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Time-Domain Version of the
Physical Theory of Diffraction

Peter M. Johansen

Abstract—A time-domain version of the equivalent edge cur-
rent (EEC) formulation of the physical theory of diffraction
is derived. The time-domain EEC’s (TD-EEC’s) apply to the
far-field analysis of diffraction by edges of perfectly conducting
three-dimensional (3-D) structures with planar faces illuminated
by a time-domain plane wave. By adding the field predicted by
the TD-EEC’s to the time-domain physical optics (TD-PO) field,
a significant improvement is obtained compared to what can be
achieved by using TD-PO alone. The TD-EEC’s are expressed as
the integral of the time-domain fringe wave current (the exact
current minus the TD-PO current) on the canonical wedge along
truncated incremental strips. Closed-form expressions for the
TD-EEC’s are obtained in the half-plane case by analytically
carrying out the integration along the truncated incremental strip
directly in the time domain. In the general wedge case, closed-
form expressions for the TD-EEC’s are obtained by transforming
the corresponding frequency-domain EEC’s to the time domain.
The TD-EEC’s are tested numerically on the triangular cylinder
and the results are compared with those obtained using the
method of moments in combination with the inverse fast Fourier
transform.

Index Terms—Electromagnetic transient scattering, physical
theory of diffraction.

I. INTRODUCTION

T HE recent advances in the development of short-pulse
(broad-band) communication and radar systems have

given rise to an increasing interest in the electromagnetic
community to formulate time-domain versions of existing
frequency-domain techniques for scattering calculations. In
particular, time-domain versions of various high-frequency
techniques applying to perfectly electrically conducting (PEC)
structures with edges have been developed. Among those
are the time-domain geometrical theory of diffraction (TD-
GTD) and the time-domain uniform theory of diffraction (TD-
UTD) for a straight PEC wedge, both derived by Veruttipong
[1], and a more general TD-UTD formulation, which also
applies to a curved PEC wedge derived by Rousseau and
Pathak [2]. Moreover, a time-domain version of the physical
optics (TD-PO) approximation has been presented by Sun
and Rusch [3] and applied by Sun to the analysis of large
reflector antennas [4]. Since the PO approximation is based
on radiation from currents it is not subject to the limitation
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of the ray-optical techniques, namely that they do not apply
to configurations for which no isolated stationary points exist
on the structure. However, when analyzing structures with
edges, the PO approximation usually fails to provide an
accurate prediction of the scattered field because it does
not (among other things) take into account edge diffraction.
In the frequency domain and within the framework of the
physical theory of diffraction (PTD) [5], a high-frequency
approximation to the edge-diffracted field can be obtained from
a line integral along the illuminated part of the edges of the
structure by employing one of the closely related approaches
known as elementary edge waves [6], incremental length
diffraction coefficients [7]–[9], or equivalent edge currents
[10]–[13]. A corresponding time-domain version of the PTD
can be used to significantly improve the result of what can be
obtained using TD-PO alone. However, to the knowledge of
the author, such a time-domain version of the PTD has not
yet been reported.

The purpose of this paper is to derive a time-domain version
of the PTD. This derivation will be based on Michaeli’s
physical theory of diffraction equivalent edge currents (EEC’s)
[12]. The time-domain EEC’s (TD-EEC’s) apply to the far-
field analysis of three-dimensional (3-D) PEC structures with
planar faces and they take into account the entire first-order
edge diffraction and part of the second-order edge diffraction.
To enhance the physical insight, the derivation of the TD-
EEC’s is, whenever possible, carried out directly in the time
domain. In this way it clearly appears that the TD-EEC’s are
based on the time-domain fringe wave (TD-FW) current (the
total current minus the TD-PO current) on the canonical wedge
and how this current is used to approximate the exact current
on 3-D PEC structures.

