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Fractal Analysis of the Signal
Scattered from the Sea Surface
Fabrizio Berizzi,Member, IEEE, and Enzo Dalle-Mese,Member, IEEE

Abstract—This paper deals with the problem of the electro-
magnetic scattering from a sea fractal surface. The purpose of
the paper is to demonstrate that the sea-scattered signal retains
some fractal characteristic of the sea surface. In detail, we analyze
the signal scattered from a sea surface modeled by the one-
dimensional (1-D) sea-surface fractal profile proposed in [1].
The results show the graphs of the in-phase and quadrature
components of the received signal are fractal curves with box-
counting fractal dimension equal to the one of the sea profile.
These results are validated by presenting and discussing some
numerical examples.

Index Terms—Fractal, scattering, sea.

I. INTRODUCTION

T HE electromagnetic scattering from the sea surface is a
phenomenon on which researchers spent a lot of time

for physical interpretation and analysis. An accurate study
of the sea scattering provides profitable advantages in: 1)
investigating phenomena like multipath and clutter, which
heavily degrades the performance of telecommunication and
radar systems; 2) improving and developing some appli-
cations in the field of the environmental monitoring like
sea-surface characterization, sea SAR imaging, and sea-surface
traffic monitoring; 3) interpreting some sea-surface physical
phenomena like hydrodynamic evolution of the sea waves,
energetic exchange at the sea-atmosphere interface, sea-surface
current analysis. Up to date, the most important results on
electromagnetic sea scattering are obtained from the statistical
analysis of experimental data. Characterization of the sea in
terms of the distribution of the scattered signal amplitude is
achieved and used to developed statistical models.

Recently, fractal theory has been proposed as a mean for
the sea-scattered signal analysis. Since natural surfaces have
fractal characteristics [1], [2] it is reasonable to expect that the
sea-scattered signal retains some fractal properties of the sea
surface. First results in this direction were obtained by Haykin
[3]. He showed that the box-counting fractal dimension of
the amplitude of the sea-scattered signal for a given sea-state
situation is a value of about 1.75. This result was attained
trough an analysis of experimental data without giving any
theoretical justification.

The purpose of this paper is to give a mathematical demon-
stration that the signal scattered from a sea fractal surface
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maintains the main fractal characteristics of the sea surface.
To this end the sea surface is modeled by the one-dimensional
(1-D) fractal profile proposed in [1] and the expression of sea-
scattered signal is calculated in a closed form. The theoretical
result shows that plots of the in-phase and quadrature compo-
nents of the received signal against time are fractal curves with
the same dimension of the sea surface. So, a mathematical
proof that the signal scattered from the sea actually have
a fractal behavior similar to the one of the sea surface is
obtained.

The paper is organized as follows. We briefly recall the 1-D
sea-surface fractal model proposed in [1]. This model agrees
with the solution of the hydrodynamic differential equations
[4] and it is based on the band-limited Weierstrass–Mandelbrot
(WM) functions [5], [6]. We evaluate the scattering coeffi-
cient, which in turn is proportional to the received signal, by
using the Kirchhoff method. We decompose the expression
of the scattering coefficient as a sum of time-varying terms.
We demonstrate that all terms have a box-counting fractal
dimension less than or equal to the fractal dimension of the sea
profile. By invoking a theorem of the fractal theory relevant to
sum of fractal functions [7] we obtain the previous mentioned
result: the real and imaginary parts of the received signal
are fractals with dimension equal to the dimension of the
sea profile. In the last section, we present some numerical
simulations in order to validate the theoretical results.

II. SEA FRACTAL MODEL

In this section, we briefly recall the 1-D sea fractal model
proposed in [1] without entering in a detailed description of
the parameters (refer to [1]).

