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Robust Adaptive Array Beamforming
for Cyclostationary Signals

Under Cycle Frequency Error
Ju-Hong Lee and Yung-Ting Lee

Abstract—This paper deals with the problem of robust adaptive
array beamforming for cyclostationary signals. By exploiting
the signal cyclostationarity, the SCORE algorithms presented
in [6] have been shown to be effective in performing adaptive
beamforming without requiring the direction vector of the desired
signal. However, these algorithms suffer from severe performance
degradation even if there is a small mismatch in the cycle
frequency of the desired signal. In this paper, we first evaluate the
performance of the SCORE algorithms in the presence of cycle
frequency error (CFE). An analytical formula is derived to show
the behavior of the performance degradation due to CFE. Based
on the theoretical result, we then develop an efficient method
in conjunction with the SCORE algorithms to achieve robust
adaptive beamforming against the CFE. Several simulation ex-
amples for confirming the theoretical analysis and showing the
effectiveness of the proposed method are also presented.

Index Terms—Adaptive arrays, beamforming, cyclostationary
signals.

I. INTRODUCTION

A RRAYS of sensors such as radio antennas are useful
in the process of detecting the presence of the desired

signal, estimating their directions of arrival (DOA) and other
parameters, and estimating the signal waveforms themselves.
For conventional array beamforming, thepriori information
required for adapting the weights is either the direction of
arrival or the waveform of the desired signal [1]. For a
steered-beam adaptive beamformer, the adaptive weights are
calculated by minimizing the beamformer’s output power
subject to the constraint that forces the array to make a constant
response at the steering direction. Hence, the performance of
the beamformer is very sensitive to the accuracy of the steering
vector. It has been shown that the mismatch between the
direction vector of the desired signal and the steering vector
causes severe performance degradation even if a small mis-
match arises. In practice, the problem of the mismatch possibly
exists in many applications such as the application in mobile
communication systems. This leads to many restrictions on the
development of the conventional array beamforming.

A signal with cyclostationarity has the statistical property of
correlating with either a frequency-shift or complex-conjugate
version of itself. By restoring this property at a known value of
frequency separation, it is possible to favor the desired signal
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and to discriminate against the interference and noise [2],
[5]. In addition, many cyclostationarity-exploiting algorithms
avoid the need for training signals, the knowledge of array
manifold, and noise characteristics. Moreover, adaptive beam-
forming can suppress not only Gaussian but also non-Gaussian
interferers by utilizing the signal cyclostationarity. As a result,
adaptive beamforming utilizing signal cyclostationarity has
been widely considered. Recently, a class of spectral self-
coherent restoral (SCORE) algorithms has been presented in
[6] to deal with the problem of blind adaptive signal extraction.
When infinite time-averaging interval is available, it has been
shown in [6] that the solutions of the SCORE algorithms are
the same as that of the conventional approaches developed
based on maximizing the output signal-to-interference plus
noise ratio (SINR) for adaptive beamforming. Thepriori
information that the SCORE algorithms require to work is
only the cycle frequencies of the desired signal. Hence, its
performance is sensitive to the accuracy of the presumed cycle
frequencies. However, the actual cycle frequencies may not be
known very well in some applications due to for example the
phenomenon of Doppler shift. Therefore, it is worth evaluating
the performance of the SCORE algorithms in the presence
of cycle frequency error (CFE) and developing techniques
to solve the problem. Some previous work considering the
related problem in direction finding has been reported in
[7]–[10]. A statistical analysis of the usual estimator of the
cycle autocorrelation is included in [7] and [8]. This analysis
shows the effects of cycle leakage through a sinc window
due to finite data samples. On the other hand, two approaches
have been presented by [9] for dealing with the direction-
finding problems due to CFE. The first one, called multicyclic
MUSIC, uses a multicyclic correlation matrix to alleviate the
performance degradation due to CFE. However, it is observed
that this approach cannot tackle the problem effectively. The
other one, called adaptive-cyclic MUSIC, estimates the cycle
frequency by using the fast Fourier transform (FFT) frequency
estimator to compute the cyclic autocorrelation of the data
received from a single sensor. The drawback of this approach
is that huge memory is required for data storage to obtain satis-
factory results. Variations of the adaptive-cyclic MUSIC are
explored in [10]. Based on the concept of subintervals, only the
cyclic correlation matrices of the subintervals are required to
reduce the memory requirements and the sensitivity of cyclic
MUSIC to CFE. However, the techniques presented by [10]
limits the cycle frequency coverage due to using subintervals.
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In the literature, two of the SCORE algorithms presented
by [6], namely the least-square SCORE (LS-SCORE) and the
cross-SCORE algorithms have been extensively considered
[7]. In this paper, we first evaluate the performance of these
two SCORE algorithms when the CFE regarding the desired
signal exists. Using the theory of Fourier transform, the
problem formulation for each of these two SCORE algorithms
under CFE is presented. This results in an analytical formula
which demonstrates the behavior of the performance degra-
dation for these two SCORE algorithms. It is shown that the
output SINR of an adaptive array beamformer using either the
LS-SCORE or the cross-SCORE algorithm deteriorates like a
sinc function as the number of data snapshots increases. Based
on this theoretical result, an efficient method is developed to
alleviate the effect of CFE on array performance. Based on the
proposed method, the cycle frequency of the desired signal is
estimated according to an iterative procedure. This estimate is
then used to form an appropriate reference signal and control
vector for these two SCORE algorithms. It is shown that
adaptive array beamforming using the proposed method in
conjunction with the SCORE algorithms can effectively cure
the problem of blind signal extraction in the presence of CFE.

