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Abstract—Electromagnetic scattering is often solved by ap-
plying Kirchhoff approximation to the Stratton–Chu scattering
integral. In the case of rough surfaces, it is usually assumed
that this is possible if the incident electromagnetic wavelength is
small compared to the mean radius of curvature of the surface.
Accordingly, evaluation of the latter is an important issue. This
paper generalizes the groundwork of Papa and Lennon [1] by
computing the mean radius of curvature for Gaussian rough
surfaces with no restriction on its correlation function. This is
an interesting extension relevant to a variety of natural surfaces.
Relations between the surface parameters and the mean radius
of curvature are determined and particular attention is paid to
the relevant small slope regime.

Index Terms—Electromagnetic scattering, Kirchoff approxima-
tion, rough surfaces.

I. INTRODUCTION

T HE problem of the electromagnetic scattering from nat-
ural surfaces is a matter of great relevance from both

theoretical and application points of view [2]. This problem
is of interest in many research areas, including remote sens-
ing of the environment, medical imaging, sonar, optics, and
astronomy.

A popular and effective approach calls for the surface height
description by means of random functions, usually Gaussian,
and for the evaluation of the mean scattered field, or density
power, by means of an approximation of the scattering integral
in terms of local boundary conditions. This allows the use
of Fresnel plane wave reflection coefficients and is consistent
with Kirchhoff approximation. This procedure is reasonable
whenever the mean radius of curvatureof the surface is
much greater than the incident electromagnetic wavelength.

It is customary to model the surface height by means of a
zero-mean Gaussian random function whose height correlation
belong to a restricted class of functions [1]. In this paper, we
generalize the groundwork of Papa and Lennon [1] to the case
of Gaussian surface height whose first and second derivatives
at the same point can be correlated, i.e., no restriction to the
height correlation is requested. This is relevant for a certain
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class of height correlation functions [1], [3] and for the cases
of certain fractal surfaces [4], [5].

The mean radius of curvature is expressed in terms of
the usual statistical parameters, i.e., the characteristics of the
surface profile. In the case of uncorrelated height first and
second derivatives at the same point, the mean radius of
curvature is an integral (hypergeometric) function of surface
parameters [1]

(1)

wherein and are the variances of the height surface first
and second derivatives, respectively, and is the confluent
hypergeometric function of the second kind [6].

For the relevant case of small slope regime [7], [8] the
expression of given by (1) can be analytically evaluated in
a closed form [1].

Let us emphasize that derivation of (1) is possible if the
assumed height correlation function is differentiable, stationary
and rotationally invariant with odd-order derivatives that van-
ish at the origin [1]. This implies that is equal to
zero, and being the height function first and second
derivatives and the ensemble average [1]. Such a result is
a key element in the simplification operated in deriving (1). In
the following, it will be referred to as the inchoerence theorem.

In this paper, we show that it is possible to evaluate the mean
radius of curvature also for correlated height first and second
derivatives at the same point, i.e., for any height correlation
function. This is done by extending the approach given in
[1]. We show that the general solution exhibits an extra term
compared to the classical case. A full discussion on such a
new general result is presented. In particular, the small slopes
regime is examined in detail. For this case, a simple and
readable analytical expression is obtained and discussed.

Physical motivation of this work is that there are surface
models widely employed in electromagnetic scattering from
natural surfaces that do not comply with Papa and Lennon’s
paper [1]. Two cases are of relevance and merit to be referred
to as surfaces whose correlation is not differentiable at the
origin and fractal surfaces.

The first case is widely illustrated in pertinent literature
(see [3, Appendix 2B]) which reads “ bell-shaped curve
generated by the Gaussian correlation function does not occur
very often. Instead, many angular scattering coefficient curves
appear to follow an exponential shape generated by the expo-
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nential correlation function . This is a correlation function
used very often in practice.” As a matter of fact, the more
useful function in practical application is a combination of an
exponential and a Gaussian function which, again, does not
fulfill the incoherence theorem [3].

The second case pertains to fractal surfaces. Electromagnetic
scattering from natural surfaces modeled by fractal surfaces
has provided remarkable results [4], [5]. These surfaces show a
correlated height first and second derivatives at the same point.
A physical motivation is given by the well-known persistence
and antipersistence behavior [9], [10]. As a consequence, the
results illustrated in this paper are preliminary to the case of
rough surface modeled in terms of fractal surfaces [4].

