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Abstract—Electromagnetic scattering is often solved by ap- class of height correlation functions [1], [3] and for the cases
plying Kirchhoff approximation to the Stratton-Chu scattering  of certain fractal surfaces [4], [5].

integral. In the case of rough surfaces, it is usually assumed The mean radius of curvatut® is expressed in terms of

that this is possible if the incident electromagnetic wavelength is - . -
small compared to the mean radius of curvature of the surface. the usual statistical parameters, i.e., the characteristics of the

Accordingly, evaluation of the latter is an important issue. This Surface profile. In the case of uncorrelated height first and
paper generalizes the groundwork of Papa and Lennon [1] by second derivatives at the same point, the mean radius of
computing the mean radius of curvature for Gaussian rough curvatureR is an integral (hypergeometric) function of surface
surfaces with no restriction on its correlation function. This is

. . ! : parameters [1]
an interesting extension relevant to a variety of natural surfaces.

Relations between the surface parameters and the mean radius o -1
of curvature are determined and particular attention is paid to R=|-—F75 U(()_57 0, ()_5/0/2) (1)
the relevant small slope regime. 2\/ro

_ Index Terms—Electromagnetic scattering, Kirchoff approxima-  \whereins’2 ando’’? are the variances of the height surface first
tion, rough surfaces. and second derivatives, respectively, dnd) is the confluent
hypergeometric function of the second kind [6].

For the relevant case of small slope regime [7], [8] the

T HE problem of the electromagnetic scattering from nagypression ofiz given by (1) can be analytically evaluated in
ural surfaces is a matter of great relevance from boffi cjosed form [1]

theoretical and application points of view [2]. This problem | et ys emphasize that derivation of (1) is possible if the
is of interest in many research areas, including remote segssmed height correlation function is differentiable, stationary
ing of the environment, medical imaging, sonar, optics, anghq rotationally invariant with odd-order derivatives that van-
astronomy. . _ish at the origin [1]. This implies that’(z)="(z)) is equal to

A ppp_ular and effective approach caII_s for the surface hagf@ro'zl(_) andz"(-) being the height function first and second
description by means of random functions, usgally Gauss"'ﬂbrivatives and-) the ensemble average [1]. Such a result is
and for the evaluation of the mean scattered field, or densifyey element in the simplification operated in deriving (1). In
power, by means of an approximation of the scattering integigk foliowing, it will be referred to as the inchoerence theorem.
in terms of local boundary conditions. This allows the use | this paper, we show that it is possible to evaluate the mean
of Fresnel plane wave reflection coefficients and is consistghiys of curvature also for correlated height first and second
with Kirchhoff approximation. This procedure is reasonablgerivatives at the same point, i.e., for any height correlation
whenever the mean radius of curvatufieof the surface is fynction. This is done by extending the approach given in
much greater than the incident electromagnetic waveleAgthi1) we show that the general solution exhibits an extra term

It is customary to model the surface height by means of @mpared to the classical case. A full discussion on such a
zero-mean Gaussian random function whose height correlatiggyy general result is presented. In particular, the small slopes
belong Fo a restricted class of functions [1]. In this paper, Wegime is examined in detail. For this case, a simple and
generalize the groundwork of Papa and Lennon [1] to the cagg dable analytical expression is obtained and discussed.
of Gaussian surface height whose first and second derlvatlve@hysicm motivation of this work is that there are surface
at the same point can be correlated, i.e., no restriction to hgdels widely employed in electromagnetic scattering from
height correlation is requested. This is relevant for a certgidiyral surfaces that do not comply with Papa and Lennon’s

paper [1]. Two cases are of relevance and merit to be referred
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nential correlation function--. This is a correlation function and apply the following transformation:
used very often in practice.” As a matter of fact, the more n=2z
useful function in practical application is a combination of an {
exponential and a Gaussian function which, again, does not
fulfill the incoherence theorem [3]. with x = po’’ /o’. Note that generally the quantities appearing

The second case pertains to fractal surfaces. Electromagngfi4) may depend or for the nonhomogenous case. The case
scattering from natural surfaces modeled by fractal surfacsfs[1] is recovered by letting equal to zero.
has provided remarkable results [4], [5]. These surfaces show &'he two new Gaussian processgand( are independent.
correlated height first and second derivatives at the same pointfact, their mutual correlation coefficieptis given by
A physical motivation is given by the well-known persistence

(n(x), ¢(=)) Lo

" / ()