The analytical expression of the fractal sea-surface model
with 1-D roughness is

(1)

where is the fundamental spatial wavelength,is the
scale factor, is the box-counting fractal dimension, is
the observer platform velocity, is the angular frequency (it
takes into account for the dispersion effect), is the
number of sinusoidal components,is the standard deviation
of the amplitude and is a normalization constant necessary
to have a standard deviation of the sea height equal to.
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Note that the graph of for a fixed time instant is
a fractal curve in mathematical sense if . In practical
cases, if the number of components composing the sea is
sufficiently greater than one we can state that sea profiles
behave as a fractal up to a suitable scale depending on the
value of . This fact must be carefully considered in the
fractal-dimension estimation algorithms to select the scale
window under which the signal should be analyzed.

The phases are set according to the following rela-
tionship:

(2)

where are initial arbitrary phases modeled as independent
random variables uniformly distributed in the interval
and the time-varying phase is considered as a white
stochastic process independent fromand with a probability
density function (pdf) of the first-order uniform in the interval

.
The assumption of (2) has the following physical meaning.

1) The sinusoidal components of the sea-surface
at low spatial frequencies , which
represent the sea long waves, simply translate.

2) The sinusoidal components of the sea-surface at
high spatial frequencies , which
represent the fine structure of the sea waves, have
random behavior.

Furthermore, the use of (2) also provides a few benefits: 1)
the computational algorithm for the generation of the sea
profile is easy to implement; 2) the spatial correlation length
defined as the value for which the autocorrelation coefficient

becomes is easily to compute [1]; and 3) the
normalization constant can be computed in a closed form

(3)

As shown in the next section, the use of Kirchhoff method
for the evaluation of the scattering coefficient requires low
incident and scattering angles. To satisfy this requirement we
refer to the case of an airborne or spaceborne radar. In this
condition: 1) the platform velocity is so high that sea wave
velocities can be neglected; 2) in the typical observation
time of the order of one second or less we can assume that the
sea wave height have a sinusoidal law against the time (the
phases become independent on time). The sea model
can be simplified as

(4)

For the sake of the simplicity, in the theoretical analysis we
always refer to the model of (4).

The general sea model will be considered in the numerical
analysis.

Fig. 1. Scattering geometry.

III. SCATTERING COEFFICIENT EVALUATION

In this section, we analyze the problem of the scattering
from a sea fractal surface and we calculate the scattering co-
efficient in a closed form. Note that the scattering coefficient is
proportional to the complex received signal, so the theoretical
results we obtain from its analysis can be directly used to
characterize the received signal.

Because of the complexity involved in the computation, in
this section we only report the expression of the scattering
coefficient and the conditions under which Kirchhoff approx-
imation can be applied. For more details, the reader can refer
to [1], [6], and [8].

Let us consider the geometry of Fig. 1 whereand are
the incident and the scattering angle, respectively, andis
the size of the patch illuminated by the antenna beam.

The scattering coefficient defined as the ratio between the
actual electric scattered field and the electric field scattered in
the specular direction from a smooth surface with infinite con-
ducibility [9] can be calculated by applying Kirchhoff method.
The resulting expression, obtained under the assumptions of
infinite conducibility and vertical (V-V) polarization is

(5)

where with the trans-
pose operator and

(6)

where and

(7)

(8)

(9)

Symbols in (5) have the following meaning:

and , where
is the fundamental wave number. In (6), the sinc

function is defined as and in (7) and (9),
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is the transmitted wavelength. Note that (5) for a fixed time
instant can be interpreted as the -dimensional discrete
Fourier transform of the function .

The scattered electric field can be calculated by (5) if
Kirchhoff method is applicable. To determine the conditions
under which Kirchhoff approximation can be used, we refer to
the criterion proposed by Soto–Crespo and Nieto–Vesperinas
[10]. They state that the electromagnetic field scattered from
very rough stochastic surfaces with high-incident angle can be
calculated by means of Kirchhoff approximation if the ratio
between the total power flow of the scattering wave and the
total power flow of the incident wave is less than 2%. For a
general random rough surface like the proposed one, such a
criterion can be summarized by the following two conditions
[1]:

(10)

(11)