The paper is organized as follows. In Section II, the general
solution to the problem is determined and a comparison
with previous relevant results is accomplished. In Section III,
the general solution is specified under some usually verified
hypothesis; the small slope regime is investigated in detail and
compared to what is illustrated in [1]. Finally, in Section IV,
conclusions are reported.

II. GENERAL SOLUTION

In this section, we determine the expression of the surface
mean radius of curvature as defined in [1]

(2)

wherein is the mean curvature [1], [11]:

(3)

In (3), is the joint probability density function (pdf)
of first and second derivatives of the height profile 1 at
zero displacement.2

In the classical case, evaluation of (3) is made possible by
assuming that the joint pdf can be factorized by pos-
tulating indipendency of and [1]. Unfortunately,
this is not always the case [3], [5], even in situations of interest
for the applications [3]–[8]. If the mutual correlation between

and is zero, this does not imply in general their
independency, but for the Gaussian case, where also
and are Gaussian as well. In the following, we restrict
ourselves to the Gaussian case and generalize computation of
the mean curvature (3) to the case of correlated and

. This is, for example, the case of some fractal surfaces.
To evaluate the integral of (3), we exploit an appropriate

linear transformation that factorizes the joint (Gaussian) pdf’s
of (3). We define the mutual correlation coefficientbetween

and as follows:

(4)

1We consider the one-dimensional (1-D) case in accordance to what
examined in [1].

2Evaluation of the mean radius of curvature at a given point is of interest.
Accordingly, the joint correlation function in the same point, i.e., at zero
displacement [1], [11] must be used in (3).

and apply the following transformation:

(5)

with . Note that generally the quantities appearing
in (4) may depend on for the nonhomogenous case. The case
of [1] is recovered by letting equal to zero.

The two new Gaussian processesand are independent.
In fact, their mutual correlation coefficient is given by

(6)

where and are the standard deviation ofand , respec-
tively. As a consequence, the random processesand are
uncorrelated and, being Gaussian, they are also independent.
Their pdf’s are completely characterized by knowledge of their
variances

(7)

We make use of the transformation of (5) in (3) and we get

(8)

the Jacobian of the transformation being unitary.
Although the transformation of variables of (5) allows

factorization of the joint pdf , it does not allow to
factorize the integral of (8), at variance of the classical case
[1]. This makes evaluation of the mean curvature by far less
immediate.

To proceed further, we first evaluate the inner integral in
the variable

(9)

wherein

(10)

is the error function [12].
The first term of (9) is of Gaussian type and, therefore,

formally similar to the one encountered in the classical case
[1]. It turns out to be dependent onvia and , see (5) and
(7), and it reduces to the classical case only and if only .
The second term in (9) is a new one which vanishes for .
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Substituting (9) in (8) and evaluating the outer integral in
the variable, we finally get

(11)

Equation (11) is the main result of the present work: it
is a generalized expression for the mean curvature and it
can be numerically and even analytically evaluated in some
appropriate slope ( ) regimes [1].

Equation (11) is an extension of the classical result [1].
In fact, (11) allows to evaluate the conditions of validity of
the Kirchhoff approximation even for a nonclassical Gaussian
rough surface, whose first and second derivatives at the same
point are not statistically independent. This implies that (11)
fully extends results reported in [1] to a much wider class
of random surfaces. In particular, (11) applies to the relevant
scattering surfaces illustrated in the introduction.

The first term of (11), i.e., the term containing the hyper-
geometric confluent function of second type , is identical
to the one present in the classical case, but for the presence
of ; if is equal to zero, this term reduces to the expression
described in [1] and reported under (1). The presence of
is due to the lack of restricting assumption on the height
correlation function. The second term appearing in (11) is
a totally new one, not predicted by the classical analysis
conducted in [1]. Notwithstanding, the complexity of (11) is
on the same footing of the classical one [see (1)] because
numerical evaluation of requires computation of a 1-D
integral.

Equation (11) may be satisfactory on the speculative view-
point, but it is of limited practical comprehension because its
dependence on surface parameters is rather involved. This is
also true for the first term only, therefore for the classical
formulation.

Comparison of (11) with the classical case (1) is in or-
der. This is accomplished by numerically solving the inte-
grals appearing in the formulation. Fig. 1 shows the ratio

versus parametrized for different values of
from 0.025 up to 10.0. Such values have been chosen in

order to best represent the different slope regimes. Note that
0.25 is usually considered as the limit value for the small
slope regime [8], [13].