The paper is organized as follows. In Section II, the TD-
FW current on a PEC wedge illuminated by an impulsive
plane wave is presented. In Section III, it is explained how
the sum of the TD-PO and TD-FW currents on the wedge
can be used to approximate the current on 3-D PEC structures
with planar faces and straight edges. The far fields radiated
by the TD-PO and TD-FW currents on this structure are
found in Section IV-A. These far fields, called the TD-PO
and TD-FW far fields, respectively, are expressed in terms
of traditional surface radiation integrals. To obtain a TD-
EEC’s formulation, the surface radiation integral representing
the TD-FW far field is cast into another double integral in
Section IV-B. The outer integral is along the illuminated part
of the edges of the structure and the inner integral, representing
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Fig. 1. Three-dimensional view of the PEC wedge under plane-wave illu-
mination.

the TD-EEC’s, is along truncated incremental strips on the
surface. To obtain closed-form expressions for the TD-EEC’s,
the inner integral must be calculated analytically. This closed-
form analytical calculation is carried out in Section IV-C for
the half plane. In the general wedge case, the TD-EEC’s are
most easily derived by transforming the known FD-EEC’s
[14], and this is performed in Section IV-D. In Section V, the
TD-EEC’s are tested numerically on the triangular cylinder.
Finally, in Section VI, the general conclusions of the paper
are summarized. This paper is a condensed version of [15].

II. THE TIME-DOMAIN FRINGE WAVE

(TD-FW) CURRENT ON THE WEDGE

Consider the PEC wedge in Fig. 1 with the two faces
denoted by and , respectively. The wedge is illuminated
by an impulsive plane wave and is positioned in a usual
rectangular coordinate system with the origin and with
the axis coinciding with the edge of the wedge. Face
is located in the plane and is the outward normal unit
vector to this face. The exterior wedge angle is denoted by

and it is assumed that . The direction of
propagation of the incident plane wave is expressed as

where
is the polar angle and the azimuthal angle.

The TD-FW current on face of the wedge under
illumination by the impulsive plane wave

(1)

(2)

is now presented. In (1) and (2), is the Dirac delta
function, the position vector, the time, ,

a real constant vector, the intrinsic impedance of the
medium, the speed of light in the medium, and the time
for which the wave front of the incident plane wave reaches
the origin . The TD-FW current is derived in [15, Appendix
A], [16] using the method of inspection [17], [18, p. 24].

By this method the frequency-domain expression for the FW
current is cast into the form of a Laplace integral such that
the desired TD-FW current is obtained by inspection. In [15],
an alternative derivation of the TD-FW current is carried out
using the spectral theory of transients [19]–[21]. The result is

(3)

with , ,

(4)

(5)

(6)

(7)

(8)

(9)

being the unit-step function, and . The subscript
in indicates that the TD-FW current is the impulse re-

sponse. If the TD-FW current is desired for a time dependence
of the incident plane wave, the convolution

(10)

must be carried out. It is noted that (3) for the TD-FW current
is exact for all observation points and for all observation
times . By adding to the TD-PO current

the TD-FW current, the total current on faceis obtained.
The current on face can be obtained from the result for face

by substitution of variables [15, p. 20].

III. T HE TIME-DOMAIN CURRENT ON 3-D PEC STRUCTURES

In this section it is explained how the induced current on
a 3-D PEC structure can be approximated using the TD-PO
and TD-FW currents on the canonical wedge. The validity of
the approximation is also addressed. When the current on the
3-D PEC structure is known, the far field from this current can
easily be obtained, as will be shown in Section IV-A.

To simplify the following explanations, a simple 3-D PEC
structure is now considered in Fig. 2. The top surface of
this 3-D structure is a square plate with sidelengthand it has
four straight edges and four corners .
The structure is positioned in a global rectangular
coordinate system with origin at the center of and



JOHANSEN: TIME-DOMAIN VERSION OF THE PHYSICAL THEORY OF DIFFRACTION 263

Fig. 2. The simple 3-D PEC structure. The top surface is a square plate with
side lengthL. The current atP described by�ŷgyg with 0 < yg < L=8 is
approximated using four canonical wedges located at the four straight edges
E1; � � � ; E4.

with the axis parallel to and the axis parallel to .
The structure is illuminated by a plane wave described by

(11)

(12)

where , are defined as in (1) and (2) and the time
function equals zero for . For simplicity, the
direction of propagation is chosen to be normal to ,
i.e., . The total current at an observation
point with position vector where

is desired. This current consists of contributions from
several scattering mechanisms. The arrival times of these
contributions depend on the direction of propagationand
the location of . With the above choices of and , the
arrival time of the PO contribution and the arrival times

, , of the contributions from the
two corners , , and the four edges satisfy that

, , and . For
later observation times there will be contributions from the
other corners and from multiple interactions between edges
and corners, but these contributions are not of interest for the
discussion below.