IV. THEORETICAL ANALYSIS

The end of this section is to demonstrate that the sea-
scattered signal (which, in turn, is proportional to the scattering
coefficient) retains some fractal characteristic of the sea fractal
surface. The problem is tackled from a theoretical point of
view and the results show that the graphs of the real and
imaginary parts of the scattering coefficient (in phase and
in quadrature components of the received signal) are fractal
curves with the same fractal dimension as the sea profile.
The demonstration is performed by following these steps: 1)
rewrite the expression of as a sum of a finite number of
terms; 2) demonstrate that each term of the expression of
is a fractal function whose dimension is less than or equal to
the dimension of the sea profile, i.e.,; and 3) by using the
theorem of the fractal theory under which the sum of fractal
functions with dimension less than or equal tois a fractal
with dimension [7], we conclude that real and imaginary
parts of are fractals with dimension, i.e., its dimension
is equal to the one of the sea profile.

To develop point 1), let us distinguish vector in the
following classes.

Class 1: ; vectors containing elements of values
( is a positive integer) and zeros.
Class 2: ; vectors containing elements of values
( is a positive integer), elements of values ( is
a positive integer and ), and zeros.

Class : ; vectors with elements of
values ( is a positive integer), elements of values

( is a positive integer and ), elements of
values ( is a positive integer and ),

elements of values ( is a positive integer and
), and zeros.

Let us define the following vectors:
; and

denote as , the signal obtained by

summing up terms of sum (5) corresponding with vectorsof
the class selected by fixing and .1 Note that once

and are chosen, vectors of the class differ one
to the other for the order and signum of the elements different
from zero. The expression of can be written as

(12)

where ,

and is a
vector with zeros.

To determine the fractal characteristics of we have to
analyze each term of the sum (12). The goal of this analysis is
to demonstrate that the terms
are fractal functions with dimension less than or equal to
the dimension of the sea profile. Since the theoretical
manipulations that lead to the result are quit complicated,
we consider as first cases and and then we
generalize the result for .

A. Fractal Analysis of the Term

As just mentioned above the signal is obtained by
summing up terms of sum (5) corresponding with vectors
of the class selected by fixing and . However, to
identify a single vector of the class is not sufficient to
provide the values of and , the order and signum of the
elements of different from zero must be specified too. To
this purpose let us define the following vectors.

is a pointer vector whose element gives the position
of the th element in the vector. For example
means the fifth element is located in position seven
within the vector .

where is the number of positive elements .

The vector is a pointer to vector and it locates the
positions of positive elements in the vector. Specifically,
the value of gives the element of vector containing the
position of the th positive element in the vector. As an
example, means that the third positive element
is located in the position given by the value of. If
this element is in position eight in the vector. It is clear
that when the elements of different from zero are
negative and the vector does not exist.

1A most suitable symbol for this signal should be
K(t; aK ; �K) (K =
1; 2; � � � ; Nf ) to put forward the dependence onaK and�K . We prefer the
use of the symbol
K(t) to simplify the notation.
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Fig. 2. Example of a vector belonging to classm1.

To better understand the vector notation introduced above,
let us consider the example given in Fig. 2. The vectoris
selected by taking , , , ,

.
Let us denote as the vector of the first class

obtained by fixing with a suitable choice of vectors
and let be the term of (5) corresponding

to . The signal can be rewritten as

(13)

where ,

. Note that when the elements of different

from zero are negative and the vector does not exist. In
this case, the second sum of (13) must be ignored.

As a first step, we determine in a closed form.
Let us rewrite for the vector by
using (8)

(14)

where is a pointer vector that
gives the position of the zeros in the vector. We assume

so that when the product term of (14)
involving the Bessel function becomes one. (Note that

.) As an example the vector relevant to
the situation represented in Fig. 2 is .
When the positions of the elements is different (i.e.,
the vector is changed), the vector is changed too.
By remembering that we can
argue that the signum minus in (14) only occurs whenand

are odd. Note that apart from a signum, the
quantity only depends on the positions of the
elements , i.e., on the vector . To simplify the notation
let us define as

(15)

In (14), the Bessel function can be expanded in
ascending series as

(16)

where

(17)

