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Time-Domain Version of the
Physical Theory of Diffraction

Peter M. Johansen

Abstract—A time-domain version of the equivalent edge cur- of the ray-optical techniques, namely that they do not apply
rent (EEC) formulation of the physical theory of diffraction  to configurations for which no isolated stationary points exist

is derived. The time-domain EEC's (TD-EEC's) apply to the = e srycture. However, when analyzing structures with
far-field analysis of diffraction by edges of perfectly conducting

three-dimensional (3-D) structures with planar faces illuminated ©d9€s, the PO approximation usually fails to provide an
by a time-domain plane wave. By adding the field predicted by accurate prediction of the scattered field because it does
the TD-EEC's to the time-domain physical optics (TD-PO) field, not (among other things) take into account edge diffraction.
a significant improvement is obtained compared to what can be | the frequency domain and within the framework of the
achieved by using TD-PO alone. The TD-EEC’s are expressed as . sioa| theory of diffraction (PTD) [5], a high-frequency
the integral of the time-domain fringe wave current (the exact . . . . .

current minus the TD-PO current) on the canonical wedge along @PProximation to the edge-diffracted field can be obtained from
truncated incremental strips. Closed-form expressions for the a line integral along the illuminated part of the edges of the
TD-EEC’s are obtained in the half-plane case by analytically structure by employing one of the closely related approaches
carrying out the integration along the truncated incremental strip  qown as elementary edge waves [6], incremental length

directly in the time domain. In the general wedge case, closed- . . e -
form expressions for the TD-EEC's are obtained by transforming diffraction coefficients [7]-[9], or equivalent edge currents

the corresponding frequency-domain EEC’s to the time domain. [10]-[13]. A corresponding time-domain version of the PTD
The TD-EEC's are tested numerically on the triangular cylinder can be used to significantly improve the result of what can be

and the results are compared with those obtained using the obtained using TD-PO alone. However, to the knowledge of
method of moments in combination with the inverse fast Fourier author, such a time-domain version of the PTD has not
transform.
yet been reported.
Index Terms—Electromagnetic transient scattering, physical  The purpose of this paper is to derive a time-domain version
theory of diffraction. of the PTD. This derivation will be based on Michaeli's
physical theory of diffraction equivalent edge currents (EEC’s)
[12]. The time-domain EEC’s (TD-EEC’s) apply to the far-
[. INTRODUCTION field analysis of three-dimensional (3-D) PEC structures with

HE recent advances in the development of short-pulBénar faces and they take into account the entire first-order
T (broad-band) communication and radar systems ha®dge diffraction and part of the second-order edge diffraction.
given rise to an increasing interest in the electromagneti@ enhance the physical insight, the derivation of the TD-
community to formulate time-domain versions of existingfEC’s is, whenever possible, carried out directly in the time
frequency-domain techniques for scattering calculations. #®main. In this way it clearly appears that the TD-EEC's are
particular, time-domain versions of various high-frequendjased on the time-domain fringe wave (TD-FW) current (the
techniques applying to perfectly electrically conducting (PE@gtal current minus the TD-PO current) on the canonical wedge
structures with edges have been developed. Among th@wl how this current is used to approximate the exact current
are the time-domain geometrical theory of diffraction (TDon 3-D PEC structures.

GTD) and the time-domain uniform theory of diffraction (TD- The paper is organized as follows. In Section Il, the TD-
UTD) for a straight PEC wedge, both derived by VeruttipongW current on a PEC wedge illuminated by an impulsive
[1], and a more general TD-UTD formulation, which als@lane wave is presented. In Section Ill, it is explained how
applies to a curved PEC wedge derived by Rousseau dh& sum of the TD-PO and TD-FW currents on the wedge
Pathak [2]. Moreover, a time-domain version of the physicabn be used to approximate the current on 3-D PEC structures
optics (TD-PO) approximation has been presented by Swith planar faces and straight edges. The far fields radiated
and Rusch [3] and applied by Sun to the analysis of lardey the TD-PO and TD-FW currents on this structure are
reflector antennas [4]. Since the PO approximation is bastedind in Section IV-A. These far fields, called the TD-PO
on radiation from currents it is not subject to the limitatiomnd TD-FW far fields, respectively, are expressed in terms
of traditional surface radiation integrals. To obtain a TD-
EEC's formulation, the surface radiation integral representing

Manuscript received September 30, 1997; revised May 26, 1998. the TD-FW far field is cast into another double integral in
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By this method the frequency-domain expression for the FW
current is cast into the form of a Laplace integral such that
the desired TD-FW current is obtained by inspection. In [15],
- an alternative derivation of the TD-FW current is carried out
~~ using the spectral theory of transients [19]-[21]. The result is

o — — B
ng(F, P = cU(e(t —tq) — k )

