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Time-Domain Near-Field Analysis
of Short-Pulse Antennas—Part I:

Spherical Wave (Multipole) Expansion
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Abstract—The radiation from a time-dependent source distri-
bution in free-space is analyzed using time-domain (TD) spherical
wave (multipole) expansion. The multipole moment functions
are calculated from the time-dependent source distribution. The
series convergence rate in the near and far zone and the bounds
on the near-zone reactive field are determined as functions of the
source support and of the pulse length. The formulation involves
a spherical transmission line representation that can be extended
to more general spherical configurations. This formulation also
describes the field and energy transmission mechanisms in a
physically transparent fashion that will be used in a companion
paper to define and explore fundamental concepts such as TD
reactive energy andQQQ and to derive bounds on the antenna prop-
erties. Finally, the concepts discussed above are demonstrated
numerically for pulsed radiation by a circular current disk.

Index Terms—Antenna theory, near field, short-pulse electro-
magnetics, time-domain analysis.

I. INTRODUCTION

T HIS work is concerned with the analysis of radiation from
time-dependent source distributions directly in the time-

domain (TD). The slant is toward the analysis of the near-field
properties of short-pulse antennas, including the definition of
fundamental concepts such as reactive power and energy, and
the derivation of bounds of the antenna properties. In the
present paper, we mainly consider new expressions for the
field solutions while the energy properties and bounds will
be considered in a companion paper [1]. The analysis in these
papers is based on a systematic time-dependent spherical wave
expansion and a spherical transmission line procedure that can
readily be extended to more general spherical configurations.

One way of analyzing radiation from source distributions
is by using Green’s function integration. It is sometimes
desirable, however, to express the field in a more trans-
parent form, using basis functions that conform with the
field structure in a particular space–time regime. The most
common representations are the plane wave and the spherical
wave expansions, which are frequently used in the frequency
domain (FD). The TD plane wave approach has been used
recently in [2] and [3] for the analysis of radiation from
planar apertures and in [4] and [5] for radiation from volume
source distributions. In [5], it has also been used to formulate
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a comprehensive TD “far-zone characterization” of antenna
systems. The TD plane wave representation is based on a
slant stack transform (SST) of the source distribution. It
provides a physically transparent representation for the field
in the radiation zone where the field is dominated by the
propagatingspectrum, but a complete spectral representation
in the near zone must also involve the TDevanescentspectrum
[4]. Another difficulty is that each spectral constituent is
a global wave function and thereby noncausal. Although
all noncausal contributions cancel each other in the overall
spectral integration, this property complicates the physical
interpretation [4].

The spherical wave expansion, on the other hand, consists
only of strictly outgoing (causal) wave solutions. Furthermore,
it provides a convenient framework for addressing the causal
near to far zone transition, as each spherical wave combines
both the propagating and the evanescent spectra. Spherical
wave expressions have been used extensively in FD anal-
ysis of near-zone fields and of fundamental antenna limits
[6]–[10]. More recently, the spherical wave expansion has
been extended for radiation from time-dependent source dis-
tributions, using multipole expansion of the sources [11]–[14].
An alternative TD formulation has been used in [15] and [16]
in connection with the near-field spherical scanning problem
by expending the field in terms of decaying oscillations
corresponding to the resonances of the measurement sphere.

In this two-part paper, we explore the antenna properties as
implied by the TD spherical wave expansion. The formulation
utilizes a TD spherical transmission line representation that
describes the field and energy transmission mechanisms in
a systematic and physically transparent fashion that can also
be extended to more general spherical configurations. In the
first part, we focus on the field solutions, while in the second
part [1], we use this new expansion to explore the energy
properties and to define fundamental TD concepts such as
time-dependent reactive energy and the antenna. For time-
harmonic fields, these concepts are well understood in terms
of the stored energy [6]–[9], but they have to be redefined for
short-pulse fields where there is no stored energy.

Concerning the layout of presentation, we start in Section II
with the formulation of the TD spherical wave expansion in
a general spherical configuration, identified by any conical
cross section and stratification (Fig. 1). The derivation, which
is outlined in the Appendix, is based on the spherical transmis-
sion line representation for time harmonic fields [17]. Then, in
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Fig. 1. A spherical transmission line.