For the current induced at on the planar surface
is the same as the current induced on an infinite canonical

plane which is tangential to because the contributions
from the edges and corners have not reachedyet. The
exact current on this tangent plane is the TD-PO current.
Consequently, for the TD-PO current is theexact
current, i.e., .1 The
TD-PO current is zero for because no contributions
have reached yet.

In the interval , the four straight edges
contribute to . The contributions from

1If k̂ had been chosen so thatSSq is not illuminated then~Kpo(~r; t) = 0.

these edges are the same as if each edge had been replaced
by the edge of an infinitely long, straight wedge appropriately
conforming to the structure because the contributions from the
corners have not reached yet. Hence, for the TD-
PO current plus the sum of the TD-FW currents
excited from the canonical wedges located at the four edges is
the exactcurrent, i.e., .
For the determination of , a local rectangular

coordinate system similar to the one in Section II is
introduced at edge , where , see Fig. 2. The
origin of the system coincides with the stationary
point at edge ; the first contribution from edge to the
current at stems from this stationary edge point.2 The sum
of the TD-FW currents from the four edges is

(13)

where if edge is illuminated and simultane-
ously, a stationary point at that edge exists, and
otherwise (in this example, for all edges). Introducing

as the position vector to in the global coordinate
system, the contribution from is

(14)

where is obtained using the canonical wedge
solution (3). The time delay parameter appearing in (3),
which is used to account for the fact that the wave front of the
incident plane wave arrives at each edge at different times, is

.
For the contributions from and are present

and since these contributions have not been taken into account,
the current can no longer be determined exactly using
the canonical wedge. Due to the lack of an exact closed-form
solution to the canonical corner problem, the contributions
from the corners can only be determined approximately, and
not exactly [22].

The fact that the planar surfaces and straight edges of the
considered 3-D PEC structure have the same shape as the
surface and edge of the canonical wedge is the reason why

can be determined exactly for . If the surface
is curved, the TD-PO current at an observation pointis
not exact even before contributions from edges and corners
arrive. However, the TD-PO current is a good approximation
to the exact current for early times and this approximation
becomes better when the radius of curvature of the surface
goes to infinity. The accuracy of the TD-PO current on a
curved surface for later observation times is good if most of
the energy of is at sufficiently high frequencies. Similarly,
if the structure under consideration has curved edges it is
expected that the TD-FW current excited from the straight

2If k̂ had been chosen so thatEi is not illuminated or the combination of
k̂ andP had been chosen so that there is no stationary point at edgeEi, this
edge is assumed not to contribute to the current atP . This assumption is the
reason for the�i-function appearing in (13).
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Fig. 3. The truncated incremental strip on faceA of the 3-D PEC structure.
The direction of the strip is chosen so that the points on the strip have the
integration pointO as stationary edge point.

canonical wedge becomes a good approximation to the exact
current from the curved edge if has most of the energy
at sufficiently high frequencies.

IV. DERIVATION OF THE TD-EEC’s

In this section, the TD-EEC’s are derived. The derivation
is performed in three steps. First, in Section IV-A, the TD-
PO and TD-FW far fields are expressed in terms of surface
radiation integrals of the TD-PO and TD-FW currents found
in Section III. Second, the TD-EEC formulation is established
in Section IV-B by rewriting the TD-FW surface radiation
integral. Third, explicit expressions for the TD-EEC’s are
obtained in Section IV-C for the half plane and in Section IV-
D for the wedge.