By substituting (16) in (14) and after some manipulations we
obtain

(18)

(19)

and

(20)

By inserting (18) in (6) and by using (5) we have the
expression of the term

(21)

where is the elements of the vector ,

is the signum function, and with

(22)

At first, let us consider the case and focus the attention
on the real part of (21)

(23)

To find the real part of , we have to consider that the
position of the element spans from zero to . So
(13) is a sum of terms and the result is

(24)

where

(25)

is a bounded sequence.
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Following Appendix A, we demonstrate that

1) the signal of (24) is a fractal with dimension for
;

2) the signal of (24) is a fractal with dimension less than
for ;

3) the same result holds for the imaginary part.

Let us now consider the general case . As a first step
we rewrite (13) as follows:

(26)

where

(27)

By using (21), we get the real part of in
a closed form

(28)

Following Appendix B we get the following conclusions:

4) the real part is a fractal whose dimension is
upper bounded by;

5) the same conclusion holds for the imaginary parts.

From (26) we note that is the sum of terms .
So, by using the theorem of fractal theory relevant to sum
of fractal functions and by exploiting the results 4) an 5) we
have that:

6) the real and imaginary part of the term for
is a fractal with dimension upper bounded by.

For the sake of clarity let us summarize the main results of
this section.

R1 Real and imaginary part of the term is a fractal
with dimension equal to for and .

R2 Real and imaginary part of the term is a fractal
with dimension upper bonded by for and

.

B. Fractal Analysis of the Term

As just mentioned above the signal is obtained by
summing up terms of sum (5) corresponding with vectorsof
the class selected by fixing and .
To identify a single vector of the class we have to specify
the order and signum of the elemets ofdifferent from zero.
To this purpose let us define the following vectors:

•

is a pointer vector whose the element gives the
position of the th element in the vector

Fig. 3. Example of a vector belonging to classm2.

•

where is the number of positive elements .

The vector is a pointer to vector and it locates the posi-
tions of positive elements in the vector . Specifically,
the value of gives the element of the vector containing
the position of the th positive element in the vector.
When the elements of different from zero are
negative and the vector does not exist.

•

is a pointer vector whose element gives the position
of the th element in the vector.

•

where is the number of positive elements .

The vector is a pointer to vector and it locates the posi-
tions of positive elements in the vector . Specifically,
the value of gives the element of vector containing the
position of the th positive element in the vector. When

the elements of different from zero are negative
and the vector does not exist.

To clarify the notation above let us consider the example
given in Fig. 3. The vector is obtained by taking ,

, , , , ,
, .

Let us denote as the vector of the first
class obtained by fixing and with a suitable choice of
vectors and let be the terms
of (5) corresponding to . The signal
can be rewritten as

(29)

where ,

. Note that when the sum on must be ignored

and if the sum on must be removed.
As a first step, we determine in a

closed form. Let us rewrite for the
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vector as

(30)

where is a pointer vector
that gives the positions of the zeros in the vector. We assume

so that when the product term
of (30) involving the Bessel function becomes one. By
remembering the Bessel property we
can argue that the signum minus in (30) only occurs when
and are odd or when and are
odd, i.e. when only one of the two conditions is verified. Note
that, apart from a signum, the quantity
only depends on the position of the elements different from
zero.

By applying the ascending series expansion of (16) to the
Bessel functions in (30) we get

(31)

where

(32)

(33)

where is given by (17) by substituting

with .
By inserting (31) in (6) and by using (5), we have the

expression of the term

(34)

where

(35)

is a bounded function. Let us now rewrite (29) as follows:

(36)

where

(37)

By using (34), we get the real part of
in a closed form:

(38)

Following Appendix C, we get the following conclusions.

1) The real part is a fractal whose dimen-
sion is upper bounded by.

2) Same conclusion holds for the imaginary part.

From (36) we note that is the sum of terms
. So, by using the theorem of fractal theory

relevant to sum of fractal functions and by exploiting the
results 1) an 2) we have:

R3 real and imaginary part of the term is a fractal
with dimension upper bounded by.

