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Singular Basis Functions and Curvilinear Triangles
in the Solution of the Electric Field Integral Equation

William J. Brown and Donald R. Wilton,Fellow, IEEE

Abstract—Basis functions are formulated that account for
singularities in the charge density near an edge on a conducting
body. The formulation is general and the basis functions are
valid for planar as well curvilinear geometries. In principle,
singularities of any order can be treated, but best results are
obtained for so-called “knife edge” singularities. Results are
compared with exact solutions or measurements where available
for some simple problems.

Index Terms—Basis functions, boundary integral equations,
curvilinear geometry.

I. INTRODUCTION

SINCE the introduction of triangle surface-patch basis
functions [1], triangular surface-patch modeling with the

method of moments has become one of the most widely used
techniques for solving electromagnetic scattering and radiation
problems. This approach uses planar triangles to model the
geometry and basis functions with a constant divergence
to represent the surface current. The electric field integral
equation (EFIE) is then solved via the method of moments.
The use of planar triangles, however, can lead to unnatural
discretization errors when surfaces with curvature are modeled.

Recently, several authors have introduced patches with
curvature in an effort to circumvent this problem. A hybrid
finite-element integral equation approach using curvilinear
patches was employed by Antilla [2]. Improvement in radar
cross section (RCS) values was shown by Wilkes and Cha [3]
when solving the EFIE using curvilinear triangular patches.
Ingber and Ott [4] studied the use of a “superparametric
element” in the solution of the magnetic field integral equation
(MFIE). Their method gave the geometry quadratic approxi-
mation and the current linear approximation. Camet al. [5]
used curvilinear patches and the MFIE to study Fabry–Perot
cavities. A formulation for basis functions on curvilinear
parametric patches was given by Wandzura [6]. Improved
accuracy in the computation of resonant frequencies of spheres
and cylinders was demonstrated by Zhu and Landstorfer [7]
when using curvilinear quadrilateral and triangular patches.

Another deficiency of the basis functions of [1] is their
inability to accurately model the charge density close to a sharp
edge. It is well known that the charge density near an edge
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Fig. 1. Planar triangle tangent to curved triangle.

exhibits a singularity [8], [9]. Including this singularity in the
basis functions can result in improved convergence, as shown
by Richmond [10] in his study of scattering from a conducting
strip grating. Wilton and Govind [11] showed that failure to
include the edge behavior can lead to erroneous results near
the edge for the case of TM scattering from a strip. Basis
functions that account for edge singularities on surfaces were
formulated by Andersson [12], but his analysis was limited to
planar rectangular elements.

In Section II, a brief formulation is given for curvilin-
ear triangles and the triangular basis function is defined. In
Section III, the singular basis function for triangles is derived.
The basis functions are used in the method of moments solu-
tion of the EFIE for planar as well as curvilinear geometries
in Section IV, where their use in improving convergence
and accuracy is demonstrated. Some results are given and
limitations of the approach are illustrated.

II. CURVILINEAR TRIANGLES AND

NONSINGULAR BASIS FUNCTIONS

A curvilinear triangle is shown in Fig. 1. Without lack of
generality, a triangle may be assumed to be quadratic with six
nodes interpolated by the quadratic functions

(1)

where the indexes of the area coordinates are
computed modulo three. A general point within a triangle with
area coordinates can be represented by

(2)

0018–926X/99$10.00 1999 IEEE



348 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 2, FEBRUARY 1999

Fig. 2. Electric field incident on a metallic wedge.

where is the vector from the origin to theth node. At
any point in the curvilinear triangle, three tangent vectors

can be defined which constitute a planar triangle, tangent
to the curvilinear triangle at . The surfaceJacobian is
defined as

(3)

and is equal to twice the area of the tangent triangle. Alocally
nonsingular defined basis function associated with theth edge
on an elementE may be written as

E (4)

where is the Jacobian and is the magnitude of the length
vector at . The locally defined index pair
E may also be associated with the global curvilinear edge

number . From here on, the superscriptE is understood and
suppressed and the subscript denotes the local edge index. The
factor normalizes the normal component of the flux density
to unity at the midpoint of the edge. The divergence of this
basis function is

E (5)

E is a divergence-conforming basis, meaning that it has
continuous normal components of flux density across element
boundaries. Equation (4) is a natural extension of the basis
function derived in [1] and enjoys many of the same properties.
Although the basis function contains linear terms, both it and
its divergence are complete within the triangle only to order
zero (with a weighting factor ). In general, both the tangent
vectors and the Jacobian vary with position inside the triangle.