A. The TD-PO and TD-FW Far Fields

The configuration under consideration is a more general 3-
D PEC structure with planar faces and straight edges than
that considered in Section III. The global rectangular
coordinate system from Section III is also applied, see Fig. 3,
and the incident plane wave is given by (11) and (12). The
electric field due to the induced surface current densityis
at an observation point described by in the far-field
limit given by [23]

(15)

where the far-field pattern is

(16)
Herein, denotes the surface of the structure andis the
position vector to the integration point.

By substituting in (16) with the TD-PO current
[ on illuminated faces,

being the outward normal unit vector of the surface, and zero
otherwise] the TD-PO far field is obtained. This procedure has
been proposed previously by Sun and Rusch [3].

The predicted scattered field can be significantly improved
by adding to the TD-PO far field the TD-FW far field which
is the field radiated by the TD-FW currents excited from
the edges of the structure. A straightforward procedure for
obtaining the TD-FW field is to apply the surface radiation
integral (16) with replaced by the sum of the TD-FW
currents excited from the edges found in (13)

(17)

where is defined in (14). Recall that
if edge is illuminated and simultaneously, a

stationary point (with respect to the integration point) at
that edge exists and otherwise.

According to the discussion in Section III, the TD-PO
current at an observation point on a planar surface is exact
until edge contributions arrive. Also, the sum of the TD-PO
current and the TD-FW currents from straight edges is exact
until the corners contribute. However, when considering the
far field from structures with planar faces and straight edges
illuminated by a plane wave, neither the TD-PO far field nor
the sum of the TD-PO and TD-FW far fields is exact at any
time. This is due to the fact that edge and corner currents
are excited as soon as the plane wave hits the structure.
However, the contributions from corners and from multiple
interactions between edges and corners are less significant at
high frequencies such that the sum of the TD-PO and TD-
FW far fields constitutes a good approximation to the exact
scattered field if the time function has most of the energy
at sufficiently high frequencies.

Using (17) the first-order edge diffraction is calculated
exactly from straight edges.3 As will be explained after (31),
this is not the case for the second-order diffraction. It is
observed that for each integration point of the surface radiation
integral in (17) one has to find the edges for which a stationary
point exists. In the next section, a more efficient procedure,
leading to the TD-EEC’s, is presented.

B. Rewriting the TD-FW Far-Field Surface Radiation Integral

The basic idea for obtaining a more efficient procedure
for calculating the TD-FW far field is the following. Instead
of starting with the surface radiation integral in (17), one
starts with another double integral which is derived from (17)
[10]. The outer integral of this double integral is along the
illuminated part of the edges of the structure. For each

3The fact that the first-order edge diffraction is calculated exactly does
not imply that the first-order diffraction constitutes the exact far field (cf. the
previous paragraph).
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integration point of the edge, which in the following will be
called theleading edge, the inner integral is performed over
the TD-FW current excited from that edge along two truncated
incremental strips, one on each of the two adjoining faces
and of the edge, with lengths and , respectively. The
truncated strips are terminated at thetrailing edges, see Fig. 3.
The directions of the incremental strips, and , must be
chosen so that the points on these incremental strips have
as stationary edge point. Introducing the local coordinate
system from Sections II and III with the origin at, in the
plane of face , normal to face , and parallel to the
edge, the TD-FW far field is

(18)

with

(19)

Herein, is the position vector to in the global system.
Using the local system, the unit vectoris expressed as

where is the polar angle
and the azimuthal angle. The direction of propagation of the
plane wave is
as in Section II. The difference between (17) and (18) is that
in (17), the location of the stationary edge points is determined
as a function of the integration points on the surface whereas
in (18), the integration points on the surface are determined as
a function of the location of the stationary edge points.