C. Fractal Analysis of the Term

In this section we extend the analysis performed for
in the general case of .

The identification of a vector belonging to the class
is obtaining by fixing and

and providing the following vectors:
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is a pointer vector whose element gives the position
of the th element in the vector;

where is the number of positive elements .

Let us use the following notation:
; , denote as

the vector of the th class obtained
by fixing and
with a suitable choice of vectors and let

be the term of (5) corresponding
to . The signal can be
rewritten as

(39)

where ,

, . Note

that when the sum involving the vectors must
be removed.

By extending the result obtained from (30) to (34) we can
provide the expression of in a
closed form

(40)

where

(41)

(42)

(43)

with given by (17) by substituting
with .

Let us now rewrite (39) as follows:

(44)

where

(45)

By using (40), we get the real part of
in a closed form

(46)

Following Appendix D, we get the following conclusions:

1) the real part is a fractal whose di-
mension is upper bounded by;

2) the same conclusion holds for the imaginary part.

From (45), we note that is the sum of terms
. So, by using the theorem of fractal theory

relevant to sum of fractal functions and by exploiting the
results 1) an 2) we have:

R4 the real and imaginary part of the term is a
fractal with dimension upper bounded by.

D. Theoretical Result

By exploiting partial results R1, R2, R3, R4, and by using
the theorem on sum of fractal functions we get the main result
of the paper:

In operating conditions in which Kirchhoff method is
applicable, the graphs of the real and imaginary parts
of the scattering coefficient (in-phase and quadrature
components of the received signal) are fractal curves with
box-counting dimension equal to the dimension of the sea
profile, i.e. .

V. NUMERICAL RESULTS

In order to verify the theoretical results obtained in
Section IV-D, we have developed a computer program to
calculate the scattering coefficient for the sea-surface
model recalled in Section II.

The dimension of the scattering coefficient is estimated
by using the morphological covering algorithm proposed by
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Maragos [11] and optimized as in [12]. This method calculates
the box-counting dimension by linearly fitting the log-log plot
of the morphological cover area obtained at different scales.
The optimization consists of a suitable selection of the scale
interval on which the linear fitting must be performed. The
main steps of the algorithm are the following.

1) Determine a raw estimate of the fractal dimension
by applying the morphological covering technique in the
scale interval .

2) Let us calculate the new minimum scale as

and the new maximum scale as

where is the number of samples of the signal to be
analyzed.

3) Compute the final estimateof the fractal dimension by
applying the morphological covering technique in the
scale interval .

To reduce computation difficulties and errors in the nu-
merical evaluation of the scattering coefficient we consider
a situation in which the dominant terms in (5) are and

. As we see later, this condition also permit us a better
interpretation and prediction of the numerical results.

To have and as dominant terms, we have
to consider a situation in which the term in (8) and
consequently in (6) both assume their maximum values
in correspondence of vectors belonging to the first and
second class. To get this condition we have to select model and
geometry parameters so that the argument
in (8) spans in a interval in which the behavior of the
Bessel function can be easily controlled. This occurs when

, i.e., when

(47)

In fact for spanning from 0 to 1.5 in the interval
, the Bessel function decreases and with

increases. Furthermore, for any
, if

and the signum function. In this case,
and have their absolute maximum value for

and they assume values comparable with the maximum
for vectors that belong to the first classes, namely class
1 and 2. In other words terms of expansion (12) that give a
significant contribution to can be reasonably assumed to
be and . To give a more rigorous justification
of this assumption, let us consider the following analysis.

Let us pay attention on term of (28) and note that:
1) decreases as a power of
[the argument is less than one because of condition (47)]; 2)

due to the term , and,

consequently, in (22) decreases as .
From these comments we can draw the following con-

clusions. The dominant term is obtained for and
. In the worst case, the amplitude

Fig. 4. Sea fractal profile att = 0 and s = 1:3.

decay of with respect to the dominant term goes as

. So, if we assume as significant terms the ones

for which we have that for any
value of .