This paper is organized as follows. In Section II, we briefly
describe the original LS-SCORE and cross-SCORE algorithms
presented by [6]. The performance analyses of these two
SCORE algorithms in the presence of CFE are presented
in Section III. An efficient method is then proposed to al-
leviate the performance degradation caused by the CFE in
Section IV. Modification of the proposed method for reducing
the computational burden and storage requirement is presented
in Section V. Several computer simulation examples for con-
firming the theoretical results and showing the effectiveness
of the proposed method are provided in Section VI. Finally,
we conclude the paper in Section VII.

II. A DAPTIVE BEAMFORMING

FOR CYCLOSTATIONARY SIGNALS

A. Signal Cyclostationarity

For a signal , its cyclic autocorrelation function and
cyclic conjugate autocorrelation function are defined as the
following infinite-time averages:

(1)

and

(2)

respectively, where the superscript “” denotes the complex
conjugate. is then said to be cyclostationary if or

does not equal zero at cycle frequencyfor some
time delay . Many man-made communication signals exhibit
cyclostationarity with cycle frequency equal to the twice of the
carrier frequency or multiples of the baud rate or combinations
of these [3], [4].

Let the data vector received by an array beamformer be
designated as . Then its cyclic autocorrelation matrix and
cyclic conjugate autocorrelation matrix are given by

(3)

and

(4)

respectively, where the superscript “” denotes the conjugate
transpose and “” the transpose. Next, we briefly describe
adaptive beamforming utilizing signal cyclostationarity.

B. The SCORE Algorithms

Consider adaptive beamforming using an-element an-
tenna array excited by a signal of interest (SOI),interferers,
and spatially white noise. The received data vector is
then given by

(5)

where and denotes the waveforms of the SOI and the
th interferer, and the aperture vectors of the SOI and

the th interferer, and the noise vector, respectively. The
array output is given by , where denotes
the weight vector.

Assume that is cyclostationary and has a cycle fre-
quency , but is not cyclostationary at and is temporally
uncorrelated with . Based on the LS-SCORE algorithm of

, a cost function is defined as follows:

(6)

where the reference signal is given by

(7)

and denotes the average over the time interval .
is a control vector and is fixed for the LS-SCORE algorithm.
The optimal weight vector minimizing (6) is given by

(8)

where and
are the sample autocorrelation matrix of and the cross-
correlation vector of and computed over ,
respectively. For any control vector as long as
, it is shown in [6] that (8) converges to the solution

of conventional adaptive array beamforming based on the
maximum output SINR criterion when approaches infinite.

Due to the fact that contains the interference, the LS-
SCORE algorithm converges slowly. To tackle this drawback,
the Cross-SCORE algorithm is proposed by [6] based on
maximizing the correlation coefficient which is given by

(9)

between and , where is
the control signal. From the Cauchy–Schwartz inequality, the
optimal weight and control vectors maximizing (9) are given
by

for a fixed (10)

and

for a fixed (11)
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respectively, where and represent the normalization
constants. It has been shown in that is also the
solution that maximizes the output SINR whenis infinite.
Moreover, the simulation results presented in [6] show that
the cross-SCORE algorithm possesses the advantage of faster
convergence speed over the LS-SCORE algorithm, especially
in the presence of strong interference. However, the cross-
SCORE algorithm requires to solve a generalized eigenvalue
problem or to adapt the weight and control vectors simultane-
ously. Hence, it requires more computational complexity than
the LS-SCORE algorithm.