The calculation of the TD-FW far field would be far less
time consuming if the integral along the truncated incremental
strips in (19) could be evaluated analytically. It is possible to
start with (19) for an analytical evaluation of this inner integral.
However, to obtain a time-domain version of the EEC’s, (19)
is rewritten before an analytical evaluation is initiated. To
this end, the incremental TD-FW far field is expressed
in terms of truncatedequivalent magnetic and electric edge
currents, and , as

(20)

where and are the sums of two contributions, one
from each of the faces and

and (21)

Henceforth, the superscriptsand refer to the contributions
from faces and , respectively. In the following, only

the contribution from face will be derived in detail. The
contribution from face is obtained from the result from face

using the substitutions following (31).
The contribution from face to the truncated TD-EEC’s is

obtained by equating (19) and (20) [24, eqs. (3)–(7)]

(22)

(23)

with

(24)

It is important to note that no approximations have been
applied to transform (19) into (20). An analytical evaluation
of in (22) and in (23) makes it possible to calculate

simply from a line integral along the illuminated part of
the edges of the structure using (18) and (20). The truncated
TD-EEC’s and have no physical meaning. They
should be considered as mathematical quantities, which, when
integrated using (18) and (20), give exactly the same result as
the TD-FW surface radiation integral (17). They represent the
integral of the TD-FW current excited from the leading edge
along a truncated incremental strip with length.

It is convenient to express the truncated EEC’s in terms
of the difference between theuntruncatedTD-EEC’s and the
correction TD-EEC’s [14]

and
(25)

The contribution from face to the untruncated TD-EEC’s is

(26)

(27)

with

(28)

The contribution from face to the correction TD-EEC’s is

(29)

(30)

with

(31)

The contribution from face is obtained from the expressions
for face by replacing with , with ,

with , with , and with . The
untruncated TD-EEC’s, and , express the integral
of the TD-FW current excited from the leading edge along
an untruncated incremental strip extending to infinity. Thus,
when applying the untruncated TD-EEC’s no information
of the trailing edge is provided and consequently, only the
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first-order edge diffraction is accounted for. The correction
TD-EEC’s and express the integral of the TD-
FW current along another untruncated strip extending from the
point of truncation at the trailing edge to infinity. Hence, the
correction TD-EEC’s provide information of the trailing edge,
and consequently, second-order edge diffraction is introduced.
However, due to the abrupt truncation of the TD-FW current
at the trailing edge, this second-order edge diffraction is not
exact as it is the case for the first-order diffraction.

The desired closed-form expressions for the truncated TD-
EEC’s can now be obtained by carrying out an analytical
calculation of the integrals in (28) and in (31).
This analytical calculation is performed in the next section for
the half-plane case, i.e., when .

C. The TD-EEC’s for the Half Plane

By inserting (3) for the TD-FW current on face in the
expressions for in (28) and in (31), setting

, calculating the integrals, and adding the contribution
from face (which in this case coincides with face) the
following result is obtained [15, Appendix C]:

sign (32)

sign

(33)

sign

(34)

sign

(35)

In these expressions, the quantities, , , and are
defined by

(36)

(37)

(38)

where , and

(39)

General aspects of these TD-EEC’s are discussed following
(58).

D. The TD-EEC’s for the Wedge

When the exterior wedge angle differs from , the
calculation of the integrals in (28) and in
(31) directly in the time domain is more complicated than
in the half-plane case. Therefore, the TD-EEC’s for
are most easily derived by transforming the corresponding
FD-EEC’s to the time domain.4 These FD-EEC’s are derived
by Johansen in [14] by integrating the FD-FW current along
truncated incremental strips. The untruncated FD-EEC’s are
calculated exactly in closed form whereas a high-frequency
approximation is applied to obtain closed-form expressions for
the correction FD-EEC’s. When , the correction FD-
EEC’s associated with face are valid only for
, being the wave number.
The relation between the frequency domain and the time

domain is given by the Fourier transform pair

(40)

(41)

4This is the only step in the derivation of the TD-EEC’s that is not
performed directly in the time domain.
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where in indicates a frequency-domain quantity. With
the application of this Fourier transform pair the Maxwell
equations in the frequency domain assume the same form as
those of harmonically oscillating fields with the time factor

. Consequently, the frequency-domain solution to a
given problem is, except for the dimension, identical to the
solution obtained by assuming harmonically oscillating fields.

