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Singular Basis Functions and Curvilinear Triangles
In the Solution of the Electric Field Integral Equation

William J. Brown and Donald R. WiltonFellow, IEEE

Abstract—Basis functions are formulated that account for
singularities in the charge density near an edge on a conducting
body. The formulation is general and the basis functions are
valid for planar as well curvilinear geometries. In principle,
singularities of any order can be treated, but best results are
obtained for so-called “knife edge” singularities. Results are
compared with exact solutions or measurements where available
for some simple problems.

Index Terms—Basis functions, boundary integral equations,
curvilinear geometry.

|. INTRODUCTION
SNCE the introduction of triangle surface-patch basis

2

) . . . Fig. 1. PI iang| iangle.
unctions [1], triangular surface-patch modeling with the'? anar triangle tangent to curved triangle

method of moments has become one of the most widely used
techniques for solving electromagnetic scattering and radiatigkhibits a singularity [8], [9]. Including this singularity in the
problems. This approach uses planar triangles to model #@sis functions can result in improved convergence, as shown
geometry and basis functions with a constant divergenb¥ Richmond [10] in his study of scattering from a conducting
to represent the surface current. The electric field integlrip grating. Wilton and Govind [11] showed that failure to
equation (EFIE) is then solved via the method of moment#clude the edge behavior can lead to erroneous results near
The use of planar triangles, however, can lead to unnatut@a¢ edge for the case of TM scattering from a strip. Basis
discretization errors when surfaces with curvature are model&éctions that account for edge singularities on surfaces were
Recently, several authors have introduced patches wigimulated by Andersson [12], but his analysis was limited to
curvature in an effort to circumvent this problem. A hybridplanar rectangular elements.
finite-element integral equation approach using curvilinearIn Section Il, a brief formulation is given for curvilin-
patches was employed by Antilla [2]. Improvement in rada&ar triangles and the triangular basis function is defined. In
cross section (RCS) values was shown by Wilkes and Cha [3gction llI, the singular basis function for triangles is derived.
when solving the EFIE using curvilinear triangular patchedhe basis functions are used in the method of moments solu-
Ingber and Ott [4] studied the use of a “superparametd®n of the EFIE for planar as well as curvilinear geometries
element” in the solution of the magnetic field integral equatioR Section IV, where their use in improving convergence
(MFIE). Their method gave the geometry quadratic approx@nd accuracy is demonstrated. Some results are given and
mation and the current linear approximation. Catal. [5] limitations of the approach are illustrated.
used curvilinear patches and the MFIE to study Fabry—Perot
cavities. A formulation for basis functions on curvilinear [I. CURVILINEAR TRIANGLES AND
parametric patches was given by Wandzura [6]. Improved NONSINGULAR BASIS FUNCTIONS

accuracy in the computation of resonant frequencies of sphereg . rvilinear triangle is shown in Fig. 1. Without lack of

and cylinders was demonstrated by Zhu and Landstorfer [fdnerality, a triangle may be assumed to be quadratic with six
when using curvilinear quadrilateral and triangular patches.ngdes interpolated by the quadratic functions

Another deficiency of the basis functions of [1] is their
inability to accurately model the charge density close to a sharp Ni(&1,62,85) = 3 : - (1)
edge. It is well known that the charge density near an edge Aiy1&i-1,  1=4,5,6,

where the indexes of the area coordinateéd < & < 1) are
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Fig. 2. Electric field incident on a metallic wedge.
i+1 i-1

wherer; is the vector from the origin to théth node. At Fig. 3. Edge ¢) and vertex ) singularity triangles. The singularity is along
any pointrg in the curvilinear triangle, three tangent vectorthe dashedriimle, wflﬂch csn be thc?]ugmht of assharp)téfdgehof adwedge-lilie

) : ; : : cture. The local numbering scheifie: + 1,: — 1) for the edge triangle
¢; can be ‘?“?f'”ed V,VhICh constitute a planar mar,]gle’ t,angeliqﬁterior to the triangle while the scheme for the vertex triangle is exterior
to the curvilinear triangle ato. The surfacelacobian7 is 1o the triangle.
defined as

J =€y x o] = |€a x £3] = €3 x £1] (3) highly accurate solutions it is necessary to model these sin-

gular fields—especially in conjunction with higher order basis

functions. The development of basis functions incorporating

these singularities is detailed in this section. These singular

, bases accelerate the convergence of the solution and prevent
ey e 4 g deterioration of the solution near the model's edges.