Section III, the general formulation is applied for radiation in
free-space. The radiated field is completely described by the
“TD multipole moments,” which are calculated in Section III-
C directly from the time-dependent source distribution. The
convergence properties and bounds on the near-zone reac-
tive field are explored in Section III-D. Finally, the concepts
mentioned above are demonstrated in Section IV for pulsed
radiation by a circular current disk. In order to check the
validity of the calculations, the multipole expansion of the
TD radiation pattern is compared in Section IV-C with a
closed-form expression obtained independently via the SST
formulation of [5]. In [1], this example will be further studied
from a reactive energy perspective.

II. TIME-DOMAIN SPHERICAL

TRANSMISSION LINE REPRESENTATION

Referring to Fig. 1, we consider first the propagation in
a spherically stratified domain with and , bounded
by a perfectly conducting, general conical surface .
The spherical cross section bounded byis termed . In
Section III, we shall consider the special case of a homo-
geneous medium and unbounded spherical domain .
The source distribution is assumed to be confined in
the region where we utilize the conventional spherical
coordinate system .

In view of the problem symmetry, the field is decomposed
into radial and transverse components

(1)

where the carets are used to denote unit vectors. The field
may be decomposed into - and -type modes denoted,
respectively, by superscript and . As discussed in the
Appendix, the expansion has the form

(2a)

(2b)

where , , and .
Here, , , and are the transversal
scalar and vector mode functions which depend only on
and are independent of , while denotes the mode index
and or (see Section II-A). Note that the summation
for and involve all modes of both types ( ),
while the summations for and involve only or
modes, respectively. In (2), and are the
modal amplitude functions which depend only on as
described by the time-dependent radial transmission line in
Section III-B. Also, for simplicity, (2b) is written only for

(outside the source domain).

A. Spherical Mode Functions

The modal fields are determined by the scalar eigenvalue
problem

in (3)

with the boundary conditions and
, where is the coordinate normal to and

. Here , are the
eigenfunctions and eigenvalues, is the mode index and

or . For (TEM mode), the boundary condition
above is replaced by constant.

The transverse vector eigenfunctions and
are found from via

(4)

where (note that our definition of
and differ from those in [17, sec. 2.5] by a factor

). The scalar eigenfunctions may be normalized to obtain a
real orthonormalset. From the definition in (4), the vector
eigenfunctions are also orthonormal, with

(5)

where and is the Kronecker delta.

B. The Time-Dependent Radial Wave Equations

The mode amplitudes in (2) are described by radial wave
equations which are independent of . There are two
principal modes functions: for the modes and

for the modes, which are governed by [cf. (38)]

(6a)

(6b)

where are the eigenvalues of (3). Having found these
principal mode amplitudes, the associate amplitudes
and are calculated via [cf. (39)]

(7)
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In the above, and are the transmission line
sources. They are calculated by projecting onto the
mode functions via

(8a)

for or (8b)

III. FREE-SPACE SOLUTION:
SPHERICAL WAVES AND MULTIPOLE MOMENTS

A. Spherical Mode Functions

From here on we consider radiation in free-space only.
For an unbounded spherical domain, the normalized scalar
eigenfunctions and eigenvalues of (3) are

(9)

where is a triple index , ,
, and . are the real spherical

harmonics

(10)

with being the associate Legendre functions [18, ch.
8] and or for or , respectively. From
(4), the orthonormal vector mode functions are given by

(11)

while are obtained by replacing in (11)
and . Here and the upper
and lower cases are for respectively. The set of
scalar and vector spherical harmonics satisfy the orthogonality
condition (5) with respect to the indexes, , , , and are
also complete: .

B. The Mode Amplitude Solutions

From (6) with (9), the wave equations for and
are

(12)

Outside the source region, for , the solution of (12) can
be expressed as

(13)

where the have either one of the following alternative
forms:

(14)

where . The “TD multipole
moments” are obtained from the transmission-line
sources and . Expressions for directly in terms of

are given in (22) below.
From the series solution in (14) one observes that only the

terms are propagating with pure delay and without
distortion, i.e., they are proportional to . The large
terms, on the other hand, decay like , leaving the far-zone
field dominated by the terms. The high-order terms
dominate in the near zone where they contribute to the “TD
reactive energy.” The role of these constituents will be defined
and explored in Part II [1].