=0 Qx sin? fy sinh G(t)
s . <Hz0(§: sin By + 2 cos By cosh B(t))
ace.e ¢

Qo p(#)) — 2 220 o<¢o,ﬁ<t>>) @)

Fig. 1. Three-dimensional view of the PEC wedge under plane-wave illu- Z

mination.
with H,g,=2%" .[T—io, Eqg=2- Eo,
the TD-EEC's, is along truncated incremental strips on the B¢ — 4 sin By + 2 cos fo (4)
surface. To obtain closed-form expressions for the TD-EEC's, N
) . : . e(t —tq) — z cos Bo

the inner integral must be calculated analytically. This closed- cosh 3(t) = 2 sin ) Bt) =0 (5
form analytical calculation is carried out in Section IV-C for 0
the half plane. In the general wedge case, the TD-EEC's are Qo, A(t)) =K (4o +,7r’ A#)) — K(do —m, 5(t)) (6)
most easily derived by transforming the known FD-EEC's  k(y, 4(t)) = sin py @)
[14], and this is performed in Section IV-D. In Section V, the cosh p(t) — cos py
TD-EEC's are tested numerically on the triangular cylinder.  C(¢o, B(t)) = L(¢o + =, B(t)) — L(¢o — 7, B(t)) (8)
Finally, in Section VI, the general conclusions of the paper Ll B(£)) — —sinh pA(t) sinh B(¢) ©)
are summarized. This paper is a condensed version of [15]. (W, A1) = cosh pA(t) — cos pip

II. THE TIME-DOMAIN FRINGE WAVE U(z) being the unit-step function, and= = /2. The subscript

(TD-FW) CURRENT ON THE WEDGE §in Kg‘w indicates that the TD-FW current is the impulse re-

Consider the PEC wedge in Fig. 1 with the two facesPonse. If the TD-FW current is desired for a time dependence
) (t) of the incident plane wave, the convolution

denoted byA and B, respectively. The wedge is illuminated?
by an impulsive plane wave and is positioned in a usual

rectangularyz coordinate system with the origit and with KTe(m ) = KL(7, t) % g(t)
the » axis coinciding with the edge of the wedge. Fade e, N
is located in therz plane andj is the outward normal unit = /_Oo K0 (T t—t)g(t) dt (10)

vector to this face. The exterior wedge angle is denoted by

€2 and it_is Aassumed_thqt <& = 2m Thg direction of must be carried out. It is noted that (3) for the TD-FW current
propagationk of the incident plane wave is expressed §§ eyact for all observation pointg and for all observation
k= —isinfiocosdo — §sin fosindo + Zcosfo Where o imegy By adding to the TD-PO currery x H(7, t)U(r —

is the polar angle an%ﬁ}kwﬂ the azimuthal angle. ¢o) the TD-FW current, the total current on fadds obtained.

. Th.e T,D'FW currc_antKé _on face A of the wedge under The current on facé#? can be obtained from the result for face
illumination by the impulsive plane wave A by substitution of variables [15, p. 20].

¢ In this section it is explained how the induced current on

i F) a 3-D PEC structure can be approximated using the TD-PO

. R ko7 - -
Ei(7, t) = Bob <t oty — 7) (1) lll. THE TIME-DOMAIN CURRENT ON 3-D PEC SRUCTURES

(2) and TD-FW currents on the canonical wedge. The validity of
the approximation is also addressed. When the current on the
3-D PEC structure is known, the far field from this current can

is now presented. In (1) and (2§(z) is the Dirgc delta easily be obtained, as will be shown in Section IV-A.

function, 7 the position vectort the time,Hy = Z~k x E,,  To simplify the following explanations, a simple 3-D PEC

E, a real constant vecto? the intrinsic impedance of the structure is now considered in Fig. 2. The top surfagg of

medium, ¢ the speed of light in the medium, angl the time this 3-D structure is a square plate with sidelengthnd it has

for which the wave front of the incident plane wave reachdeur straight edge#, ---, E4 and four cornerg’;, .-, Cy.

the originO. The TD-FW current is derived in [15, AppendixThe structure is positioned in a global rectanguiat,z,

A], [16] using the method of inspection [17], [18, p. 24].coordinate system with origi, at the center ofSs, and