III. D EVELOPMENT OF THE SINGULAR

BASIS FUNCTIONS ON TRIANGLES

Consider the wedge shown in Fig. 2. It is well known
that if the radius of curvature of the edge of the wedge is
negligible compared to other local dimensions and to the
wavelength of the incident wave, then the wedge can be
modeled assharp. This in effect removes one modeling
parameter from the problem, namely, the radius of curvature
of the edge. The simplification, however, leads to singularities
in the fields of the model near the edge. It is argued in
[11] that by using testing procedures which do not emphasize
field values near edges, sufficient accuracy can often be
obtained without modeling these singularities, but to obtain

Fig. 3. Edge (e) and vertex (v) singularity triangles. The singularity is along
the dashed line, which can be thought of as thesharp edge of a wedge-like
structure. The local numbering scheme(i; i + 1; i� 1) for the edge triangle
is interior to the triangle while the scheme for the vertex triangle is exterior
to the triangle.

highly accurate solutions it is necessary to model these sin-
gular fields—especially in conjunction with higher order basis
functions. The development of basis functions incorporating
these singularities is detailed in this section. These singular
bases accelerate the convergence of the solution and prevent
deterioration of the solution near the model’s edges.

The charge near an edge of a conducting object can be
expanded in terms of order [9], where represents
distance from the edge of the wedge, tangent to the surface
and

(6)

where is the angle of the wedge. The dominant singularity
is for the case and the associated singularity exponent
will henceforth be simply denoted as. The smallest value of

is , corresponding to a tangent wedge forming an infinite
half plane or the so-called knife edge.

For curvilinear triangular patch modeling, only singularities
of the following two types are allowed:

• edge singularities;
• vertex singularities.

Single triangles with a vertex at a surface corner and, therefore,
having surface singularities along two edges are not allowed;
such triangles are subdivided into two triangles, each with a
single edge having a singularity. Consider the pair of triangles
shown in Fig. 3. The edge with the heavy dashed line is
considered to be an object edge. Hence, there exists an “edge”
singularity along theth edge (opposite theth node) of triangle
e and a “vertex” singularity at theth node of trianglev. On
triangle e the charge density will be proportional to ,
while for trianglev it is proportional to .

The approach in the following sections is to derive basis
functions by starting from the divergence of the basis functions
and enforcing the correct behavior for the charge density. Thus,
the basis functions should have the following properties.

1) Their surface divergence (i.e., charge density) should
have the correct singular behavior.

2) As , they should reduce to the regular basis
functions given in Section II.
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3) They should have a bounded and continuous normal
component at all edges.

These constraints ensure that proper basis functions for mod-
eling edge behaviors are obtained.

A. Edge Singularities

The basis function associated with theth edge of triangle
e of Fig. 3 has the form

(7)

where interpolates the vector component of the
node and is a normalization constant to be determined

later. The interpolatory functions have the form

(8)

where is a function to be determined and
is the Jacobian. Since the divergence of the basis function

is proportional to the charge density, the divergence of
each interpolatory function is also proportional to the
charge density. Consequently, the procedure for determining
the unknown function is to consider the divergence of
each separately. The general expression for the surface
divergence for a vector of the form

is given in [13] as

(9)

Hence, the surface divergence of the function is written as

(10)

Integrating both sides of (10) with respect toyields

(11)

where is an arbitrary function. Since interpolates
the vertex, it must vanish along edge , (i.e., when

then and, therefore, .
Along this edge, so .
Equation (8) is now shown to be

(12)

Similarly, the interpolation function of the component at
the vertex is obtained as

(13)

and, hence, (7) becomes

(14)

In order to ensure the continuity of the normal component of
current at the edge, (14) must be normalized to unity at the
edge node “midpoint” by requiring that

there. Thus, (14) becomes

(15)

where the factor is at the edge node.
Now consider the function interpolating thecomponent at

vertex , . The charge density is still proportional
to and, hence, the divergence of is

(16)

Solving for yields

(17)