This numerical analysis shows that in the small slope
regime the classical approach overestimates the mean radius
of curvature whereas in the large slope regime it underestimate
it. This result is emphasized for largevalues. This behavior
of at small and large regimes is congruent
with the appropriate asymptotic expansions [6] of (11). These
expansions benefit of formula 13.1.8 and 13.5.11 of [6] and of
the limiting behavior of the Gaussian function in the second
term of (11). In particular, if , we have

(12)

Fig. 1. Graph ofhjKji=hjKji�=0 versus� parametrized for different values
of �0. From top to bottom�0 is equal to: 0.025, 0.25, 0.50, 1.00, 2.00, 10.0.

and for

(13)

As final comments to (11) and Fig. 1, note that an increase
(or decrease) of the mean radius of curvature implies a similar
increase (or decrease) of the upper electromagnetic wavelength
consistent with the Kirchhoff approximation. Examination
of Fig. 1 shows that the small slope regime is the most
critical because the classical approach overestimates the mean
radius of curvature, thus, wrongly suggesting applicability of
Kirchhoff approximation. For this and other reasons illustrated
in the following, in Section III we detail (11) to the relevant
case of the small slope regime [1], [13].

III. SPECIAL SOLUTION: THE SMALL SLOPE REGIME

In this section, we specify the general result expressed
by (11) to the small slope regime [1]. This has three main
motivations. First, rough surfaces satisfying the small slope
regime are of relevance in remote sensing as quoted in [13].
Second, in the small slope regime PO (physical optic) applies
and scattering can be evaluated in a closed analytical form
[1], [13]. This allows to relate statistics of the scattered field
to surfaces parameters [2]. Third, in the small slope regime
a simple and readable analytical expression of the mean
curvature can be obtained.

Expansion of the two terms appearing in (11) for small
values of is in order. For the first term by using formula
13.5.2 of [6] we get

(14)

where

and is the Landau symbol.
In the classical case, a similar expression has been derived

[1] and can be retrieved from (14) by setting and
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. Accordingly, (14) is much more general. Note that
the presence of the factor in the reminder of the
series generally improves validity of its truncation compared
to the classical case.

The second term of (11) can be evaluated, in the same
hypothesis, by noting that for small value of the Gaussian
term in the integral is concentrated around the origin. Accord-
ingly, we can expand the irrational term in the integral of (11)
around

(15)

thus getting

(16)

By making use of the result [12]

(17)

with the identifications

(18)

we have for the first term in (16)

(19)

For evaluating the subsequent terms, we differentiate both
members of (17), thus obtaining

(20)

and we get

(21)

Similarly,

(22)

and

(23)

This procedure could be continued, thus generating a series
expansion in of the integral of (16).

We are now in a position to present the expansion of the
mean curvature (11) in powers of : it is sufficient to collect
equal order terms in the expansions of the first term (14) and
of the second term (19), (21), (23) and add them together.

To the zero-order (to ) we get

(24)

which reduces to the mean curvature zero-order approximation
of the classical case asis set equal to zero [1].

Equation (24) generalizes the result presented in [1] to
surface profiles whose first- and second-order derivatives (at
the same point) are correlated. In this case, the presence of

give rises to an extra factor quadratic in. The resulting
surface mean curvature increases with. In the limit of ,
the mean curvature is magnified by a factor 2 with respect to
the case of uncorrelated (at the same point) first and second
derivatives of . As a consequence, at least in principle, the
higher the more questionable is the applicability of Kirchhoff
approximation in the small slope regime due to the increase
of .

To the first-order in we get

(25)

wherein and are functions of only and turn out to
be both unitary whenever . Hence, for the classical case
( ) we again have a mean curvature approximation in total
accordance with known results [1]. We note also that in the
classical case the zero-order approximation for can be
tolerated whenever . Conversely, the presence of

and modifies this latter conclusion. In fact, we have now
that the zero-order approximation for can be tolerated
whenever .

To the second-order in we get

(26)
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Graphs ofhjKji(0)=hjKji, hjKji(1)=hjKji, hjKji(2)=hjKji versus�0 for different values of�. The�0 values range from 0 to 0.25 (small slope
regime). Curves from (a)–(f) are parametrized in� from zero to one with a 0.2 step. The curves relevant tohjKji(0)=hjKji are always the top curves whereas
the curves relevant tohjKj(1)=hjKji are always the bottom curves. The intermediate ones corresponds tohjKji(2)=hjKji.

wherein is also a functions of only which turns out to be
unitary whenever .