The untruncated FD-EEC’s are given by [14, eqs. (4) and
(5)]

(42)

(43)

The frequency independent quantities and are

(44)

(45)

with defined in (36), being the solution to
determined by

(46)

where indicates the complex conjugate Log Arg
and Arg . The square root in (46) is defined by

.
(47)

Although the complex quantity appears in the constants
in (44) and in (45), these two constants can be shown to be
real [15, p. 62]. Therefore, the untruncated TD-EEC’s can now
be derived directly by applying the inverse Fourier transform
(41) to the frequency-domain expressions (42) and (43)

(48)

(49)

These are the desired expressions for the untruncated TD-
EEC’s.

The correction FD-EEC’s are given by [14, Eqs. (21)–(22)]

(50)

(51)

for when . The frequency indepen-
dent quantities are

sign

(52)

sign

(53)

(54)

In (50) and (51), the constants , are defined in (37)
and (38), respectively, and the frequency dependent function

is

(55)

The calculation of the correction TD-EEC’s requires the
transformation of in (55) (which involves the Fresnel
integral) to the time domain. The transformation is most easily
carried out by applying the inverse analytic Fourier transform
and this is performed in [2, Appendix] yielding

(56)
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where is defined in (39). It is now a simple task to obtain
the correction TD-EEC’s from (50) and (51)

(57)

(58)

Since these correction TD-EEC’s are obtained by Fourier
transforming a high-frequency expression to the time domain,
the correction TD-EEC’s are most accurate for early times
[25], i.e., for .

This completes the derivation of the untruncated TD-EEC’s
and the correction TD-EEC’s for face. The contribution
from face is obtained from the results for face in (48),
(49), (57), and (58) using the substitutions following (31). The
truncated TD-EEC’s, obtained from (25), are then integrated
along the illuminated part of the edge using (18) and (20)
to obtain the TD-FW far field. Finally, this TD-FW far field
is added to the TD-PO far field to yield an approximation to
the exact scattered field.

Note that the time dependence of the untruncated TD-EEC’s
is given by the delta function and consequently, the convolu-
tion with an arbitrary time function is easily performed.
By combining the above equations with the expression for

in (20) it is seen that the untruncated TD-EEC’s at the
integration point on the edge with position vector start
to contribute to the far field at time .
The correction TD-EEC’s start to contribute to the far field at
time . Since the untruncated
TD-EEC’s account exactly for the first-order diffraction from
straight edges, the field produced by the TD-EEC’s is the exact
first-order diffraction in the time period . For

the approximate correction TD-EEC’s contribute and,
therefore, the field produced by the TD-EEC’s does no longer
constitute the exact edge diffraction. When —that is,
when and simultaneously, —then , that
is, the second-order edge diffraction contributes at the same
time as the first-order diffraction. Furthermore, when
and simultaneously, the untruncated TD-EEC’s have a
nonremovable singularity (the Ufimtsev singularity [12]), but
this singularity is cancelled by the corresponding singularity
of the correction TD-EEC’s. Note that the determination of the
times and for a general structure is more complicated than
in the simple case above where only one integration point is
considered.

It follows from the discussions in Sections III and IV-A that
the TD-PO far field is calculated exactly from planar faces
and that the truncated TD-EEC’s predict the first-order far-
field diffraction exactly from straight edges. It also follows
that the truncated TD-EEC’s can be applied to structures with
curved edges, but in this case, the first-order diffraction is
no longer calculated exactly. However, the approximation of
the TD-EEC’s to the exact first-order diffraction is expected
to become better if the time function of the plane
wave contains sufficiently high frequencies. In addition, since
the contributions to the far field from corners and multiple
interactions between edges and corners in general becomes
less significant for high frequencies, the sum of the TD-PO

Fig. 4. The triangular cylinder with edgesE1; E2; E3. The origin of the
coordinate system used in the far-field calculation coincides with edgeE1.
The directions of incidence and observation are given by'0 = 239

� and
' = 200

�, respectively.

and the TD-FW far fields becomes a better approximation to
the exact scattered far field if has most of the energy at
sufficiently high frequencies.