Hi(7 1) :H06<t —tg—
C
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) A these edges are the same as if each edge had been replaced
c kY %“‘ 5 by the edge of an infinitely long, straight wedge appropriately
) y = — . Ca conforming to the structure because the contributions from the
e % & . corners have not reachdd yet. Hence, fort < t“* the TD-
: 5 rlo, ) 4 PO current plus the sudt/* t°t(7, ¢) of the TD-FW currents
E " ,z/ 9y o excited from the canorlical wedggs located at the four edges is
by o ' Ss B the exactcurrent, i.e. K (7, t) = K#°(7, t) + K/ "7, t).
G2 T Cs For the determination of{/*:*°!(7, t), a local rectangular

x;4;7; coordinate system similar to the one in Section Il is
introduced at edge;, wherei = 1, ---, 4, see Fig. 2. The
origin O; of the z;v; 2z, system coincides with the stationary
point at edgeFE;; the first contribution from edgé; to the
current atP stems from this stationary edge pofrithe sum

Fig. 2. The simple 3-D PEC structure. The top surface is a square plate with the TD-FW currents from the four edges is
side lengthL. The current af” described by—g,y, with 0 < y, < L/8 is
approximated using four canonical wedges located at the four straight edges
Ey, -, Ey.

4
Koot ) =3 xilk, KT Pir ) (13)
=1

with the =, axis parallel toE; and they, axis parallel toEs.

The structure is illuminated by a plane wave described by Wheréxi(k, @) = 1 if edge E; is illuminated and simultane-
ously, a stationary point at that edge exists, angk, ) =0

i ﬂ) otherwise (in this exampley; = 1 for all edges). Introducing

(11) g, as the position vector t@; in the global coordinate
system, the contributiod /> £ from E; is

_’i =g — I% T — — £,
H(7, t) = Hog <t— , ) (12) KT (7 ) = KI“(F — g, t) * g(t) (14)

gvhere[?{w(F— 7g,, t) Is obtained using the canonical wedge
solution (3). The time delay parametey appearing in (3),
which is used to account for the fact that the wave front of the
incident plane wave arrives at each edge at different times, is
ta = k- 7_’E7
For t > ¢ the contributions fromC; and C, are present
d since these contributions have not been taken into account,
% current[?(?, t) can no longer be determined exactly using
the canonical wedge. Due to the lack of an exact closed-form
solution to the canonical corner problem, the contributions
rom the corners can only be determined approximately, and
not exactly [22].
The fact that the planar surfaces and straight edges of the

El E2 Eg Cl E4 J— E2 Cz J— Cl
PP QT < dT, = 6, and i = £ For considered 3-D PEC structure have the same shape as the

later observation times there. W|II_ be coqtr|but|ons from thgurface and edge of the canonical wedge is the reason why
other corners and from multiple interactions between edg 7, 1) can be determined exactly for< <. I the surface

and corners, but these contributions are not of interest for H€curved, the TD-PO current at an observation pdhis
discussion below.

Fort < +F1 the current induced aP on the olanar surface not exact even before contributions from edges and corners
S is th<e same as the current induced on anp'nf'n'te canon'ar{ive' However, the TD-PO current is a good approximation
Sq | u indu intini %' the exact current for early times and this approximation

?rl(;?]e tk\:\:e h'gz ':Stzr;%ergc')?lnéiS%;Veecanu;erégim%c;j;'bl_f_t;}%nsbecomes better when the radius of curvature of the surface
9 i oes to infinity. The accuracy of the TD-PO current on a

exact current on this tEangent plane s the TD-PO currergtwved surface for later observation times is good if most of
Consequently, for < ¢*t the TD-PO current is thexact

o - iy the energy of;(¢) is at sufficiently high frequencies. Similarly
= _ PO _ S (8= 1 y
_(I:_lgrgrét, I'er.rjztgi’ t)z : If(t(7’t()) b_ 22 x nH (7 rtlyt;ithri]en if the structure under consideration has curved edges it is
) current 1S zero 1ot < ecause ho co utio Sexpected that the TD-FW current excited from the straight
have reached” yet.

In the interval t¥1 < ¢ < <1, the four straight edges _ 2If k had been chosen so that is not illuminated or the combination of
FEy, ---, E4 contribute to K(i’, t), The contributions from % andP had been chosen so that there is no stationary point at Edgghis
A . edge is assumed not to contribute to the curred® al his assumption is the
Lif & had been chosen so théit, is not illuminated thenk?°(7, t) = 0.  reason for they;-function appearing in (13).

where E, H, are defined as in (1) and (2) and the tim
function ¢(¢) equals zero fort < 0. For simplicity, the
direction of propagation’% is chosen to be normal t6s,,
e, k= —%4. The total currentk (7, t) at an observation
point P with position vectori” = —g,y, where0 < y, <
L/8 is desired. This current consists of contributions frorQln
several scattering mechanisms. The arrival times of th
contributions depend on the direction of propagatiomnd
the location of P. With the above choices of and P, the
arrival time t?° of the PO contribution and the arrival time
t, i = C.,Cs, By, ---, Ey4, Of the contributions from the
two cornersCy, Cs, and the four edges satisfy th&t® <
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By substituting X (77, t) in (16) with the TD-PO current
Kro(7 ) [Kro(7, t) = 2ax H' (7', t) onilluminated faces,

7 being the outward normal unit vector of the surface, and zero
otherwise] the TD-PO far field is obtained. This procedure has
been proposed previously by Sun and Rusch [3].