Having found and , the associate solutions and
outside the source domain are calculated via (7), giving

or (15)

where

(16)

with for (note that
and ).

The final expressions for the TD field are obtained by
substituting (13) and (15) in (2), giving

(17a)

(17b)

with similar expressions for . A slightly modified representa-
tion, which may be more convenient in numerical calculations,
is obtained by noting that can be expressed as [see
(22) below]

(18)

where or for or . Expressions (17)
can be rewritten now as

(19a)

(19b)
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where the integral operators of (14) and (15)
are now replaced by the differential operators

and
operating on .

Finally, as indicated above, the far-zone field is dominated
by the term in , giving . Thus, the
far-zone field has the form

(20)

where the “TD radiation pattern” is given by

(21)

Note that can also be calculated via the slant stack transform
(SST) of (see [5] and also (34) below).

C. The Time-Domain Multipole Moments

The expressions for calculating the TD multipole moments
from can be derived via the TD transmission line
procedure as described after (14). Alternatively, they may be
derived via the frequency-domain analysis in the Appendix.
The result is

(22a)

(22b)

[in (22a) the operates only on the variable in ]. The
functions of (18) are defined by the same integrals but
without the derivatives .

Equation (22), should be understood as follows. First,
for source points on any spherical shell of radius, the
integration represents a local temporal average of the current
in the time window . Next, the time-averaged source
distribution on each spherical shell is projected onto the
basis functions and via the angular ( ) integration and,
finally, the result is integrated as a function of. Note that for
the large the main contribution comes from sources close to
the external boundary ( ).

The TD multipole functions may also be found by measur-
ing the radiated field on any sphere. Specifically, from (21)
they may be found from the TD radiation pattern via

(23)

D. Approximate Expressions and Series Convergence

In this section, we derive large approximations for the
TD multipole moments and, thus, establish the dominant field
structure and the series convergence rate. The approximate
expressions will also be use in [1] in connection with the
bounds on the gain.

We first note that the effective width of the window
in (22), henceforth termed , can be quantified by

(24)

where and
(the large ap-

proximations follow from Stirling’s formula [18, eq. (6.1.37)]).
For large , so that is approximately constant
within the time window and may be pulled out
of the integration in (22). This approximation is valid if

, where is a typical pulse length in . Applying
this requirement for all we obtain

(25)

This sets a lower bound on the values offor a given and
, for which the analysis below applies.
Under the conditions above we may pull out of the

integration in (22). Using
for the integral we obtain

(26)

where upper and lower signs correspond to or ,
respectively, and

(27)

The integration in (26) is bounded by ,
where are bounds on . Using also the Stirling
formula for we obtain

(28)

Substituting (28) into (18) and using , where
is a typical pulselength of the source, one finds for large
that . The relevant terms in the series (21)
for the radiation pattern in are, therefore, of order

(29)

(see also numerical example in Section IV). Additional decay
of the series is provided by in (28), i.e., by the angular
spectrum of the source, but it is not considered here.

Considering now the full-field solution in (17) [or
(19)] one finds that a typical term of the or
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(a) (b)

Fig. 2. (a) Physical configuration for the numerical example. (b) The normalized excitation pulse.

mode behaves like or
, respectively. For a given

, we may compare now the and terms in the series.
Recalling the expression for and in (14) and (16), we
find that the term dominates only if . Thus,
considering only the relevant defined in (29) we conclude
that the far-field approximation in (21) is valid for

(30)

where is the TD Fresnel distance [20].
For small , on the other hand, the full wave solution

is dominated by the terms with the largest. Noting from
(14) and (16) that and

we find that modal fields in (17) [or (19)] are
dominated by

and

, where we
also used (28) for . Thus, the near-zone field of the large

modes is rapidly growing, but it is dominated by
and, hence, is bounded for all .

IV. EXAMPLE:
PULSED RADIATIONS FROM A CIRCULAR CURRENT DISK

The concepts above are demonstrate here for an example of
a circular disk of radius carrying a pulsed current (Fig. 2)

(31)

where is an arbitrary pulse. Specifically, we shall use the
twice differentiated Gaussian

(32)

where is the Hermite polynomial of order 2.
The constants in (32) were chosen so that and

where is the pulse length.