III. PERFORMANCE ANALYSIS IN THE PRESENCE OFCFE

Here, the performances of the LS-SCORE and the cross-
SCORE algorithms in the presence of CFE are evaluated. We
only present the results using the cyclic autocorrelation matrix
for (8) and (10), respectively. Based on the presented results
in this section, it is very straightforward to obtain the results
using the cyclic conjugate autocorrelation matrix. From (3),
the cyclic autocorrelation matrix at an arbitrary frequency
can be written as

(12)

where

(13)

(14)

and

(15)

Due to the fact that the cyclic spectrum of a cyclosta-
tionary signal is discrete in the cycle frequency, the cyclic
autocorrelation function of the SOI can be written as

(16)

where denotes the cycle frequencies of the SOI and
the corresponding strengths at . Next, we can rewrite the
sample cross-correlation vector of and at as
follows:

rect

(17)

where

rect
for

elsewhere.
(18)

Substituting (7) into (17) yields

rect (19)

Utilizing the property of Fourier transform, we obtain

rect

SINC (20)

where

SINC (21)

and “ ” denotes the convolution operation. From (7) and (12),
the cross-correlation vector can be further expressed by

(22)

where , , and
. By substituting (22) into (20) and using

(16), the sample cross-correlation vector of (20) be-
comes

SINC

SINC

SINC (23)

where ’s are the cycle frequencies of theth cyclosta-
tionary interferer and ’s are the corresponding strengths.
Moreover, the interferers without cyclostationarity and noise
are contained in . In fact, also includes the cyclic
cross correlations between the SOI and the interference, the
SOI and noise, and the interference and noise. However, they
are negligible when is large enough. Equation (23) shows
the effects of cycle leakage through a sinc window due to
finite data samples. These effects are also derived in [7] and
[8] by using a different manner.

Next, let the presumed cycle frequency for the SOI be
denoted by , which differs from the cycle frequency of
the SOI by , where represents the amount of CFE.
Substituting into (23) yields

SINC

SINC

SINC (24)

where and .
Consider the case where and ’s are well separated.
Using the fact that the value of SINC is small enough
for large , the effect of interference and noise is negligible
when . Consequently, we note from (24) that
is almost proportional to the aperture vector. On the other
hand, when due to the fact that SINC
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when , , we note that
is approximately equal to SINC if

is far from . However, when is close to , the
effect due to the interference and noise is not negligible.
Thus, is not proportional to any more. This leads to
performance degradation for the LS-SCORE algorithm. Owing
to , we would expect that there exist periodic
nulls in the curves of the output SINR versus the number of
snapshots for adaptive beamforming based on the LS-SCORE
algorithm in the presence of CFE.

Considering the performance analysis for the cross-SCORE
algorithm, we note from (10) and (11) that the only difference
between the LS-SCORE and cross-SCORE algorithms is that
the cross-SCORE algorithm adapts the control vector. From
(10), the factor can be written as

(25)

when the number of data snapshots is infinite, where
, , and

. Comparing (22) and (25), we note that
they have the same form except that the control vector
of (22) is replaced by the control vector in order to
obtain (25). Hence, the performance degradation similar to
that shown above for the LS-SCORE algorithm happens to
the cross-SCORE algorithm when the CFE arises. Simulation
results showing the performance degradation due to CFE are
presented in Section VI for confirmation.

IV. THE PROPOSEDMETHOD

A main property of a signal that exhibits cyclostationarity is
that spectrum lines are regenerated by quadratic nonlinearities
only at discrete frequencies as can be seen from (16). Based
on (24), both of the SINC and SINC approach
zero as increases. Hence, the performance degradation for
these two SCORE algorithms becomes more severe as the
number of snapshots increases. To alleviate this difficulty, we
present an efficient method in conjunction with the SCORE
algorithms as follows.