Through a straightforward calculation it can be shown that
the above expressions for the truncated TD-EEC’s for
reduce to the half-plane result of Section IV-C, which was
derived directly in the time domain. Note that for the
correction TD-EEC’s are valid for all observation times, and
not only for early times. It should be born in mind, however,
that the correction TD-EEC’s do still not account exactly for
the second-order edge diffraction due to the neglection of the
current excited at the trailing edge.

V. NUMERICAL EXAMPLE

In this section, the truncated TD-EEC’s are verified nu-
merically for the infinitely long, triangular cylinder shown in
Fig. 4. Although the TD-EEC’s are derived to analyze 3-D
structures it is convenient to consider this 2-D structure for a
first numerical verification. The reason is that the triangular
cylinder contains no corners and, thus, the sum of the TD-PO
and TD-FW far fields can be exact for a relatively long period
of time.

The incident plane wave is impinging upon the struc-
ture from the direction given by and the time
dependence of the plane wave is Gaussian, i.e.,

in (11) and (12). Both TM and TE
polarization (with respect to the cylinder axis) of the incident
plane wave is considered. The far-field pattern—defined by

as , describing
the far-field observation point—normalized with respect to

is now considered in the direction . This
far-field pattern is calculated using both the sum of the TD-
PO far field and the field from the truncated TD-EEC’s and
also the method of moments (MOM) in combination with the
inverse fast Fourier transform. The MOM is applied to the FD
magnetic field integral equation for TE polarization and to the
FD electric field integral equation for TM polarization [26].
A dual-surface formulation has been applied to avoid spurious
resonances [27].

Figs. 5 and 6 show the far-field patterns for TE and TM
polarization, respectively. In both cases it is seen that the TD-
PO far field is very inaccurate because TD-FW currents are
excited as soon as the plane wave hits the cylinder. However,
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Fig. 5. The far-field pattern for the configuration shown in Fig. 4. The plane
wave is TE polarized.

Fig. 6. The far-field pattern for the configuration shown in Fig. 4. The plane
wave is TM polarized.

when the field from the truncated TD-EEC’s is added, a
significant improvement is observed in Figs. 5 and 6. This
observation, in combination with the fact that the plane wave
has most of its energy at low frequencies, illustrates that the
TD-EEC’s predict the first-order edge diffraction exactly and
not just as an early-time approximation. For large observation
times the discrepancy between the MOM solution and the
TD-PO plus TD-EEC’s solution is caused by two facts. First,
the second-order diffraction is not accounted for exactly and
second, the diffraction of order higher than two is not included
in the TD-EEC’s.

VI. CONCLUSIONS

TD-EEC’s have been derived to analyze the edge diffraction
in the far field from 3-D PEC structures with planar faces
illuminated by a time-domain plane wave. Using the TD-
EEC’s, the first-order edge diffraction is calculated exactly
from straight edges and approximately from curved edges.
The second-order edge diffraction is not calculated exactly for
two reasons. First, only part of the second-order diffraction is
taken into account due to the neglection of the current excited
at the trailing edge. Second, the correction TD-EEC’s—which
account for the second-order diffraction—are valid only for
early times after the arrival of the associated wave front.
Although the TD-EEC’s account exactly for the first-order
diffraction from straight edges, corner contributions will, in
general, be present at the same time as the first-order diffrac-
tion. Consequently, the sum of the TD-PO far field and the far
field from the TD-EEC’s constitutes only an approximation to
the exact scattered field. This approximation becomes better if

the incident plane wave has most of its energy at sufficiently
high frequencies.

An interesting future task is the formulation of TD-EEC’s
for Hertzian dipole illumination of 3-D PEC structures with
edges. In this case, the time-domain current on the canonical
wedge can also be calculated exactly [28] and the formulation
in Section IV-A of the present paper can directly be used to
calculate the far field. It would also be interesting to obtain
the time-domain analog of a recently formulated PTD method
[29], which applies to the analysis of curved PEC surfaces.
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