Since is interpolatory at vertex , must
vanish at , therefore, . Hence, the function
is written as

(18)

Similarly, is easily found to be

(19)

The remaining bases on the triangle are obtained via a similar
procedure, yielding

(20)

and

(21)

Basis functions associated with the and edges can
be formed by “averaging” these nodal interpolating functions,
yielding

(22)

(23)

which are normalized to become

(24)

(25)
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B. Vertex Singularities

Now consider the case where the singularity is placed at
the vertex of the triangle. The charge density is modeled to
be proportional to , although strictly speaking this
is true only when the edge opposite the vertex singularity on
trianglev is parallel to the singular boundary. This is a good
approximation even if the opposite edge onv is not parallel
to the singular boundary, since the main interest is modeling
the singular behavior at the vertex, not so much the actual
variation in charge density along the triangle. Indeed, the level
of approximation is consistent with modeling the charges as
only piecewise constant on the nonboundary triangles.

The same procedure applied in the previous section can
also be used to obtain vertex singularity basis functions. The
surface divergence of is now written as

(26)

from which may be determined as

(27)

The other interpolation function is similarly found to be

(28)

Averaging these results as before, the normalized basis func-
tion associated with theth edge for a vertex singularity
triangle is thus found to be

(29)

Now consider the basis function associated with the edge.
Following the earlier approach, one obtains a prospective basis
function of the form

(30)

where is the normalization constant. However, the sur-
face divergence of (30) is

(31)

which contains an incorrect singularity due to the presence
of the term. In order to eliminate the unwanted

term in (31), (30) must be modified to become

(32)

which has a surface divergence

(33)

having the correct singularity. Enforcing the unit current
density constraint at the centroid of the curvilinear edge, (32)
becomes

(34)

The basis function associated with the edge may be
similarly obtained as

(35)

Equations (35) and (36) must satisfy the requirement that the
normal component of current be continuous across the edge.
As in Fig. 3, it is usual for an edge singularity triangle (e)
to lie adjacent to a vertex singularity triangle (v). Consider
the normal component of along the common edge,
which is

(36)

The normal component of current of along edge is

(37)

Recalling that the local area coordinates will vary in
opposite directions on the two adjoining triangles, it is seen
that (37) equals (38). A similar argument applies to edge .
Hence, there are no line charges along the common edge of an
edge singularity triangle and a vertex singularity triangle. The
various singular basis functions and the corresponding surface
divergences are summarized in Table I.

The integration of the singular basis functions may be
accomplished using a modification of the so-called bidirec-
tional method, which transforms the integration over a triangle
into an integration over a square [14]. The singularity at a
triangle vertex or edge is transformed into a singularity over
an edge of the square. The quadrature points and weight
coefficients are determined in the square region using the
Gauss–Legendre method along the nonsingular dimension and
a Gauss–Jacobi method appropriate to the singularity along
the other dimension. For convenience, the resulting quadrature
points and weights which account for the singularity may
be transformed back and the integration carried out over the
triangular region. The procedure is essentially an adaptation
of the Gauss–Radau method to functions with singularities at
a triangle edge or vertex. Details of the integration of these
functions in the context of the EFIE are given in [15].

IV. RESULTS

In this section, results are presented which show how
the singular basis functions can improve the convergence in
geometries which contain singularities.
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TABLE I
ZERO-ORDER SINGULAR BASIS FUNCTIONS ON TRIANGLES AND THEIR CORRESPONDINGSURFACE DIVERGENCES

Fig. 4. Thex̂xx-directed current atx = 0 for a long narrow strip. The electric
field is incident from the+ẑzz direction and is polarized alonĝxxx.

A. Long Narrow Strip

The first example to be considered is the simple case of a
long narrow strip ( in width, in length). The variation
of the current across the narrow dimension of the strip is
well approximated by that of an infinite strip. The strip lies
in the plane with its axis along . The electric field is
polarized parallel to the axis of the strip and is incident from
the direction. The “exact” curve in Fig. 4 is the current
distribution for an infinite strip with singularities at the two
edges that vary as the reciprocal square root of distance
from the edge . The normalization constant is

set such that , where is
the current given by the method of moments solution at

. In all the remaining figures throughout the
paper, “w/o sing” corresponds to the solution obtained when
charge density singularities are not included, “w/ sing” is
the solution with charge density singularities included. In
Fig. 4, the current distribution across the strip at
is shown. Both solutions agree well with the exact solution
near the center, but near the edges the solution without the
singularity produces values that are roughly 30% greater than
the exact value, as predicted in [11]. The solution with the edge
singularity included agrees very well with the exact solution
with some error apparently appearing in subdomains next to
those containing singularities.