The predicted scattered field can be significantly improved
by adding to the TD-PO far field the TD-FW far field which
is the field radiated by the TD-FW currents excited from
the edges of the structure. A straightforward procedure for
obtaining the TD-FW field is to apply the surface radiation
integral (16) withI?(F’, t) replaced by the sum of the TD-FW
currents excited from thé&/ edges found in (13)

N
- Z : .
Fm@J):ZE§x<§x/ > xilk, )

Face A

Leading Edge

Trailinf Edge

S =1
Fig. 3. The truncated incremental strip on faéeof the 3-D PEC structure. g = fw, By [ 1 5.7 ,
The direction of the strip is chosen so that the points on the strip have the aK Tt c as
integration pointO as stationary edge point.

17)

canonical wedge becomes a good approximation to the exaglere K./« E: (7', t) is defined in (14). Recall that
current from the curved edge if(¢) has most of the energy . (i, ) = 1 if edge E; is illuminated and simultaneously, a
at sufficiently high frequencies. stationary point (with respect to the integration poiff) at
that edge exists angi(l},F’) = 0 otherwise.
According to the discussion in Section Ill, the TD-PO
IV. DERIVATION OF THE TD-EEC’s current at an observation point on a planar surface is exact

In this section, the TD-EEC’s are derived. The derivatioHntil edge contributions arrive. Also, the sum of the TD-PO
is performed in three steps. First, in Section IV-A, the TDeurrent and the TD-FW currents from straight edges is exact
PO and TD-FW far fields are expressed in terms of surfabtil the corners contribute. However, when considering the
radiation integrals of the TD-PO and TD-FW currents founf@r field from structures with planar faces and straight edges
in Section IIl. Second, the TD-EEC formulation is establishefuminated by a plane wave, neither the TD-PO far field nor
in Section IV-B by rewriting the TD-FW surface radiationthe sum of the TD-PO and TD-FW far fields is exact at any
integral. Third, explicit expressions for the TD-EEC's ardme. This is due to the fact that edge and corner currents

obtained in Section IV-C for the half plane and in Section [vare excited as soon as the plane wave hits the structure.
D for the wedge. However, the contributions from corners and from multiple

interactions between edges and corners are less significant at
. high frequencies such that the sum of the TD-PO and TD-
A. The TD-PO and TD-FW Far Fields FW far fields constitutes a good approximation to the exact
The configuration under consideration is a more general Szattered field if the time functiog(t) has most of the energy
D PEC structure with planar faces and straight edges thansufficiently high frequencies.
that considered in Section Ill. The global rectangutgy,z, Using (17) the first-order edge diffraction is calculated
coordinate system from Section Ill is also applied, see Fig. &actly from straight edgesAs will be explained after (31),
and the incident plane wave is given by (11) and (12). Thhis is not the case for the second-order diffraction. It is
electric field due to the induced surface current denkitys  observed that for each integration point of the surface radiation
at an observation point described By= ss in the far-field integral in (17) one has to find the edges for which a stationary
limit s — oo given by [23] point exists. In the next section, a more efficient procedure,
leading to the TD-EEC's, is presented.

ﬁ(ﬁt——) N . .
E(§’, £) ~ ’ ¢ (15) B. Rewriting the TD-FW Far-Field Surface Radiation Integral

The basic idea for obtaining a more efficient procedure
for calculating the TD-FW far field is the following. Instead

where the far-field pattertf (3, ¢) is of starting with the surface radiation integral in (17), one
starts with another double integral which is derived from (17)

N/ . 9 =(_, ERN y [10]. The outer integral of this double integral is along the
F 0= g ® <$ X/S _K<7 AR )dS " illuminated partI' of the edges of the structure. For each

16
H in S d h f f th i ( h) 3The fact that the first-order edge diffraction is calculated exactly does
erein, enotes the surface of the structure afids the not imply that the first-order diffraction constitutes the exact far field (cf. the

position vector to the integration point. previous paragraph).
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integration pointO of the edge, which in the following will be the contribution from face4 will be derived in detail. The
called theleading edge, the inner integral is performed ovecontribution from faceB is obtained from the result from face
the TD-FW current excited from that edge along two truncated using the substitutions following (31).

incremental strips, one on each of the two adjoining fades The contribution from facei to the truncated TD-EEC's is
and B of the edge, with lengthg* and?, respectively. The obtained by equating (19) and (20) [24, egs. (3)—(7)]
truncated strips are terminated at thaling edges, see Fig. 3.