Similar remarks can be made for the term .
By looking at the expressions of and
in (32) and (33), respectively, we note that the
amplitude of goes to zero as

and it decays faster

than .
If we repeat the same considerations for terms correspond-

ing to class 3 and more, we note that their amplitudes decay
faster than the ones of the classes . So, we can assume
that the most important terms are and with
small values of and .

This analysis permits us to predict the result we expect from
the numerical example carried out under the assumption (47).
Since the main term of the scattering coefficient is
with and [see (24)], the plots of the real and
imaginary part of the scattering coefficient should be similar to
the graph of a WM function and its fractal dimension should
be equal to the one of the sea-surface profile.

Let us consider a situation of a radar carried on an aircraft
platform flying at a velocity Km/h and illuminating
the sea with an incident angle . The radar
transmits pulses of 2s at a frequency GHz with a
repetition rate of 1 KHz and it observes the sea for 1 s. By
taking one sample per range cell, the number of samples
we acquire in the observation time is 1000, which is a value
sufficiently large to successfully apply of the morphological
covering algorithm.

To satisfy both the condition of (47) and of (10) and (11),
we have considered the case of a sea modeled by assuming in
(4) m, and a significant wave height

of about 15 cm. The standard deviationis obtained from
by [13].

Figs. 4 and 5 show the sea-surface profiles at the initial
time with fractal dimension and ,
respectively. Figs. 6 and 7 represent the plots of the real part
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Fig. 5. Sea fractal profile att = 0 and s = 1:7.

Fig. 6. Real part of the scattering coefficient relevant to the sea profile of
Fig. 4.

of the scattering coefficient related to the sea of Figs. 4 and 5
respectively. As expected from the theory, this function looks
like WM’s functions and their shape is quite similar to the one
of sea fractal profiles of Figs. 4 and 5.

To validate conclusions of Section IV-D we have estimated
the fractal dimension of the scattering coefficient by
applying the morphological cover algorithm procedure previ-
ously mentioned. The numerical computation was performed
for different values of the sea-surface fractal dimension.
The results are reported in Table I, whereis the fractal
dimension estimate and denotes the relative error defined
as .

Let us discuss the results we obtained.
The mean error is always less than 4%, which is the typical

estimation error of the morphological algorithm when applied
on WM functions [12]. So, this errors can be reasonably
attributed to the estimation algorithm and the theoretical result
is confirmed: the received signal and the sea-surface profile
has the same fractal dimension.

To remove the limitations that the use of the simplified
sea model of (4) could give rise, we have also analyzed a
numerical example referred to the most general model of
(1) with phases given by (2). The scattering coefficient is

Fig. 7. Real part of the scattering coefficient relevant to the sea profile of
Fig. 5.

TABLE I
SIMULATION RESULTS FORs = 1:3; 1:5; 1:7

calculated by including the effects of the shadowing and the
finite conducibility of the sea. The angular frequency
follows the dispersion relationship [4] and the shadowing
effects are taken into account by multiplying the sea profile

by a masking function that assumes a value
equal to zero in the shadowing zones and one otherwise. The
scattering coefficient is calculated by considering the scattering
from the modified rough profile
and by introducing the finite conducibility of the sea in the
reflection coefficient [6].

This example makes use of the same parameters of the
previous case. Because of the more general model used, we
have to also introduce the following parameters.

1) 10. This value arises from the common assumption
that capillary waves have wavelengths less than 30 cm.

2) are assumed to be identically distributed
white stochastic processes, with pdf of the first order
uniform in the interval .

3) The ratio between the sea-surface tensionand water
density is cm s , which is the value
in standard conditions.

4) The water conducibility is mho/m [4].
5) The relative dielectric constant is 80 [4].

The results are presented in Table II relevant to
, respectively.