S RN R IS
(=2"—p—=2=2"—rz
o

and antipersistence behavior [9], [10]. As a consequence, thes = = ({(# (x), 2" (x)) — po’'c”) =0
results illustrated in this paper are preliminary to the case of TnI¢ TnI¢
rough surface modeled in terms of fractal surfaces [4]. (6)

The paper is organized as follows. In Section I, the gener\ﬁherean ando, are the standard deviation gfand¢, respec-
solution to the problem is determined and a compariscmay As a consequence, the random procesgesd ¢ are
with previous relevant results is accomplished. In Section Wncorrelated and, being Gaussian, they are also independent.

the general solution is specified under some usually verifiggleir qrs are completely characterized by knowledge of their
hypothesis; the small slope regime is investigated in detail apgi-nces

compared to what is illustrated in [1]. Finally, in Section IV,
conclusions are reported. {Un

2_ 2
ag =o"2(1 - p?).

a

(7)

Il. GENERAL SOLUTION We make use of the transformation of (5) in (3) and we get

In this section, we determine the expression of the surface

mean radius of curvature as defined in [1 K|\ = _
. 0D =gy | e = ()
. —==|d{d 8
wherein {|K|) is the mean curvature [1], [11]: /_Oo 6 el exp 202 Cdn ®

(K = <‘ 2" > the Jacobian of the transformation being unitary.
[1+ (2)2]3/2 Although the transformation of variables of (5) allows
oo poo |2 P factorization of the joint pdfp(n, ¢), it does not allow to
= /_oo /_oo Wp(z ;20 dz"dz". () factorize the integral of (8), at variance of the classical case
[1]. This makes evaluation of the mean curvature by far less
In (3), p(#’, z”") is the joint probability density function (pdf) immediate.
of first and second derivatives of the height profier)! at To proceed further, we first evaluate the inner integral in

zero displacemertt. the variable¢
In the classical case, evaluation of (3) is made possible by - y
assuming that the joint pgf(z’, 2”") can be factorized by pos- ¢ 4w exp <_C_> ¢
tulating indipendency of/(x) and z”(z) [1]. Unfortunately, J 20?
this is not always the case [3], [5], even in situations of interest 00 ¢ —ry
for the applications [3]-[8]. If the mutual correlation between = / (¢ + kn) exp <——2> d¢ — / (¢ + km)
Z'(xz) and 2" (z) is zero, this does not imply in general their —rn 20¢ —oo
independency, but for the Gaussian case, where #lso) ¢?
andz”(x) are Gaussian as well. In the following, we restrict - exp <_P> ¢
ourselves to the Gaussian case and generalize computation of ¢

the mean curvature (3) to the case of correlat§d:) and a2 (rm)?
(). This is, for example, the case of some fractal surfaces. — 27¢ ¢XP |~ 207
To evaluate the integral of (3), we exploit an appropriate _
linear transformation that factorizes the joint (Gaussian) pdfgherein
of (3). We define the mutual correlation coefficignbetween 2 X
y " . erf(y) = — exp(—s?)ds (10)
Z'(z) and z”(x) as follows: J7 Jo

T P

+ \/%rma( erf <\/_2L0<77> (9)

(4) is the error function [12].
The first term of (9) is of Gaussian type and, therefore,
'We consider the one-dimensional (1-D) case in accordance to wifarmally similar to the one encountered in the classical case
examined in [1]. . . . T1]. It turns out to be dependent grvia o and«, see (5) and
Evaluation of the mean radius of curvature at a given point is of intere t7 di d he cl ical | d if
Accordingly, the joint correlation function in the same point, i.e., at zer ), and it re UCE§ tot e Classica Case_on y ar? if @iy 0.
displacement [1], [11] must be used in (3). The second term in (9) is a new one which vanishegfer0.

O—/ O—//
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Substituting (9) in (8) and evaluating the outer integral in 2} ) o'=0.025
the n variable, we finally get =025
1—p? 0.5 i o'=0.50
<|K|>:”_ P U< .0, —0> 1.5
20" 2(1 - p?) o'=1.00
——— X 77 o
1+ 772]3/2 P\ 752 o'=2.00
cerf| —————— dn. (12) 051
\/_0 V1= p? o'=10.0
Equation (11) is the main result of the present work: it P
0.2 0.4 0.6 0.8 1

is a generalized expression for the mean curvature and it

can be numerically and even analytically evaluated in sorﬁ@ 1. Graph of | K)/(|K1),=0 versus parametrized for different values

appropriate slopeo(Q) regimes [1]. f o’. From top to bottonv’ is equal to: 0.025, 0.25, 0.50, 1.00, 2.00, 10.0.
Equation (11) is an extension of the classical result [1].