First, define a sample autocorrelation-related matrix of the
received data vector as follows:

(26)

where denotes a frequency parameter. Based on (26), we
further construct the following matrix product:

(27)

It is easy to show from (12) that (27) becomes

(28)

when the time interval approaches infinite, where denotes
“proportional to.” Expression (28) reveals that the matrix
product is a matrix with rank one if and a
null matrix if does not equal the cycle frequencies
of the SOI and interferers. When is finite, we note that
the largest eigenvalue of the matrix product increases as

approaches and the dominance of the compo-
nent in (28) becomes more
significant. Hence, the matrix product is closer to a matrix
with rank one as the time interval increases. On the other
hand, when equals neither nor any one of the
cycle frequencies of the interferers, the matrix product is a
matrix with rank ( ) and its largest eigenvalue decreases
as increases.

Based on the above observations, an estimation procedure
for finding an appropriate estimate of the cycle frequency
of the SOI when data snapshots are sampled at the sampling
interval is summarized as follows:

Procedure 1:

Step 1) Let the robust interval be for performing
the estimation and the matrix of (26) com-
puted by using n data snapshots be desig-
nated as . Use the first
data snapshots to compute the initial matrix of

, where
and is a preset positive integer.

Step 2) Set the increment of the frequency parameter
equal to when the number

of data snapshots . That is, the increment
equals a constant for the first data
samples. Otherwise, set which
decreases as increases to improve the accuracy
of the estimation.

Step 3) For , compute the largest eigenvalue of
(27) for each taking the values starting from

to with an increment , where
and

denotes the nearest integer . For , if

, this shows that the obtained estimate is
very close to the true value. Hence, we compute
the largest eigenvalue of (27) for eachtaking
the values starting from [ ] to
[ ] with an increment

. Instead of employing conventional
eigenvalue decomposition (EVD) directly for
computing the largest eigenvalues, we present
an efficient approach for finding an appropriate
approximate of the largest eigenvalue at each
to considerably reduce the required computational
complexity from to as follows.

(3.1) Compute the average of the column vectors of
as follows:

(29)
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(3.2) Compute an appropriate approximate of the
largest eigenvalue at according to the Rayleigh
theory [8, pp. 216–217] as shown in (30) at the
bottom of the page .

Step 4) Find the highest value of the approximates of
the largest eigenvalues obtained from Step 3 and
let the corresponding frequency parameterbe
designated as .

Step 5) Compute the estimate of the cycle frequencyas
follows: .

After obtaining the appropriate estimate for the cycle
frequency of the SOI, we then construct the following new
reference and control signals for the LS-SCORE and Cross-
SCORE algorithms, respectively, in (31) below, where ,

, and denote the signals of , , and
sampled at the th time instant. From (22) and the property
of Fourier transform, the cross-correlation vector of and
the new reference signal is given by

rect

rect

rect

rect (32)

Using the results given by (24) and (32), we obtain the
corresponding sample cross-correlation vector of and
from (32) by letting as follows:

rect

(33)

where , ,
, and rect SINC .

We note from (32) that utilizing the new reference and control
signals shown by (31) for the LS-SCORE and cross-SCORE

algorithms, respectively, generates a rectangular spectrum with
width instead of a spectral line at each of the cycle
frequencies. Moreover, based on the proposed estimation
procedure, the difference between and the cycle fre-
quency of the SOI decreases as the increment
decreases. From (33), we further note that the mainlobe width
of rect SINC . Accordingly, the
dominance of in becomes more significant as
the number of the snapshots increases when is small
enough. Therefore, the approximation between and

gets better as the frequency increment decreases.
Hence, the performance deterioration due to the CFE can be
reduced as increases. As to the effect of on (33), our
experience shows that the enhancement due to on the
interference and noise is negligible if is small enough.

Consider the determination of the robust interval .
Based on the theoretical results shown in Section III, we first
use data snapshots to compute the following matrix:

(34)

and find the largest eigenvalues of with re-
spect to . Let Tr , where Tr
denotes the trace of . Finally, we choose an appropriate
robust interval from the interval of [

], where and represent the values nearest
and next nearest to, respectively, and make generate
peaks. As to the value of , an appropriate leads to the
result of .

V. MODIFICATION OF THE PROPOSEDMETHOD

Consider the computation load and the storage required by
the proposed method presented in Section IV. We note that
the matrix product shown by (27) must be recomputed from
the data snapshots for eachsince the frequency increment

varies as increases. As a result, both the compuation
load and the storage requirement increase asincreases. To
alleviate this difficulty, we further modify the proposed method
as follows. First, the frequency increment in Step 2 is
replaced by a fixed frequency increment. Next, the largest
eigenvalues of (27) are calculated for eachtaking values
starting from to with an increment in Step 3.