Ailr) = 7(&“&_1 ~&imbi) @ The charge near an edge of a conducting object can be

where7 is the Jacobian anéf is the magnitude of the length €xPanded in terms of order™~* [9], where p represents

vector; até;y; = &_1 = 3. The locally defined index pair distance from the edge of the wedge, tangent to the surface

(E, %) may also be associated with the global curvilinear edg"é‘d
numbern. From here on, the superscritis understood and
suppressed and the subscript denotes the local edge index. The an =nm/2n =) (n=1,2) (6)

factor #; normalizes the normal component of the flux density ) ) ] )
to unity at the midpoint of the edge. The divergence of thgherefy is the angle of the wedge. The dominant singularity

and is equal to twice the area of the tangent trianglécally
nonsingular defined basis function associated withithhedge
on an elemenkE may be written as

basis function is is for the casen = 1 and the associated singularity exponent
ope will henceforth be simply denoted as The smallest value of
VA (r) = 72 B5) «is % corresponding to a tangent wedge forming an infinite

half plane(~+ = 0) or the so-called knife edge.

AZ(r) is a divergence-conforming basis, meaning that it hasFor curvilinear triangular patch modeling, only singularities
continuous normal components of flux density across elemeftthe following two types are allowed:

boundaries. Equation (4) is a natural extension of the basis edge singularities;

function derived in [1] and enjoys many of the same properties. vertex singularities.

Although the basis function contains linear terms, both it angjnge triangles with a vertex at a surface corner and, therefore,
its divergence are complete within the triangle only to ordefyying surface singularities along two edges are not allowed;
zero (with a weighting factog;). In general, both the tangentgch triangles are subdivided into two triangles, each with a
vectors and the Jacobian vary with position inside the tr|ang§ng|e edge having a singularity. Consider the pair of triangles
shown in Fig. 3. The edge with the heavy dashed line is
[Il. D EVELOPMENT OF THE SINGULAR considered to be an object edge. Hence, there exists an “edge”
BASIS FUNCTIONS ON TRIANGLES singularity along théth edge (opposite thith node) of triangle
Consider the wedge shown in Fig. 2. It is well knowr® and a “vertex” singularity at théth node of trianglev. On
that if the radius of curvature of the edge of the wedge f§angle e the charge density will be proportional &,
negligible compared to other local dimensions and to ttvehile for trianglev it is proportional to(1 — &)>~".
Wave]ength of the incident wave, then the Wedge can beThe approach in the foIIOWing sections is to derive basis
modeled assharp This in effect removes one modelingfunctions by starting from the divergence of the basis functions
parameter from the problem, namely, the radius of curvatua@d enforcing the correct behavior for the charge density. Thus,
of the edge. The simplification, however, leads to singularitiéde basis functions should have the following properties.
in the fields of the model near the edge. It is argued in 1) Their surface divergence (i.e., charge density) should
[11] that by using testing procedures which do not emphasize have the correct singular behavior.
field values near edges, sufficient accuracy can often be2) As a« — 1, they should reduce to the regular basis
obtained without modeling these singularities, but to obtain  functions given in Section IlI.
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3) They should have a bounded and continuous normialorder to ensure the continuity of the normal component of
component at all edges. current at the edge, (14) must be normalized to unity at the

These constraints ensure that proper basis functions for mégge node “midpoint{¢;4+1 = &-—1 = 3) by requiring that
eling edge behaviors are obtained. A ~hi|&i1=% = 1 there. Thus, (14) becomes

9oLy
=—7 L& — (1= &ig1)™) i

+ (=& + (1 =&-1)%) 1]

A. Edge Singularities AS(r)

The basis function associated with tith edge of triangle

e of Fig. 3 has the form
Ai(r) = CE(2F (r) + 27 (7)) @) where the fgctowi is |4;] at the edge r_10de.