In fact, (11) allows to evaluate the conditions of validity ofnd foro’ — oo

the Kirchhoff approximation even for a nonclassical Gaussian (K1) _

rough surface, whose first and second derivatives at the same (|K|)p=0

point are not statistically independent. This implies that (11) As final comments to (11) and Fig. 1, note that an increase

fully extends results reported in [1] to a much wider clas®r decrease) of the mean radius of curvature implies a similar

of random surfaces. In particular, (11) applies to the relevantrease (or decrease) of the upper electromagnetic wavelength

scattering surfaces illustrated in the introduction. consistent with the Kirchhoff approximation. Examination
The first term of (11), i.e., the term containing the hypeif Fig. 1 shows that the small slope regime is the most

geometric confluent function of second typ&.), is identical critical because the classical approach overestimates the mean

to the one present in the classical case, but for the preserggius of curvature, thus, wrongly suggesting applicability of

of p; if pis equal to zero, this term reduces to the expressi®irchhoff approximation. For this and other reasons illustrated

described in [1] and reported under (1). The presence ofin the following, in Section Il we detail (11) to the relevant

is due to the lack of restricting assumption on the heigbtse of the small slope regime [1], [13].

correlation function. The second term appearing in (11) is

a totally new one, not predicted by the classical analysis |||. SPEcIAL SOLUTION: THE SMALL SLOPE REGIME

conducted in [1]. Notwithstanding, the complexity of (11) is

on the same footing of the classical one [see (1)] becaubs

numerical evaluation of/(-) requires computation of a 1- Dmotlvations First, rough surfaces satisfying the small slope

integral. regime are of relevance in remote sensing as quoted in [13].

Equation (11) may be satisfactory on the speculative V'e:gecond in the small slope regime PO (physical optic) applies

point, but it is of limited practical comprehension because ifs

dependence on surface parameters is rather involved. Thi and scattering can be evaluated in a closed analytical form
P . P C ?js [13]. This allows to relate statistics of the scattered field

also true for the first term only, therefore for the classic

; 0 surfaces parameters [2]. Third, in the small slope regime
formulation.

Comparison of (11) with the classical case (1) is in Oa simple and readable analytical expression of the mean

der. This is accomplished by numerically solving the Intequrvature can be obtained.
P Y y 9 Expansion of the two terms appearing in (11) for small

grals appearing in the formulation. Fig. 1 shows the ratlo 2
(|K|>/(|K|>,,_0 versusp parametrized for different values of 3|Lée25 2;0[6] Iiv:en ;;jer For the first term by using formula

o’ from 0.025 up to 10.0. Such values have been chosen in

order to best represent the different slope regimes. Note thats” / 0.5

0.25 is usually considered as the limit value for the small 957 <0 2, 0, o2(1— ))

slope regime [8], [13]. N
This numerical analysis shows that in the small slope = {Z 1/2 (3/2)n [ 20/2(1_p2)]"

regime the classical approach overestimates the mean radius n!

of curvature whereas in the large slope regime it underestimate .

it. This result is emphasized for largevalues. This behavior + 0[20"(1 — pQ)]AH} (14)

of (|K|}/{|K]|),=0 at small and large regimes is congruent

with the appropriate asymptotic expansions [6] of (11). Thegghere

expansions benefit of formula 13.1.8 and 13.5.11 of [6] and of

1—p2. (13)

In this section, we specify the general result expressed
(11) to the small slope regime [1]. This has three main

the limiting behavior of the Gaussian function in the second (P)n=pp+1)--(p+tn-1), (po=1
term of (11). In particular, ilb’ — 0, we have ando(-) is the Landau symbol.
(K 14, (12) In the classical case, a similar expression has been derived

(| K1) p=o0 [1] and can be retrieved from (14) by setting= 0 and
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N = 1. Accordingly, (14) is much more general. Note thaSimilarly,
the presence of the factdr— p* < 1 in the reminder of the e }
series generally improves valldlty of its truncation compareﬁ[ erf(Bzx) exp(—pz?)z® dx
to the classical case. 5 - 5 "

The second term of (11) can be evaluated, in the same— 2 G(B, m) _ f 15p" + 2043 f"w
hypothesis, by noting that for small value @ the Gaussian o2 8  pd(p+ B3R
term in the integral is concentrated around the origin. Accorgnd

