(s—2)

) ()

bal(sfl) -1

1 2N paz(s—1)
- a1 N(s—1) s
X <1 _ baz(s—?)) b } + “2“2{ <baz(s_1) _ 1)
az—1 @
SR S Y S S e
1— ba2(5—2) 1— ba1(5—2)

1
1 — par (s—2)

.

) PN (=2 (ar+az)

+ 2|u(g,g)||Ao|<

<
If & = max(a1,as) we have that: 1p*Ne—1 < peNG—1)
and 2) pN+DG=2(aitaz) < (N+1)(s=2)a By applying the

inequalities 1) and 2) and by assuming thab*(V+1) <
|h| < 1/ we have

1

T (C.5)

AYD(t, L B < o2 (C.6)
where

¢ = |p(a, a)||Ao| KoV

pai(s—1) 1 a1—1
(o) (=)
1 a2 baz(sfl)
X <m> }+a2a2{<m)
1 a2t 1 o
(=pes) (=) )

1
1 — po2 (s—2)

1
1 — poa (s—2)

.

(C.7)

)

is a constant greater than zero and independerit.on

Due to the arbitrary choice a¥, (C.7) also holds for any
value of h such thath| > 1/6%7. In other words, inequality
(C.7) is satisfied for any. such thatl /62 < |h| < & with
§ > 0. The latter condition means thaty(t, k', k%) is a
fractal up to a scale level correspondinglt®®™+. It is clear
Pt whenN; — oo the function~'?)(t, k*, %) becomes a
fractal in a mathematical sense.

From (C.7) we can conclude that:

RAIIl) the real party?(t,k*, k%) is a fractal whose di-
mension is upper bounded ly Same conclusion
holds for the imaginary parts (let us follow the same

demonstration).

+2|N(Q,Q)||Ao|<

APPENDIX D

this section, we demonstrate that the signal
(t,E'---E™) of (46) is a fractal whose dimension
is upper bounded by.

In
(K)
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We have to show that Ay k- k) =
e (8 + k) =y (RS < dhpP
for some constant, independent ork, and for || < & with
6 > 0. By means of (46), we have

'I{}K)|

K
x [Z sgu(mp, Jan (KoVbPo (t +h) + Py )

f

J— COS{ Z Z v ow Z
q1=1go=1 gr=1

By applying the steps 1) to 5) of Appendix C with <

n < K, we have

}

[Z Sgn ’; an KOVbPszt—i—(I) n’)

(D.1)

Ary(ls)(t kl EK)
< |p(a, @)|| Ao Ko V||

N QU
Z [H { H ban(s 2)pq }‘|

21...£K=0 n=1 \g,=1

K QU

' {Z <an > b’”’)} + 2|p(a, @)|| 4o
n=1 gn=1

Ny—1 K ay,
> [H { [ pentem i H (D.2)

pl...£K=]\T+1 n=1 \g,=1

By expanding (D.2) with the same procedure of (C.3) a
by considering that: 1}e=N+DGE—1) _ 1 < pan(N+1(s—1).
2) b (NHD(=2) _ paaNs(s=2) < (,an(/\’+1)(9 2:3) 1 —
pan  (N+1)(s—2) < 1 and 4)ba (]\r-l-l)a (5—2) < ban (]\r-l-l)(s 2)
we obtain

A’Yg()(@ El . 'Ek’)
< lula, a)|| Aol KoV |A]

be (s—1)

K o (5— 1 @, —1
: 2:1 A Clp, <ba”(51) _ 1) ’ <1 _ ban(52)>

K ay
% f[ 1 pon N(s—1)
1 — poi(s—2)

=1
j#n
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+2[p(a, a)|| Aol

{1 (=) |
. 1— ba,,,(s—?)

n=

x BNFDE=2) DT a (D.3)

If @ = max,=12,... x(a,) we have that: 1pen N1 <
peN(=1) and 2)b(N+1)(5_2) Zle A < p(N+1)(s—2)a_ By ap-
plying the inequalities 1) and 2) and by assuming(N+1) <
|h| < 1/6%Y, we have

Ayt B ER) < ol (D.4)
where
K
n=1
with
ban(s 1)
Cn = |LL(Q,Q)||A0|KOVCLnOén <ba”(51) _ 1)
1 a,—1 K 1 a;
) 1— ban(572) III 1-— baj(572)
i#n
(D.6)

and

4 = 2|u(a, )] Ao|

K 1 QU
[ (o) ] ©-7)

n=1

Note thatc is a constant greater than zero and independent
on h.

Due to the arbitrary choice aW¥, (D.4) also holds for any
value of 2 such thath| > 1/6%™7. In other words, inequality
(D.4) is satisfied for any: such thatl /6*™7 < |h| < 6§ with
§ > 0. The latter condition means thaf’(¢,k* - -- £X) is a
fractal up to a scale level correspondinglts. It is clear
that whenN; — oo the functiony's (¢, k- - - EX) becomes
a fractal in a mathematical sense.

From (D.4) we can conclude that:

RAIV) The real party$)(t, k* - -- k') is a fractal whose
dimension is upper bounded by
The same conclusion holds for the imaginary parts (use the
same demonstration).
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