Now consider the function interpolating thecomponent at
where 25 (r) interpolates the?;+; vector component of the vertexi — 1, 21, (r). The charge density is still proportional
i + 1 node and’y is a normalization constant to be determinegb £~ 1 and, hence, the divergence _@[;FH(T) is

. . + ?
later. The interpolatory function®:;=(r) have the form

(15)

1 1 1
1 1 o 0 8
"Q;t('r) = 7f(£i7£i:|:l)ei:|:1 (8) Vs - "Q;:—l(r) = ? O€; i1 01
[, &i-1) 0
where f(&;,&,41) is a function to be determined and 1 9F(E: & a—1
. . . . . . _ f(gzv 51—1) Sz
is the Jacobian. Since the divergence of the basis function A x 7 (16)
A; is proportional to the charge density, the divergence of o
each interpolatory functionf?; is also proportional to the Solving for f yields
charge density. Consequently, the procedure for determinin —
J y vl J F(ir6im) 0761 + 9(&). (17)

the unknown functionf is to consider the divergence of
each £2; separately. The general expression for the SUffaS‘Pncengtrl is interpolatory at vertex — 1, f(&;,&—1) must
divergence for a vector of the form = +(Afy + Aslo +  vanish atg;_; = 0, therefore,g(¢&;) = 0. Hence, the function

Asfs) is given in [13] as is written as
1 1 1 o1,
1 + _ 5 i—1 4
Ve A= 2k ok wl| 9) @) =>—7—4. (18)
Al Ay Az
Similarly, £2;_, is easily found to be
Hence, the surface divergence of the functf@p is written as .
1 1 1 Q2 (r) = _w& . (19)
O (r) — L]0 o o J
Vs - 4 % (,,-) - 7 O€; g1 ;1 .. . . . ..
Y10 & Eivr) 0 The remaining bases on the triangle are obtained via a similar
B iaf(£i7£i+l) . go-t w0 procedure, yielding
AT 7 927 4(r) = Lt (20)
Integrating both sides of (10) with respectgpyields .
, and
f(&is §irr) o< & + 9(&i1) (11) o
whereg(&;41) is an arbitrary function. Sinc€, interpolates 2;_1(r) = _§ =l (21)

the¢ — 1 vertex, it must vanish along edde- 1, (i.e., when
Si*l =0 then-()z_ =0 and, thereforef(£i7 £i+l) gi_1=0= 0)
Along this edgef; = 1 — &41 S0 g(&iq1) = —(1 — &i41)™

Basis functions associated with the- 1 andi — 1 edges can
be formed by “averaging” these nodal interpolating functions,

Equation (8) is now shown to be

yielding

A1 (r) = Cf (2, () + 22,4,(r))

— 1 (3 (o3
2;(r) = 7 (& — (1= &) Jligr (12) o
- . _ _ = (TNl — 60 (22)
Similarly, the interpolation function of th&_; component at J
the i + 1 vertex is obtained as Ay (1) = O (2, (r) + 2;_,(r))
1 Ciy .
G =Z-g+0-60"060 13 = = (§ln - &7 6nt) (23
and, hence, (7) becomes which are normalized to become
“p) = O (0T 0 . R o
A (r) %@(Qz (r) + £, (r)) Ai+1(T) - TH(SZ 1571—1&, — & lf,—1), (24)
= 77 [(Sfé - (1 - Si-l—l)a)li—l—l 2@—1(@ L ’ L p
€ =2 =liexg e 8. 25
FEra-gYen] a9 )= g e t). @9
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B. Vertex Singularities having the correct singularity. Enforcing the unit current