We note that the introduction of physical and geometric ef-
fects in the sea-scattering phenomenon do not significantly per-
turb the final result. The theoretical conclusions are still valid.
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TABLE II
SIMULATION RESULTS FORs = 1:3; 1:5; 1:7

The possibility of measuring the fractal dimension of the sea
profile by means of a fractal analysis of the received signal
could be very interesting in practical applications. In fact, by
considering that the fractal dimension of the sea is a measure
of the sea roughness and that this geometry characteristic is
modified by physical perturbations like surface wind, oil spot,
presence of a target, and so on, we can state that the fractal
analysis of the sea is an useful tool for sea-surface monitoring.

VI. CONCLUSION

In this paper, we have shown that the scattering coefficient
of the sea surface is a fractal function with the same dimension
of the model used for the sea surface. This result is very
important for two main aspects.

1) A new characterization of the sea-scattered signal is
performed. As an example, the possibility of estimate
the fractal dimension of the sea surface by a fractal
analysis of the received signal permit us to have a
measure of the sea-surface roughness. This information
could be used for classification purposes or for sea
parameters extraction.

2) It represents the basis for a rigorous formulation of a
new theory of target fractal detection. The basic idea,
proposed by Haykin in [3], consists of comparing the
estimated fractal dimension of the received signal with
a suitable threshold. Haykin validated this idea by using
experimental data without giving any mathematical
demonstration. The result of this paper could represent
an useful support for a theoretical demonstration of the
fractal detection.

The authors are now working on: 1) analysis of the two-
dimensional (2-D) sea fractal model proposed in [14]—some
results in this direction are reported in [16]; 2) extension of
theoretical results to the case of a 2-D sea fractal model; 3)
mathematical definition of the fractal detection theory.

APPENDIX A

In this section, we show that function of (24) is a fractal
function with dimension less than or equal to. Let be a
constant such that the sequence has an absolute value
less than , i.e., . By denoting as

, , and by defining ,
(24) can be rewritten as a sum of two terms

(A.1)

where

(A.2)

and

(A.3)

By using the theorem on sum of fractal functions, the demon-
stration that the fractal function of is equal to or
less than can be obtained by showing that: 1) has a
dimension equal to or less thanand 2) has a dimension
less than .

By imposing we note that the function
is a WM with dimension given by

if
otherwise

(A.4)

Note that . In fact, when the fractal dimension
of is otherwise it is less than. To demonstrate that
function has dimension less than or equal towe have
to verify the following inequality [15]:

(A.5)

where is independent on and for some .
The proposition of (A.5) is usually demonstrated for function

with , however, it can also be applied to our case
if we suitably scale the time coordinate of . By substituting
(A.3) in (A.5), by reminding that
and incorporating the constant in we have

(A.6)

with an arbitrary value belonging to the interval .
By maximizing the quantity with

in the first sum and with 2 in the second sum of (A.6), we have

(A.7)

By expanding the sums in (A.7) we get

(A.8)



334 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 2, FEBRUARY 1999

By considering that: 1) and 2)
and by assuming that

, we obtain

(A.9)

where

(A.10)

is a constant greater than zero and independent on.
Due to the arbitrary choice of , (A.9) also holds for any

value of such that . In other words, inequality
(A.5) is satisfied for any such that
with . The latter condition means that is a fractal
up to a scale level corresponding to . It is clear that
when the function becomes a fractal in a
mathematical sense.

For the sake of clarity let us summarize partial and final
results.

r1 The function is a band-limited WM fractal function
with dimension less than or equal to(see A.4)

r2 The function is a fractal function with dimension
upper bounded by.

RAI) From the theorem on sum of fractal functions and
by using the result r1) and r2) we obtain the final
conclusion:

a) the signal of is a fractal with dimension for
;

b) the signal of (24) is a fractal with dimension less
than for ;

c) the same result holds for the imaginary part. (The
demonstration can be resort to that of the real part
by rewriting the sine function as a cosine function
and by including a phase in .)

APPENDIX B

In this section, we demonstrate that the signal
of (28) is a fractal whose dimension is

upper bounded by . To do that, we show that

for some constant, independent on , and for with
. By means of (28), let us maximize as

(B.1)

Equation (B.1) can be further maximized by means of the
following manipulations.