1

ingly, we can expand the irrational term in the integral of (11) 15 o > n? 0
P 7 exp V2o nlan

(22)

aroundn = 0 44/27 o 2072 N>
U S A _ 1 o305 — 1054 + 15p 23
[1+ 7232 Sl A +o(n") (15) N (30° 14 %). (23)

This procedure could be continued, thus generating a series
expansion ins’2 of the integral of (16).
n? We are now in a position to present the expansion of the
<—2a—,2> mean curvature (11) in powers of?: it is sufficient to collect

thus getting

pa

[1 +772]3/2 - ! !
equal order terms in the expansions of the first term (14) and

Cerf 1 dn of the second term (19), (21), (23) and add them together.
V20! 1/ _ To the zero-order (t&'?) we get

1"

SLavEN <—"W-+%W>em<—£%> (KD = T (1+7) (24)

which reduces to the mean curvature zero-order approximation
erf(ﬁﬁ) dn. (16)  of the classical case asis set equal to zero [1].

20" P Equation (24) generalizes the result presented in [1] to
surface profiles whose first- and second-order derivatives (at
the same point) are correlated. In this case, the presence of

15 p give rises to an extra factor quadratic s The resulting
2/ 1+ 2 surface mean curvature increases witin the limit of p? = 1,

(17) the mean curvature is magnified by a factor 2 with respect to
the case of uncorrelated (at the same point) first and second
derivatives ofz(-). As a consequence, at least in principle, the
higherp the more questionable is the applicability of Kirchhoff

= R 8= p (18) approximation in the small slope regime due to the increase
2072’ o'\/2(1 = p?) of (|K|).
To the first-order ino’? we get

By making use of the result [12]

/000 erf(Bz) exp(—px?)zdr = G(B, u) =
Re(p) > —Re(5%), Re(n) >0

with the identifications

we have for the first term in (16)

O_// 3
(KO = = [(1 + %) = 5L+ 407 — pt)o"

X rf P d "
nep< 2'2> <\/5 L=p? n) ! =2 {A——B ’2} (25)

\/27r
_ " . .
=V ;" P (19)  wherein A and B are functions ofp only and turn out to
. . _ be both unitary whenever = 0. Hence, for the classical case
For evaluating the subsequent terms, we differentiate bqih— o) we again have a mean curvature approximation in total

pa

members of (17), thus obtaining accordance with known results [1]. We note also that in the
oo classical case the zero-order approximation {fdf|) can be
/ erf(Bzr) exp(—pua?)z® dr tolerated whenevess’?/2 < 1. Conversely, the presence of
0 ) A and B modifies this latter conclusion. In fact, we have now
_ _9G(8, 1) _B_3p+2p (20) that the zero-order approximation fK’|) can be tolerated
I 4 p2(u+ p52)3/2 whenever3Bs/2 /24 < 1.
To the second-order in’? we get
and we get
(IKD® =2 |14 ) = 204402 = g0 4 2
3 o oo < 772 ) = o p B 1Y p o 3
Il R S
2r 0 20 o 11 4 6\
N 14+7p" — —p " +p° o
erf< P 77) n = i O_//O_/Q(p4 . 3p2) 3
- ° 1 4
V20! /1~ p? Vin =7 {A _ 3Bty 4—‘)ca’4} (26)
(21) V2 2 8
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Fig. 2. Graphs of | K)(® /(| K1), (| K)"V /(| K]}, {|K|)?) /{|K|) versusc’ for different values ofp. The ¢’ values range from 0 to 0.25 (small slope
regime). Curves from (a)—(f) are parametrizegifrom zero to one with a 0.2 step. The curves relevar(1116|)‘\°J/(|Ix'|) are always the top curves whereas
the curves relevant t¢|K|(") /(| K|) are always the bottom curves. The intermediate ones correspor(l& [ /(| K]).

whereinC is also a functions of only which turns out to be curvature we only require the extra knowledge of one simple
unitary wheneverp = 0. parameter.

As a first general comment note that in the small slope Let us now further examine the behavior of the differ-
regime, we get to an explicit analytical expression of thent approximations expressed by (24)—(26). Accordingly, in
mean curvature which is also simple and readable. Complexitig. 2 we have parametrized the plots ¢ ) /(| K]),
of the obtained expressions of the mean curvature is on &YV /(| K|), (| K|)® /{|K|) versusc’ for different values
same footing of the classical results [1]. In fact, (24)-(26f p. Thes’ values always range from 0 to 0.25. Note that the
obviously polynomial in'? show (not obviously) coefficients limiting value has been chosen according to what advocated
polynomial in p2. This is by no means straightforward sincén literature [7], [12] and implies the first-order term irf?