Now consider the case where the singularity is placed density constraint at the centroid of the curvilinear edge, (32)
the vertex of the triangle. The charge density is modeled R§COMeSs

be proportional tq1 — &;)*~*, although strictly speaking this ga—1pe

is true only when the edge opposite the vertex singularity oA, (r) = TZH[((l — &) T+ (a- D1 - &)
trianglev is parallel to the singular boundary. This is a good ol (1—eeleg (34)
approximation even if the opposite edge wris not parallel X Gimibi = (1= &) &ibioa]-

to the singular boundary, since the main interest is modeln;ig|e basis function associated with the- 1 edge may be

the singular behavior at the vertex, not so much the actuSI ilarlv obtained as
variation in charge density along the triangle. Indeed, the Ieve‘n y

of approximation is consistent with modeling the charges as 20 Lpe . .
only piecewise constant on the nonboundary triangles. Al (r) = T[(l = &) i — (1= &)™
The same procedure applied in the previous section can + (@ — 1)(1 = &) )il (35)

also be used to obtain vertex singularity basis functions. The

surface divergence df2;" is now written as Equations (35) and (36) must satisfy the requirement that the

(1— &)t normal component of current be continuous across the edge.

Vs 427 (r) 7 (26) As in Fig. 3, it is usual for an edge singularity triangle) (
to lie adjacent to a vertex singularity triangle).( Consider
from which £2;” may be determined as the normal component od;_; along the common — 1 edge,
. which is
Q7 (r) = —=(1—&)* Y 1ligr. (27) . ga—1ge
7 A B e = G @9)

The other interpolation function is similarly found to be

1 The normal component of current df_; along edge — 1 is

J

Averaging these results as before, the normalized basis func-

tion associated with théth edge for a vertex singularity
triangle is thus found to be Recalling that the local area coordinatés will vary in

' opposite directions on the two adjoining triangles, it is seen
AY(P) = (1 — &)L 1l — (1— &)L 1801]. that (37) equals (38). A similar argument applies to edgel.
i) J[( §)7 Gbioy = (1= 6)™ imalin] Hence, there are no line charges along the common edge of an
(29) edge singularity triangle and a vertex singularity triangle. The
) ) ) ) _ various singular basis functions and the corresponding surface
Now consider the basis function associated with:thel edge. divergences are summarized in Table .

Following the earlier approach, one obtains a prospective basigpe integration of the singular basis functions may be

Qf = —(1-6)""G b1 (28)

2@71&/:_1

o) @)

Ag—l(T) ) hg—1|5471=0 =

€i—1=0

function of the form accomplished using a modification of the so-called bidirec-
Cryy ot ot tional method, which transforms the integration over a triangle
7[(1 — &) T 1l — (1= &)Y k] (30) into an integration over a square [14]. The singularity at a

triangle vertex or edge is transformed into a singularity over
whereCY,, is the normalization constant. However, the suan edge of the square. The quadrature points and weight
face divergence of (30) is coefficients are determined in the square region using the
ov Gauss-Legendre method along the nonsingular dimension and
z_—l—l[(a + 1)1 &) —(a—1)(1-¢&)*?]  (31) a Gauss-Jacobi method appropriate to the singularity along
J the other dimension. For convenience, the resulting quadrature

which contains an incorrect singularity due to the presenB€ints and weights which account for the singularity may
of the (1 — &)®2 term. In order to eliminate the unwanted?¢ transformed back and the integration carried out over the

(1 —¢&)*2 term in (31), (30) must be modified to become triangular region. The procedure is gssentiglly an ada.p_tation
of the Gauss—Radau method to functions with singularities at
a triangle edge or vertex. Details of the integration of these

cv
Al/ — i+1 1 —& a—1 _ 1 1 —& a—2
o1 (r) (1= &) -1 -&)") functions in the context of the EFIE are given in [15].