(30)

SINC for

SINC for

SINC for

SINC for
(31)
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Based on these modifications, the matrix product of (27) can
be recursively computed as follows:

(35)

Using (35), we can compute the corresponding largest eigen-
value recursively as follows. First, let the vectorbe given
by

(36)

Then, set the corresponding largest eigenvalue equal to

(37)

with the initial eigenvector .
Finally, update the corresponding eigenvector according to

(38)

Based on the above modifications, we present a modified
procedure for estimating the frequency parameteras follows.

Procedure 2:

Step 1) Let the robust interval be and the fixed fre-
quency increment be for performing the estima-
tion. Use the first data snapshots to compute the
initial matrix of ,
where and is a preset
positive integer.

Step 2) For , we compute the largest eigenvalue
of (27) for each taking the values starting from

to with an increment according
to (36)–(38), where is a preset positive integer.
For , go to Step 6.

Step 3) Find the highest value of the approximates of
the largest eigenvalues obtained from Step 2 and
let the corresponding frequency parameterbe
designated as .

Step 4) Compute the largest eigenvalue of (27) for each
taking the values starting from to

with an increment of according
to (36)–(38).

Step 5) Find the highest value of the approximates of
the largest eigenvalues obtained from Step 4 and
let the corresponding frequency parameterbe
designated as .

Step 6) For , where ,
if which shows
that the current estimate is very close to the true
value, then set and go to Step
9. Otherwise, we repeat the similar process for

as described from Steps 2–5 to find the
appropriate estimate .

Step 7) For , if
which shows that the obtained estimate is

sufficiently close to the true value, then set
and go to Step 9. Otherwise, we compute

the largest eigenvalue of (27) for eachtaking
the values starting from to with an
increment according to (36)–(38).

Step 8) Find the highest value of the approximates of
the largest eigenvalues obtained from Step 7 and
let the corresponding frequency parameterbe
designated as .

Step 9) Compute the estimate of the cycle frequencyas
follows: .

It can be seen that two loops are employed for
to save the required computing cost and the storage required
for . One including Steps 2 and 3 finds a
frequency parameter . The other one including Steps
4 and 5 improves the estimation accuracy by refining the
estimate . An appropriate value for used in Steps 2 and
4 is determined as follows. Consider the total computing cost
required by the modified estimation procedure. In Step 2, the
number of the computations for finding the largest eigenvalues
is about , while the number required by Step
4 is about . Hence, the total number is given by

(39)

Expression (39) reveals that the optimal value forwhich
minimizes the required computing cost is given by

(40)

After obtaining as the estimate of the frequency
parameter , we again construct the new reference and control
signals as shown by (31) for performing the LS-SCORE
and cross-SCORE algorithms. Moreover, the sample cross-
correlation vector and matrix and re-
quired by the LS-SCORE and cross-SCORE algorithms can
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also be computed recursively as follows:

SINC

(41)

and

SINC

(42)

VI. COMPUTER SIMULATION EXAMPLES

In this section, several simulation examples performed on
a Pentium Pro-200 PC using MATLAB programming lan-
guage are presented for confirming the theoretical results
and showing the effectiveness of the proposed method. For
all simulation examples, a uniform linear array (ULA) with
number of elements and interelement spacing ,
where is the wavelength of the desired signal which is
impinging on the array from 5 off broadside with cycle
frequency and SNR dB. Moreover, the desired
signal is a binary phase shift keying (BPSK) signal with
rectangular pulse shape. The noise received by the array is
spatially white. The sampling interval for obtaining data
snapshots is set to 0.2. The initial matrices and
are set to , where denotes the identity matrix with size
21 21. The vector in the LS-SCORE algorithm is fixed
to . The time delay is set to zero for
simplicity.

For finding the appropriate estimate forafter receiving
data snapshots by using the proposed estimation procedure, we
set and equal to 250 and 5, respectively. The value of

is set to 0.002 when using the proposed method based on
Procedure 2 and, hence, the optimalis given by 5 according
to (40). All the simulation results are obtained by averaging
50 independent runs with independent noise samples for each
run.