(11) has an involved dependence en Similarly to the to be at least one order of magnitude smaller than the zero-
classical results we have now a dependence’on’, and on order term. Curves are parametrized gn Fig. 2(a)—(f) is

the additional parametegr only. As a consequence, althougtrelevant to values op from zero to one in steps of 0.2. The
the height correlation is general, in order to evaluate the meauves relevant td|K|)(%)/(|K|) are always the top curves,
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TABLE |
THIS TABLE |S RELEVANT TO THE SMALL SLOPE REGIME. THE
COLUMN eg‘u’/i RePORTS THEUPPER 0’ VALUES SUCH THAT
THE ZERO-ORDER APPROXIMATION FOR (| K|) ExHIBITS AN ERROR
NOT LARGER THAN 1%. THE OTHER TwO COLUMNS REFER
TO THE FIRST AND SECOND-ORDER APPROXIMATION, RESPECTIVELY

additional parametep [see (4)]. Numerical results show that

significant differences with respect to the classical results may
be encountered. In particular, it has been shown that in the
small slope regime classical results are critical because they
overestimate of the mean radius of curvature. For this reason

Table = - - and for its relevance to applications the small slope regime

P 1% 1% 1% has been studied in detail.

22 22: gzg >g§§ The result is a polynomial expression in bot, the
variance of the derivative of the surface profile, the

0.4 0.07 0.19 0.25

' ' ' ' square of the correlation coefficient. is is no means

0.6 0.06 0.19 0.24 X f th I t ﬁ _t Th b

08 0.06 017 0 strglghtforward due to thg rather involved dependence on

1 0.06 0.17 0.22 p in the general formulation that encompasses a confluent

hypergeometric-related function, an irrational one, and an

integral without a primitive. Quite surprisingly, the small slope
whereas the curves relevant (¢K|_>(l)/<|K|> are always regime expressions for the mean curvature exhibit again, a
the bottom curves. The intermediate ones corresponds cKplexity not higher than that encountered in the classical
(IK])®) /(| K]). As a result, we always have thi#(|)(” and case. The mean curvature expression to the zero-order in
(|K)'* overestimate]| K|) whereas(|K|)*) underestimates 2 ig too poor, whereas the first-order expression leads to
it. Estimation of the mean curvature improves as s0On ggerestimate. Accordingly, in order to get a safe condition
we move to higher order approximations. Whemnd/ore’  on R we must move to the second-order approximation,

increase all approximations achieve poorer results. which is rather good in general and, in any case, always

Assessment of validity of results is given in Table I, whichyyderestimates the true mean radius of curvature.

presents thes’ value for which the consideredv order
approximation results in a 1% error (absolute value) with
reference to the exact value numerically evaluated by means
of (11). In the zero-order approximation, this always happenE]
for very smalls’ values, thus confirming the need to move to
higher order approximations. In particular, the second-ordd#l
approximation reaches the 1% error (absolute value) alwa)f§]
around or beyond the small slope limit value.

As a final comment we note that successive approximatioré!
of (|K|) appear as an alternate series converging to the
true (K|} of (11). To get a safe condition on the meanls]
radius of curvature we must consider an approximation which
underestimatesi. The zero-order approximation has beeng
shown to be too poor and we had better to move to the
second-order one. [

8]
IV. CONCLUSIONS [9]
A generalization of the conditions for the validity of Kirch-
S . : 10]
hoff approximation in the electromagnetic scattering fror{w
rough surfaces is presented. Kirchhoff approximation is vefti]
fied for surfaces whose radius of curvature is large compared to
the electromagnetic wavelength of the incident field. In ordesy
to be useful this latter relationship must be expressed in terms
of some meaningful parameters characterizing the surfdéd
profile, thus leading to appropriate conditions of validity. In
this paper, this has been accomplished for the general case of
a Gaussian surface with general correlation function, thus not
ensuring applicability of the incoherence theorem [1]. This |
relevant to surface models widely employed in electromagne
scattering. This includes surfaces not satisfying Papa a
Lennon’s hypothesis reported by Fung [3] as well as fract
surfaces.

For any slope regime, the new general analytical expressi
of the mean curvature exhibits a complexity not higher th
the classical one [see (1), (11)] and, similarly to classic
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