The directions of the incremental strips! and4?, must be A Sing a4

' ' Mi s = — Zsin f3 L 22
chosen so that the points on these incremental strips Gave T.e Sm/o ing L:° (22)
as stationary edge point. Introducing the loggk coordinate I, =sin /30( ? (; cot B cos ¢L$ §;> (23)
system from Sections Il and Il with the origin &, # in the ’
plane of faceA, 4 normal to faceA, and z parallel to the with A

y . oA
edge, the TD-FW far field is Lhms = K{WW(WA, oy U8 b ) du. (24)
; o c

Flw(s / dFLO(3, 1) = g(t) (18)
It is important to note that no approximations have been

with applied to transform (19) into (20). An analytical evaluation

of Mj! s in (22) andI;} , in (23) makes it possible to calculate

Ffw simply from a line integral along the illuminated part of

7 ‘ the edges of the structure using (18) and (20). The truncated
= s x s~ > i<z TD-EEC’s M;}, and I;+ ; have no physical meaning. They
i=A, B should be considered as mathematical guantities, which, when

integrated using (18) and (20), give exactly the same result as
/ Kf“’ <uaz t+ M)iu dl.  the TD-FW surface radiation integral (17). They represent the
ot ¢ integral of the TD-FW current excited from the leading edge
(19) along a truncated incremental strip with length
It is convenient to express the truncated EEC’s in terms
Herein, 7 is the position vector ta@ in the global system. of the difference between thentruncatedTD-EEC’s and the
Using the local system, the unit vectdris expressed aé = correction TD-EEC’s [14]
& sin 3 cos ¢+ sin 3 sin ¢+ 2 cos 5 wheref is the polar angle
and¢ the azimuthal angle. The direction of propagation of the Ay s = Myr s — Meor. s and I s = Iyr. s — Leor, -
plane wave ig = —#sin B0 cos ¢ — g sin By sin ¢ + 2 cos By 7 7 7 7(25)
as in Section Il. The difference between (17) and (18) is th@ihe contribution from facel to the untruncated TD-EEC's is
in (17), the location of the stationary edge points is determined
as a function of the integration points on the surface whereas M4 _ Zsmﬁo sin ¢ ?TTé (26)
in (18), the integration points on the surface are determined as ng -
a function of the location of the stationary edge points. sin fy (LU’T’ 5 — cot Bcos gLy 6) (27)
The calculation of the TD-FW far field would be far less ’ ’
time consuming if the integral along the truncated increment4t - s oA
strips in (19) could be evaluated analytically. It is possible to g4 = — / ngzm:z <WQA7 p+ ) du. (28)
start with (19) for an analytical evaluation of this inner integral. ’ ¢
However, to obtain a time-domain version of the EEC’s, (1
is rewritten before an analytical evaluation is initiated. Ti
this end, the incremental TD-FW far fieliF]* is expressed N sing 4,
in terms oftruncated equivalent magnetic and electric edge Mg s = — Zsmﬁo inpeens (29)

currents,M+ s and It s, as
g g Igir 5 = sinﬁo( for s — cot 3 cos (7)LCOr 5) (30)

A
Iir,s

he contribution from facei to the correction TD-EEC's is

o, 1 g § - 7 .
AF(5,4) = — <Z§>< (§x§)aIT75<FE, s !E) with _
Az, z fw,xz, z ~ A
k) 5.7 L = K <uu , t+
—‘1-8)(78 MT§<FE,t+S 7E>)dl“ '8 14 8
c

(20) The contribution from facds is obtained from the expressions
for face A by replacing 5y with =7 — 39, 8 with = — 3,
where My s andIr s are the sums of two contributions, ON&s  with Q — ¢o, ¢ with Q — ¢, and I* with 5. The
from each of the facesi and B untruncated TD-EEC'S)/7%,. , andl;},. 5, express the integral
Mps=M2 +ME, and Irs=1I3,+1B, (21) of the TD-FW current excited from the leading edge along
' an untruncated incremental strip extending to infinity. Thus,
Henceforth, the superscriptsand B refer to the contributions when applying the untruncated TD-EEC’s no information
from faces A and B, respectively. In the following, only of the trailing edge is provided and consequently, only the

ug§ - ot

) du.  (31)
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first-order edge diffraction is accounted for. The correctionﬁ
TD-EEC's M2, s and I, , express the integral of the TD- 9%

O

Icor, 6(FE7 t)