1)

2) Extend each sum of with the indexes spanning

from 1 to and denote the result as

. This operation adds posi-

tive terms to the second member of (B.1).
3) Decompose the multiple sum of as

with an arbitrary value belong-

ing to the interval with and where
and

.

4) Maximize with in the multiple
sum and with 2 in the multiple sum .

5) Consider the following maximization: .
By applying the steps above to (B.1) we have

(B.2)

Let us explicit the first term of (B.2) apart from the constant

(B.3)

The second term of (B.2) apart from the constant term
can be expanded as

(B.4)
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By inserting (B.4) and (B.3) in (B.2) and considering that:
1) ; 2)

; 3) ; and
4) , we obtain

(B.5)

By assuming that , we have

(B.6)

where

(B.7)

is a constant greater than zero and independent on.
Due to the arbitrary choice of , (B.6) also holds for any

value of such that . In other words, inequality
(B.6) is satisfied for any such that with

. The latter condition means that is a fractal
up to a scale level corresponding to . It is clear that
when the function becomes a fractal in
a mathematical sense.

From (B.6) we can conclude that:

RAII) The function is a fractal whose dimension
is upper bounded by.

The conclusion RAII) is also valid for the imaginary part.
We can follow the same demonstration by rewriting the sine
function as a cosine function and by including a term in
the phases .

APPENDIX C

In this section, we demonstrate that the signal
of (38) is a fractal whose dimension is

upper bounded by . We show that
for some

constant , independent on , and for with .
By means of (38), we have

(C.1)

Equation (C.1) can be maximized by using the following
conditions.

1) .
2) Extend each sum of with the indexes

spanning from 1 to and denote the result as

. This operation
adds positive terms to the second member of (C.1).

3) Decompose the multiple sum of as

with and an arbi-

trary value belonging to the interval with
and

4) Maximize with in the multiple
sum and with 2 in the multiple sum .

5) Consider the following maximization
.

By applying the steps above to (C.1) we have

(C.2)

Let us explicit the first term of (C.2) apart from the term
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(C.3)

The second term of (C.2) apart from the constant term can be
expanded as

(C.4)

By inserting (C.3) and (C.4) in (C.2) and considering that:
1) ; 2)

; 3) ; and
4) we obtain

(C.5)

If we have that: 1)
and 2) . By applying the
inequalities 1) and 2) and by assuming that

we have

(C.6)

where

(C.7)

is a constant greater than zero and independent on.
Due to the arbitrary choice of , (C.7) also holds for any

value of such that . In other words, inequality
(C.7) is satisfied for any such that with

. The latter condition means that is a
fractal up to a scale level corresponding to . It is clear
that when the function becomes a
fractal in a mathematical sense.

From (C.7) we can conclude that:

RAIII) the real part is a fractal whose di-
mension is upper bounded by. Same conclusion
holds for the imaginary parts (let us follow the same
demonstration).

APPENDIX D

In this section, we demonstrate that the signal
of (46) is a fractal whose dimension

is upper bounded by.
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We have to show that

for some constant, independent on , and for with
. By means of (46), we have

(D.1)

By applying the steps 1) to 5) of Appendix C with
, we have

(D.2)

By expanding (D.2) with the same procedure of (C.3) and
by considering that: 1) ;
2) ; 3)

; and 4) ,
we obtain

(D.3)

If we have that: 1)

and 2) . By ap-
plying the inequalities 1) and 2) and by assuming

, we have

(D.4)

where

(D.5)

with

(D.6)

and

(D.7)

Note that is a constant greater than zero and independent
on .

Due to the arbitrary choice of , (D.4) also holds for any
value of such that . In other words, inequality
(D.4) is satisfied for any such that with

. The latter condition means that is a
fractal up to a scale level corresponding to . It is clear
that when the function becomes
a fractal in a mathematical sense.

From (D.4) we can conclude that:

RAIV) The real part is a fractal whose
dimension is upper bounded by.

The same conclusion holds for the imaginary parts (use the
same demonstration).
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