Fig. 5. Sphere with an aperture angle defined by� � �0. A plane wave is
incident from the�ẑzz direction.

B. Sphere with Aperture

Consider the configuration shown in Fig. 5, which is mod-
eled using quadratic curvilinear triangles. A thin, perfectly
conducting spherical shell with an opening is represented by
the surface , in the spherical coordinate
system . The negative axis passes through the center
of the aperture, which has an opening angle defined as

. The medium inside and outside the shell is free-space.
Results are compared to those of Ziolkowski and Johnson

[16]. In [16], a coupled TE and TM dual-series approach was
used in which the singularity at the aperture was handled
analytically. The approach required solving a small linear
system of equations, the solution of which converged rapidly
to produce highly accurate current and far field representa-
tions. Hence, the approach may be said to be semi-analytical.
The results given in Fig. 6 are for the-directed current at

for a plane wave incident from the direction
with the electric field polarized along. The aperture an-
gle, , is and . As seen in the graph, when
the charge density is not accounted for, the current near
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Fig. 6. The �̂��-directed current at� =
�

2
for a sphere with aperture

�0 = 120�.

Fig. 7. The �̂��-directed current at� = 0 for a sphere with aperture
�0 = 120�.

the aperture is roughly 30% higher than the solution of
Ziolkowski and Johnson. When the singularity is included,
very good agreement with the semi-analytical solution is
achieved. Fig. 7 shows the-directed current at for
the same polarization. Both solutions show roughly the same
agreement with the semi-analytical solution. In both cases,
636 unknowns were used in the moment method solution.
The solution with the charge singularity included required
869 central processing unit (CPU) seconds on a 166-Mhz
DEC Alpha machine, while the solution without the charge
singularity required 807 CPU seconds.

C. Triangular Cylinder

Both the previous examples had only knife-edge singulari-
ties for which . This case is special in that no current
flows across the edge containing the singularity. It might
appear that the basis functions derived earlier apply to any
wedge angle and, therefore, any value of. Now consider
the case of the equilateral triangular cylinder given in Fig. 8.
Each side of the cylinder cross section is 1 [m] in length while
the length extends from [m] to [m]. The electric
field is polarized along and is incident from the

Fig. 8. Current atz = 0 for a triangular cylinder.

direction with (where is the base of the triangle).
Since the angle between the faces of the triangle is 60,
will equal . The current is sampled in the middle of the
cylinder at . Shown for reference is the current for a
TM polarized plane wave incident on an infinite cylinder [17].
Good agreement is obtained along theBC face, on which the
wave is incident. Along the two adjacent faces however, the
surface patch results show the current leveling off at a higher
level than that calculated for the infinite cylinder. Indeed,
measured results by Iizuka and Yen [18] indicate that for a
cylinder in length (2195 MHz), the current does level
off at a rate only a bit slower than that predicted by the
surface patch model. This particular example required over
2100 unknowns.

There is a possible difficulty in modeling singular currents
that flow across edges, which likely accounts for the error seen
in the triangular cylinder problem. Near an edge the component
of magnetic field parallel to the edge behaves like

(38)

and, hence, the current normal to the edge behaves as

(39)

for current on surfaces , , respectively.
The second term produces the singularity in the charge; the
first term is a divergence-free contribution representing an
additional, independent degree of freedom. The divergence-
free contribution cancels at a knife-edge when the oppositely-
directed currents on the front and back sides of the surface
are added to obtain a total equivalent current. The bases
constructed in this paper actually contain terms having both
forms, but they arenot independent degrees of freedom. This
will be investigated in a future paper.

V. CONCLUSION

New bases are developed that incorporate charge singular-
ities into curvilinear triangular basis functions. For knife-like
edges, the new bases demonstrate improved accuracy and
convergence properties. For such edges, currents do not flow
across the singular edge. Apparently the new basis functions
contain an insufficient number of degrees of freedom to model
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current components normal to an edge because independent
degrees of freedom are required for modeling the nonsingular
divergenceless part and the part with a singular divergence.