As a first general comment note that in the small slope
regime, we get to an explicit analytical expression of the
mean curvature which is also simple and readable. Complexity
of the obtained expressions of the mean curvature is on the
same footing of the classical results [1]. In fact, (24)–(26),
obviously polynomial in show (not obviously) coefficients
polynomial in . This is by no means straightforward since
(11) has an involved dependence on. Similarly to the
classical results we have now a dependence on, , and on
the additional parameter only. As a consequence, although
the height correlation is general, in order to evaluate the mean

curvature we only require the extra knowledge of one simple
parameter.

Let us now further examine the behavior of the differ-
ent approximations expressed by (24)–(26). Accordingly, in
Fig. 2 we have parametrized the plots of ,

, versus for different values
of . The values always range from 0 to 0.25. Note that the
limiting value has been chosen according to what advocated
in literature [7], [12] and implies the first-order term in
to be at least one order of magnitude smaller than the zero-
order term. Curves are parametrized in; Fig. 2(a)–(f) is
relevant to values of from zero to one in steps of 0.2. The
curves relevant to are always the top curves,
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TABLE I
THIS TABLE IS RELEVANT TO THE SMALL SLOPE REGIME. THE

COLUMN e
(o)
1%

REPORTS THEUPPER�0 VALUES SUCH THAT

THE ZERO-ORDER APPROXIMATION FOR hjKji EXHIBITS AN ERROR

NOT LARGER THAN 1%. THE OTHER TWO COLUMNS REFER

TO THE FIRST AND SECOND-ORDER APPROXIMATION, RESPECTIVELY

whereas the curves relevant to are always
the bottom curves. The intermediate ones corresponds to

. As a result, we always have that and
overestimate whereas underestimates

it. Estimation of the mean curvature improves as soon as
we move to higher order approximations. Whenand/or
increase all approximations achieve poorer results.

Assessment of validity of results is given in Table I, which
presents the value for which the considered order
approximation results in a 1% error (absolute value) with
reference to the exact value numerically evaluated by means
of (11). In the zero-order approximation, this always happens
for very small values, thus confirming the need to move to
higher order approximations. In particular, the second-order
approximation reaches the 1% error (absolute value) always
around or beyond the small slope limit value.

As a final comment we note that successive approximations
of appear as an alternate series converging to the
true of (11). To get a safe condition on the mean
radius of curvature we must consider an approximation which
underestimates . The zero-order approximation has been
shown to be too poor and we had better to move to the
second-order one.

IV. CONCLUSIONS

A generalization of the conditions for the validity of Kirch-
hoff approximation in the electromagnetic scattering from
rough surfaces is presented. Kirchhoff approximation is veri-
fied for surfaces whose radius of curvature is large compared to
the electromagnetic wavelength of the incident field. In order
to be useful this latter relationship must be expressed in terms
of some meaningful parameters characterizing the surface
profile, thus leading to appropriate conditions of validity. In
this paper, this has been accomplished for the general case of
a Gaussian surface with general correlation function, thus not
ensuring applicability of the incoherence theorem [1]. This is
relevant to surface models widely employed in electromagnetic
scattering. This includes surfaces not satisfying Papa and
Lennon’s hypothesis reported by Fung [3] as well as fractal
surfaces.

For any slope regime, the new general analytical expression
of the mean curvature exhibits a complexity not higher than
the classical one [see (1), (11)] and, similarly to classical
results, the mean curvature depends onand and on the

additional parameter [see (4)]. Numerical results show that
significant differences with respect to the classical results may
be encountered. In particular, it has been shown that in the
small slope regime classical results are critical because they
overestimate of the mean radius of curvature. For this reason
and for its relevance to applications the small slope regime
has been studied in detail.

The result is a polynomial expression in both , the
variance of the derivative of the surface profile, and, the
square of the correlation coefficient. This is by no means
straightforward due to the rather involved dependence on

in the general formulation that encompasses a confluent
hypergeometric-related function, an irrational one, and an
integral without a primitive. Quite surprisingly, the small slope
regime expressions for the mean curvature exhibit again, a
complexity not higher than that encountered in the classical
case. The mean curvature expression to the zero-order in

is too poor, whereas the first-order expression leads to
overestimate . Accordingly, in order to get a safe condition
on we must move to the second-order approximation,
which is rather good in general and, in any case, always
underestimates the true mean radius of curvature.
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Federico II, Italy, in 1987.

In 1987, he joined the Department of Electronic
Engineering, Electromagnetic Division, at the Uni-
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