FW current along another untruncated strip extending from the 2%¢E-q si ¢o Ut
. ) N e =0 sin ()
point of truncation at the trailing edge to infinity. Hence, the _— 2
correction TD-EEC'’s provide information of the trailing edge, Zmsin® Bo(p + cos o)Vt
and consequently, second-order edge diffraction is introduced. do| C1 Cy
However, due to the abrupt truncation of the TD-FW current " 2|eos 5 czrpv VY 2(1—=p) CIye

at the trailing edge, this second-order edge diffraction is not

exact as it is the case for the first-order diffraction. 2cH oU(t) i o
The desired closed-form expressions for the truncated TD- rsin Ao(jt + cos o)V | Sign{ cos -

EEC’s can now be obtained by carrying out an analytical

calculation of the integralﬁ‘g’T’f{ in (28) andL?O’r’f{ in (31). Cy
This analytical calculation is performed in the next section for - (cot fo cos ¢ +- cot fF cos §) 2y v
the half-plane case, i.e., whéh = 27. o
V2 cos > (cot S cos ¢ — pcot Fo) Cy
C. The TD-EEC's for the Half Plane * Naw=r agrv | ©

By inserting (3) for the TD-FW current on facé in the
expressions fory° in (28) and Lz, in (31), setting In these expressions, the quantitigs C;, C,, and ¢ are

Q = 27, calculating the integrals, and adding the contributioglefined by
from face B (which in this case coincides with facé) the

following result is obtained [15, Appendix CJ: o= sin o sin (f cos ¢ + cos flo(cos f — cos fo) (36)
sin? B,
a A
= My -: /21
5 My, (7, t) C, = — sin By |cos % (37)
2ZcHzosin</)6(t—071/;' . FE> i
sin 3sin Bo(p + cos ¢o) 2= c sin ffo (38)
V2 cos % bo where !4 = [B, and
—_— sign<cos —) (32) A
vi—u 2 t=t—c! (k . FE+ZA(1—N)81112/30). (39)
%IUT,a(FE, t) g;r;eral aspects of these TD-EEC's are discussed following
2/2¢E,osin @ 6(t —c - FE>
= 2 D. The TD-EEC’s for the Wedge
Z sin® Bo(u + cos ¢o) ) _
o When the exterior wedge angle differs from 27, the
- <\/§ cos —‘ —1- u) calculation of the integrald.;"; in (28) and L™ in
2 . . . 20 cor,
. (31) directly in the time domain is more complicated than
2cHZ06(t —c k- FE) in the half-plane case. Therefore, the TD-EEC's §be 2x
B are most easily derived by transforming the corresponding
sin fo(p + cos fo) FD-EEC'’s to the time domaifiThese FD-EEC's are derived
o by Johansen in [14] by integrating the FD-FW current along
— sign<cos ?> (cot Bo cos o + cot B cos ¢) truncated incremental strips. The untruncated FD-EEC’s are
calculated exactly in closed form whereas a high-frequency
o approximation is applied to obtain closed-form expressions for
V2cos 0 (cot Bcos ¢ — i cot Bp) the correction FD-EEC’s. Whef? # 2, the correction FD-
+ Ji=n (33) EEC’s associated with facé are valid only forkl- sin? 3y >
1, £ being the wave number.
3 . The relation between the frequency domain and the time
ot Meor,s(7; 1) domain is given by the Fourier transform pair
B 2ZcH gsinplU(t') oo .
 7sin Bsin Bo(p + cos go) V't Jo = /_oo F(2) exp(iwt) dt (40)
Po 1 [ ,
Cgnfens ) G VEES o O =5 [ foexp(-ivt) do (41)
2)CP+t JI—p C2+¢ o

4This is the only step in the derivation of the TD-EEC'’s that is not
(34) performed directly in the time domain.
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wherew in f, indicates a frequency-domain quantity. With The correction FD-EEC’s are given by [14, Egs. (21)—(22)]
the application of this Fourier transform pair the Maxwell

equations in the frequency domain assume the same form as M;i;wé () ~ K3 Hé,wFCI) + K, Hé,w(02) (50)
those of harmonically oscillating fields with the time factor ' —tw —w
exp(—iwt). Consequently, the frequency-domain solution to a I “ (i) ~ K Hs . (C1) e Hs . (Ca) (51)
given problem is, except for the dimension, identical to the cots —iw —iw

solution obtained by assuming harmonically oscillating fields.