REFERENCES

[1] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scattering
by surfaces of arbitrary shape,”IEEE Trans. Antennas Propagat., vol.
AP-30, pp. 409–418, 1982.

[2] G. E. Antilla, “Radiation and scattering from complex three-dimensional
geometries using a curvilinear hybrid finite element-integral equation
approach,” Ph.D. dissertation, Univ. California, 1993.

[3] D. Wilkes and C. C. Cha, “Method of moments solution with parametric
curved triangular patches,” inProc. IEEE Int. Symp. Antennas Propagat.,
1991, pp. 1512–1515.

[4] M. S. Ingber and R. H. Ott, “Application of the boundary element
method to the magnetic field integral equation,”IEEE Trans. Antennas
Propagat., vol. 39, pp. 606–611, 1991.

[5] H. Cam, S. Toutain, P. Gelin, and G. Landrac, “Study of a Fabry–Perot
cavity in the microwave frequency range by the boundary element
method,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 298–304,
1992.

[6] S. Wandzura, “Electric current basis functions for curved surfaces,”
Electromagn., vol. 12, no. 1, pp. 77–91, 1992.

[7] N. Y. Zhu and F. M. Landstorfer, “Application of curved parametric
triangular and quadrilateral edge elements in the moment method
solution of the EFIE,”IEEE Microwave Guided Wave Lett., vol. 3, pp.
319–321, 1993.

[8] J. Meixner, “The behavior of electromagnetic fields at edges,” New York
Univ., Rep. EM-72, New York, 1954.

[9] J. Van Bladel, Singular Electromagnetic Fields and Sources. New
York: Oxford Univ. Press, 1991.

[10] J. H. Richmond, “On the edge mode in the theory of TM scattering by
a strip or strip grating,”IEEE Trans. Antennas Propagat., vol. AP-28,
pp. 883–887, 1980.

[11] D. R. Wilton and S. Govind, “Incorporation of edge conditions in
moment method solution,”IEEE Trans. Antennas Propagat., vol. AP-25,
pp. 845–850, 1977.

[12] T. Andersson, “Moment method calculations on apertures using sin-
gular basis functions,”IEEE Trans. Antennas Propagat., vol. 41, pp.
1709–1716, 1993.

[13] R. D. Graglia, D. R. Wilton, and A. F. Peterson, “Higher order
interpolatory vector bases for computational electromagnetics,”IEEE
Trans. Antennas Propagat., vol. 45, pp. 329–342, 1997.

[14] G. Dhatt and G. Touzot,The Finite Element Method Displayed. New
York: Wiley, 1984.

[15] W. J. Brown, “Higher order modeling of surface integral equations,”
Ph.D. dissertation, Univ. Houston, Houston, TX, Dec. 1996.

[16] R. W. Ziolkowski and W. A. Johnson, “Electromagnetic scattering of
an arbitrary plane wave from a spherical shell with a circular aperture,”
J. Math. Phys., vol. 28, no. 6, pp. 1293–1314, 1987.

[17] S. V. Yesantharao, “EMPACK—A software toolbox of potential inte-
grals for computational electromagnetics,” Master’s thesis, Univ. Hous-
ton, Houston, TX, Dec. 1989.

[18] K. Iizuka and J. L. Yen, “Surface currents on triangular and square metal
cylinders,” IEEE Trans. Antennas Propagat., vol. AP-15, pp. 795–801,
1967.

William J. Brown was born in Grayson, KY, on
September 3, 1966. He received the B.S. (physics)
degree from the University of Kentucky, Lexington,
in 1988 the M.S.E.E. from Florida State University,
Tallahassee, in 1992, and the Ph.D. in electrical en-
gineering from the University of Houston, Houston,
TX, in 1996.

Currently, he is a Staff Engineer in the Electro-
magnetic Systems Laboratory at Raytheon Systems
Company, El Segundo, CA. His research interests
include microwave circuit design and computational
electromagnetics.

Donald R. Wilton (S’63–M’65–M’70–SM’80–F’87), for a photograph and
biography, see p. 315 of the March 1997 issue of this TRANSACTIONS.