J
X &1l — (1= &)1 1] (32)

which has a surface divergence IV. RESULTS

oo ) In this section, results are presented which show how

v Yo(a4+1 o : . . . '

Ve AV (r) = +1 (1—¢)t (33) the smgylar b§3|s functllons' can improve the convergence in
Ja geometries which contain singularities.
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ZERO-ORDER SINGULAR BASIS FUNCTIONS ON TRIANGLES AND THEIR CORRESPONDING SURFACE DIVERGENCES

Singular Basis Functions Surface Divergence
A(r)= 2“}6;‘ [ == )M + (=87 + (1= 8)E] A= 235: &
-l ﬁ( a1l ge
a0 - ISR L=t (= E Bl g
A= 64t e
v _ é: a-l _(1_ -l . _ é:‘(a’#—l) a-1
A= ={0-8)" et 0276 L] e ()
297" 1 a-2 -1 E e 1 -1
A= 17"'[(0 =& T @)1= )TN L (=€) L] | VAL = LJ:LML)(%;’,)
“ lg( 1 -1 a-2 . o (;1 -]
A =2 T (- el ~(0-&)y " +(@-D)1-£))EaL] | V4= %’J(l‘é)

exact
Q@ wi/o sing
€ w/sing

05 -04 -03 -02 -0.1 0 0.1 02 03 04 05

y [m]
Fig. 4. Thez-directed current at = 0 for a long narrow strip. The electric 4
field is incident from thetz direction and is polarized along. kA

A. Long Narrow Strip

The first example to be considered is the simple case ofig. 5. Sphere with an aperture angle definedby- 6. A plane wave is
long narrow strip {\ in width, 10\ in length). The variation 'Mcident from the—2 direction.
of the current across the narrow dimension of the strip is
well approximated by that of an infinite strip. The strip lies
in the zy plane with its axis alongt. The electric field is B. Sphere with Aperture
polarizgd pgrallel to the axis of the _strip.and i; incident from consider the configuration shown in Fig. 5, which is mod-
the 2 direction. The “exact” curve in Fig. 4 is the curreniyjeq ysing quadratic curvilinear triangles. A thin, perfectly
distribution for an infinite stn_p with singularities at the_ tWOconducting spherical shell with an opening is represented by
edges that vary as the reciprocal square root of d!staqﬁ% surfacer = a, 0 < 6 < 6, in the spherical coordinate
from the edge\/ﬁ. The normalization constart’ is  gystem(r, 6, ¢). The negativer axis passes through the center
set such thaRC' = Iviom|z=0,y=0, Where Iyiom|z=o,—0 is Of the aperture, which has an opening angle defineé,as-
the current given by the method of moments solution at— 6. The medium inside and outside the shell is free-space.
x = y = 0. In all the remaining figures throughout the Results are compared to those of Ziolkowski and Johnson
paper, “w/o sing” corresponds to the solution obtained wh¢h6]. In [16], a coupled TE and TM dual-series approach was
charge density singularities are not included, “w/ sing” igsed in which the singularity at the aperture was handled
the solution with charge density singularities included. lanalytically. The approach required solving a small linear
Fig. 4, the current distribution across the strip sat= 0 system of equations, the solution of which converged rapidly
is shown. Both solutions agree well with the exact solutioi@ produce highly accurate current and far field representa-
near the center, but near the edges the solution without tigns. Hence, the approach may be said to be semi-analytical.
singularity produces values that are roughly 30% greater thahe results given in Fig. 6 are for thf-directed current at
the exact value, as predicted in [11]. The solution with the edge = 5 for a plane wave incident from the-z direction
singularity included agrees very well with the exact solutiowith the electric field polarized along. The aperture an-
with some error apparently appearing in subdomains nextdte, 6,,, is ¥ and ka = 1. As seen in the graph, when