A 02 .
The untruncated FD-EEC's are given by [14, egs. (4) a(?r ki sin” fio > 1 when{) # 2m. The frequency indepen-

ent quantitiesks, ---, K¢ are
(5)] q 3 3 6
» exp (L]f]% . f’E) —2ZcH o sin ¢ sign <COS %)
M55 (Pp) =K ———F (42) Ki= i i
i —tw sin A sin Fo(p + cos ¢o)
exp (ikk - 7 .
I{?&“T(S(FE) IKQ ( - ) (43) K, = 2ZCHZ0 Sln¢ V 1— H
T * sin (3sin 3y do
. " V2(pu + cos o) cos -
The frequency independent quantiti&s and K, are 2
—2ZcH qsin ¢ V2r sin pr
Ki=——77%3—— - (52)
sin A sin 3y QT — pcos pr — cos peo)
<U(7r—<7)0)+ msinp(r — «) )
wtcosgg 2 sina(cosp(m — ) — cos pey) 9 Sign<cos @)
(44) g _ 2
% —2cm ? " sin Bo(p + cos ¢o)
2 == .
_ _ F.
2 sin o (.cosp(7r @) = cospdo) [ Zze2m0 b0 _ H_o(cot Bo cos ¢o + cot 3 cos ¢)
H.osinp(r — a)( b B cos b — i cot fo) Zsin o
—a (cot feos ot By (53)
_ E.o S.illp(/)o - 2CU(7T - d)O) 2 2(1 — N) _E,:/O sin %
Z sin 3 sin Bo(pe 4 cos ¢o) 6= — .
Feosing sin Fo(p + cos ¢o) Z sin By
. <HZ0 (cot B cos ¢ + cot By cos o) — ;Tﬁo) o
11 Do >
2¢m cot foHeo —I——O% (cot By cos ¢ + cot [ cos ¢)
oo a (45) 2cos —
Qsin Gy 2

with 4 defined in (36),« being the solution tq: = cosa

_ 7 H o sin pr(p + cos ¢g )(cot Fo — cot 3 cos ¢)
determined by

Q(cos pm — cos pPo) (1 — 1)

o= (~iLog(u+i2 1)) (46) (54)

wherex indicates the complex conjugate Log- 1n |2|+:¢Argz In (50) and (51), the constants;, C, are defined in (37)
and —7 < Argz < «. The square root in (46) is defined by and (38), respectively, and the frequency dependent function

H&w is
V=1, p<-1
\/m = { ‘ (47) ex T

Al /2 _ P 4 .

L‘ L=, I<p<l H&w(c):# exp(iw(c_l(k - 7R
Although the complex quantity appears in the constanks, Apq . 9 2 °° )
in (44) andK in (45), these two constants can be shown to be (L= p) sin /30) ¢ )) Ve exp(it”) dt.
real [15, p. 62]. Therefore, the untruncated TD-EEC’s can now (55)

be derived directly by applying the inverse Fourier transform

(41) to the frequency-domain expressions (42) and (43) The calculation of the correction TD-EEC's requires the
9 transformation ofHs ., in (55) (which involves the Fresnel
— M{, (Fe, t) = Klé(t R FE) (48) integral) to the time domain. The transformation is most easily
ot ’ carried out by applying the inverse analytic Fourier transform

9 Ity s(FE, t) :K26(t —c k- FE). (49) and this is performed in [2, Appendix] yielding

ot
. . CU#)
These are the desired expressions for the untruncated TD- Hs(C, t)

- P 56
EEC's. 2V (C2 4 t/) (0)
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wheret’ is defined in (39). It is now a simple task to obtain
the correction TD-EEC's from (50) and (51)
a .
— M2
ot cor, §
a .
— 74
ot cor, §

Since these correction TD-EEC’s are obtained by Fourier
transforming a high-frequency expression to the time domain,
the correction TD-EEC’s are most accurate for early times
[25], i.e., fort’ — OF. Fig. 4. The triangular cylinder with edgds;, E2, Fs. The origin of the
This completes the derivation of the untruncated TD-EECtordinate system used in the far-field calculation coincides with déige
and the correction TD-EEC’s for facd. The contribution The direcjions of in_cidence and observation are givenshy= 239° and
from face B is obtained from the results for facé in (48), = 2007, respectively.
(49), (57), and (58) using the substitutions following (31). The , .
truncated TD-EEC'’s, obtained from (25), are then integrat&?d the TD-FW far fields becomes a better approximation to

along the illuminated paf' of the edge using (18) and (20)the _egact scz_;lttered far fie_ld #(t) has most of the energy at

to obtain the TD-FW far field. Finally, this TD-FW far field Sufficiently high frequencies. o

is added to the TD-PO far field to yield an approximation t% Through a stralghtforward calculation it can b(? shown that

the exact scattered field. the above expressions for the truncated TD-EEC sﬂ‘@; 27
Note that the time dependence of the untruncated TD—EECEEISOI.uce tq the half-plar_1e result Qf Section IV-C, which was

is given by the delta function and consequently, the convolggnved_ directly in tbe time dpmaln. Note that f_ﬁr: .27r the

tion with an arbitrary time functiory(t) is easily performed. correction TD-EEC's are valid for all observation times, and