Example 1: Here, two interferers with interference-to-noise
ratio (INR) dB and dB are impinging on the array from
30 and 40, respectively. Moreover, both of these interferers
are BPSK signals with rectangular pulse shape. The carrier
frequencies of these two interferers are 1.65 and 2.45, respec-
tively. is set to 50 and thus . Fig. 1 plots
the simulation results in terms of the output SINR versus the
number of snapshots for three different values of, namely

and . The simulation results of using the
original LS-SCORE and cross-SCORE algorithms presented
in [6] are also provided for comparison. From Fig. 1(a), we
observe that the proposed method based on Procedure 2 and
the original SCORE algorithms provide almost the same array
performance when . However, the proposed method

(a)

(b)

(c)
Fig. 1. The output SINR versus the number of snapshots for Example 1. (a)
�̂ = 2:0. (b) �̂ = 2:01. (c) �̂ = 1:9873, -�-: the proposed method based on
LS-SCORE algorithm using Procedure 1, -�-: the proposed method based on
cross-SCORE algorithm using Procedure 1, -+-: the proposed method based
on LS-SCORE algorithm using Procedure 2, -�-: the proposed method based
on cross-SCORE algorithm using Procedure 2, : the original LS-SCORE
algorithm, - - -: the original cross-SCORE algorithm.

can effectively cure the performance degradation due the CFE.
Moreover, utilizing Procedure 2 provides better convergence
speed than utilizing Procedure 1 in this case.
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(a)

(b)

(c)
Fig. 2. The output SINR versus the number of snapshots for Example 2. (a)
�̂ = 2:0. (b) �̂ = 2:01. (c) �̂ = 1:9873, -�-: the proposed method based on
LS-SCORE algorithm using Procedure 1, -�-: the proposed method based on
cross-SCORE algorithm using Procedure 1, -+-: the proposed method based
on LS-SCORE algorithm using Procedure 2, -�-: the proposed method based
on cross-SCORE algorithm using Procedure 2, : the original LS-SCORE
algorithm, - - -: the original cross-SCORE algorithm.

Example 2: In this case, the interferers impinging on the
array are the same as those used in Example 1 except that
they have INR equal to 13 and 15 dB, respectively. is

(a)

(b)

(c)
Fig. 3. The output SINR versus the number of snapshots for Example 3. (a)
�̂ = 2:0, (b) �̂ = 2:01, (c) �̂ = 1:9873, -�-: the proposed method based on
LS-SCORE algorithm using Procedure 1, -�-: the proposed method based on
cross-SCORE algorithm using Procedure 1, -+-: the proposed method based
on LS-SCORE algorithm using Procedure 2, -�-: the proposed method based
on cross-SCORE algorithm using Procedure 2, : the original LS-SCORE
algorithm, - - -: the original cross-SCORE algorithm.

set to 200 and in this case. Fig. 2 shows the
output SINR versus the number of snapshots for
and . From Fig. 2, we note that although the original
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SCORE algorithms demonstrate better convergence rate for
, the proposed method provides satisfactory robust

capability against the CFE. Moreover, in the presence of CFE,
Procedure 1 possesses faster convergence rate than Procedure
2 in this high INR case.

Example 3: This example is performed to show the effect
of reducing the angle separation between the desired signal
and interference. The interferers used are the same as those
used in Example 2 except that they are impinging on the array
from 10.5 and 40, respectively. That is, the interferer with
direction angle 10.5is impinging on the array at the edge of
the array mainlobe. Again, is set to 200 and
for this example. The simulation results for
and are depictted in Fig. 3. Again, we observe that the
array performances of utilizing the proposed method and the
original SCORE algorithms are very similar to those shown in
Example 2 as long as all of the interferers are impinging on
the array outside the array mainlobe.

Finally, we see that the theoretical results presented in
Section III for performance analysis in the presence of CFE
are also confirmed by Figs. 1–3.

VII. CONCLUSION

This paper has presented an efficient method for blind adap-
tive beamforming using the LS-SCORE and cross-SCORE
algorithms in the presence of cycle frequency error (CFE). The
performance degradation of these two SCORE algorithms due
to CFE have been analyzed. Based on the theoretical results,
an efficient method in conjunction with the SCORE algorithms
has been developed to cope with the performance deterioration
of the original SCORE algorithms due to CFE. According to
the proposed method, an appropriate estimate of the cycle fre-
quency of the desired signal is first found. Using the estimate,
we then construct new reference and control signals required
by the LS-SCORE and cross-SCORE algorithms, respectively.
Modifications of the proposed method for reducing the re-
quired computational complexity and storage requirement have
also been presented. The validity of the theoretical works
for performance analysis has been confirmed by simulation
results. The effectiveness of the proposed method in dealing
with adaptive beamforming for cyclostationary signals in the
presence of CFE has also been demonstrated by simulation
results.
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