3
those containing singularities. the charge density is not accounted for, the current near
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e
-]

—— Ziolkowski and Johnson —— infinite cylinder
16 Q wiosing 2 vwv;"siigg
14 € w/sing measured
E 12 E
E‘m E- )
a =5}
¥ 8 i
D N
I 3
a4
3
2
0 - 0
0 20 40 60 80 100 120
0 [deg] A B C A
. Fig. 8. Current att = 0 for a triangular cylinder.
Fig. 6. The ¢-directed current atp = 7 for a sphere with aperture
6y = 120°.
direction with ka = 1 (wherea is the base of the triangle).
2 Since the angle between the faces of the triangle i§ 60
18 Ziolkowski and Johnson will equal 2. The current is sampled in the middle of the
T o wiosing cylinder atz = 0. Shown for reference is the current for a
16 TM polarized plane wave incident on an infinite cylinder [17].
T 14 Good agreement is obtained along #€ face, on which the
< . wave is incident. Along the two adjacent faces however, the
= surface patch results show the current leveling off at a higher
% ! level than that calculated for the infinite cylinder. Indeed,
> 08 measured results by lizuka and Yen [18] indicate that for a
06 cylinder 12X in length (2195 MHz), the current does level
04 off at a rate only a bit slower than that predicted by the
’ surface patch model. This particular example required over
0.2
0 20 40 60 80 100 120 2100 unknowns. . g . . .
0 [deg] There is a possible difficulty in modeling singular currents

that flow across edges, which likely accounts for the error seen
Fig. 7. The f-directed current atp = 0 for a sphere with aperture in the triangular cylinder problem. Near an edge the component
b = 120° of magnetic field parallel to the edge behaves like
) ) ) H. x A+ Br® cosag¢ (38)
the aperture is roughly 30% higher than the solution of
Ziolkowski and Johnson. When the singularity is includedind, hence, the current normal to the edge behaves as
very good agreement with the semi-analytical solution is J — A4 Bre (39)
achieved. Fig. 7 shows thédirected current atp = 0 for T
the same polarization. Both solutions show roughly the sarfi@ current on surface$ = 0, ¢ = 52—, respectively.
agreement with the semi-analytical solution. In both caseBhe second term produces the singularity in the charge; the
636 unknowns were used in the moment method solutidfitst term is a divergence-free contribution representing an
The solution with the charge singularity included requireddditional, independent degree of freedom. The divergence-
869 central processing unit (CPU) seconds on a 166-Mfrge contribution cancels at a knife-edge when the oppositely-
DEC Alpha machine, while the solution without the chargeirected currents on the front and back sides of the surface

singularity required 807 CPU seconds. are added to obtain a total equivalent current. The bases
constructed in this paper actually contain terms having both
C. Triangular Cylinder forms, but they araot independent degrees of freedom. This

Both the previous examples had only knife-edge singulal\"?fIII be investigated in a future paper.
ties for whicha = % This case is special in that no current
flows across the edge containing the singularity. It might V. CONCLUSION
appear that the basis functions derived earlier apply to anyNew bases are developed that incorporate charge singular-
wedge angle and, therefore, any valuecof Now consider ities into curvilinear triangular basis functions. For knife-like
the case of the equilateral triangular cylinder given in Fig. @dges, the new bases demonstrate improved accuracy and
Each side of the cylinder cross section is 1 [m] in length whileonvergence properties. For such edges, currents do not flow
the length extends from = 16 [m] to —16 [m]. The electric across the singular edge. Apparently the new basis functions
field is polarized alongz and is incident from thep = 0 contain an insufficient number of degrees of freedom to model
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current components normal to an edge because independent T. Andersson, “Moment method calculations on apertures using sin-

degrees of freedom are required for modeling the nonsingular
divergenceless part and the part with a singular divergencey s
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