By combining the above equations with the expression 18P Oﬂly for ear!y tirpgséllztéhogld b.ﬁ born in mind, howlev;ar,
dj’-"gw in (20) it is seen that the untruncated TD-EEC'’s at th at the correction A $ do still not account exactly for

integration point on the edge with position vects start the second-order edge diffraction due to the neglection of the

to contribute to the far field at timeg, = c=17g - (k — 3). current excited at the trailing edge.
The correction TD-EEC's start to contribute to the far field at
time t, = ¢, + ¢ 4(1 — u)sin® B. Since the untruncated
TD-EEC's account exactly for the first-order diffraction from In this section, the truncated TD-EEC'’s are verified nu-
straight edges, the field produced by the TD-EEC's is the examerically for the infinitely long, triangular cylinder shown in
first-order diffraction in the time period; < t < t¢,. For Fig. 4. Although the TD-EEC's are derived to analyze 3-D
t > t, the approximate correction TD-EEC'’s contribute andstructures it is convenient to consider this 2-D structure for a
therefore, the field produced by the TD-EEC's does no longkst numerical verification. The reason is that the triangular
constitute the exact edge diffraction. Whan= 1—that is, cylinder contains no corners and, thus, the sum of the TD-PO
when 3 = 3y and simultaneouslyp = 0—thent, = ¢;, that and TD-FW far fields can be exact for a relatively long period
is, the second-order edge diffraction contributes at the sawfetime.
time as the first-order diffraction. Furthermore, when= 1 The incident plane wave is impinging upon the struc-
and simultaneously, = « the untruncated TD-EEC'’s have ature from the direction given by, = 239° and the time
nonremovable singularity (the Ufimtsev singularity [12]), bulependence of the plane wave is Gaussian, p&) =
this singularity is cancelled by the corresponding singularitgp(—((ct — 1)/0.3)?) in (11) and (12). Both TM and TE
of the correction TD-EEC's. Note that the determination of theolarization (with respect to the cylinder axi§) of the incident
timest; andt, for a general structure is more complicated thaplane wave is considered. The far-field pattéra-defined by
in the simple case above where only one integration point (7, ¢) ~ F(p, t — p/c)/\/p asp — oo, p = pp describing
considered. the far-field observation point—normalized with respect to
It follows from the discussions in Sections Ill and IV-A that Ey| is now considered in the directiop = 200°. This
the TD-PO far field is calculated exactly from planar facefar-field pattern is calculated using both the sum of the TD-
and that the truncated TD-EEC's predict the first-order faRO far field and the field from the truncated TD-EEC's and
field diffraction exactly from straight edges. It also followsalso the method of moments (MOM) in combination with the
that the truncated TD-EEC's can be applied to structures withverse fast Fourier transform. The MOM is applied to the FD
curved edges, but in this case, the first-order diffraction mmagnetic field integral equation for TE polarization and to the
no longer calculated exactly. However, the approximation &D electric field integral equation for TM polarization [26].
the TD-EEC's to the exact first-order diffraction is expected dual-surface formulation has been applied to avoid spurious
to become better if the time functiog(¢) of the plane resonances [27].
wave contains sufficiently high frequencies. In addition, since Figs. 5 and 6 show the far-field patterns for TE and T™M
the contributions to the far field from corners and multiplgolarization, respectively. In both cases it is seen that the TD-
interactions between edges and corners in general becomé€sfar field is very inaccurate because TD-FW currents are
less significant for high frequencies, the sum of the TD-Pé&xcited as soon as the plane wave hits the cylinder. However,

(Fp, t) ~ KsHs(C1, t) + K4 Hs(Co, t) (57)

(Fe, t) ~KsHs(C1, t) + KeHs(Co, t). (58)

E,

V. NUMERICAL EXAMPLE
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the incident plane wave has most of its energy at sufficiently
high frequencies.

An interesting future task is the formulation of TD-EEC’s
for Hertzian dipole illumination of 3-D PEC structures with
edges. In this case, the time-domain current on the canonical
wedge can also be calculated exactly [28] and the formulation
in Section IV-A of the present paper can directly be used to
calculate the far field. It would also be interesting to obtain
the time-domain analog of a recently formulated PTD method
[29], which applies to the analysis of curved PEC surfaces.

Fig. 5. The far-field pattern for the configuration shown in Fig. 4. The plane

wave is TE polarized.

Normalized Far Field

Il 1 ). 1, 1 1 1

0 2 4 6 o8 10 12 14
Time, ct (light-meters)

Fig. 6. The far-field pattern for the configuration shown in Fig. 4. The plane

wave is TM polarized.

when the field from the truncated TD-EEC’s is added,
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