We shall calculate the TD multipole moments for both
“small” and “large” disks identified by and ,
respectively, and shall explore the convergence as a function
of the normalized disk size . The multipole expansion
results will be verified by comparison with independent cal-
culations for the far-zone field via the SST formulation of [5].
These multipole moments will also be used in Part II [1] to
calculate the TD reactive energy and theof this source.

A. The Time-Domain Multipole Moments

Since the integrals in (22) are expressed in spherical co-
ordinates, we first rewrite (31) as .
Noting next for that , it follows
that (22) vanish for all except for . Using also the
values of and from [18, eqs. (8.6.1), (8.6.3)],
we finally obtain for the modes with that
for while for

(33a)

where . For the modes with we obtain
for while for

(33b)
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(a) (b)

Fig. 3. The time-dependent multipole moments� Me
� (t) (solid) andMh

� (t) (dashed) for a disk of radiusa = 3cT versus the normalized timet=T .
(a) Low-order moments:n = 1 and2 for theE andH mode, respectively. (b) Large-order moments:n = 10 and11 for theH andE mode, respectively.

(a) (b)

Fig. 4. As in Fig. 3 for a disk of radiusa = 9cT .

Note also that for even and odd values of,
respectively.

The integrals in (33) have been calculated numerically for
in (32). Examples for the resulting for a “small”

and “large” disks with radii and , respectively,
are shown in Figs. 3 and 4, respectively. Each figure shows
examples for both low- and high-order modes. Note that for
the small disk case, the higher order modes are weakly excited
as predicted in (28) and (29). In [1] this observation will be
further quantified using energy considerations.

B. Field Calculations

Next we calculate the field via (17). The results are checked
by comparing the TD radiation pattern obtained via (21)
with the closed-form expression obtained independently via
the STT [see (35)–(37)]. Both results are available for all

, but we only show here the waveforms for .
Using the limiting values of the spherical basis functions (11)
from [9, eq. (A1.7.3)], we obtain for and :

; . is given by
replacing in this expression ; ; .

Fig. 5 shows the radiation pattern at for disks of radii
and . For each case, the figure compares the

“exact” SST result (37) to the mode summation result obtained
by summing terms with and . Note that

the number of modes needed is essentially .
Next, Fig. 6 depicts the field along the axis for the disk

for which the Fresnel distance (30) is given by
. The results are shown at three ranges:

, , and (i.e., in the near, intermediate, and far
zones, respectively).

C. The Radiation Pattern via the Slant Stack Transform

In this section we use the SST to derive a closed-form
expression for the TD radiation pattern as an independent
check for the TD multipole calculations. Referring to [5, eq.
(10)], the TD radiation pattern (21) in the directioncan be
expressed as

(34)

where and is the observation direction.
The integral in (34) is termed the SST of . Its physical
interpretation is discussed in [5].

To calculate for the present example we note that the
component of transverse to is , where is
the angle of from and is a unit vector along the
coordinate. They are given by
and . Equation (34)
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(a) (b)

Fig. 5. The TD radiation patternF at � = 0 versus the normalized time�=T . (a) and (b): “small” and “large” disks witha=cT = 3 and9, respectively.
In each figure, the dotted, dash-dotted and dashed lines depict, respectively, the waveforms obtained by summing the multipole series up to then = a=cT
modes, up to then = 2a=cT mode, and up to then = 24 mode. These results are compared with the exact SST result (37) (solid). For case (a),
the n = 24 result coincides with the SST.

Fig. 6. The radiated waveforms along thez axis due to a current disk with
a = 9cT versus the normalized time�=T . Dotted, dashed, and solid lines
depict the waveforms atz = 3a, 9a, and18a, respectively.

with (31) therefore becomes

(35)
where and is a time convolution. The integral in
(35), henceforth termed ; , is related to the TD effective
height defined in [5, eq. (5)]. This integral reduces to the length
of the line of intersection between the source disk on the
plane and the slanted plane (Fig. 7). For a given

the distance of this line from the origin is , hence,
its length is , giving

for

(36)
and zero otherwise. This expression is the TD analog of the
well known FD expression for the a radiation from a circular
disk. However, unlike the FD analysis that involves spatial
Fourier transforms and Bessel functions followed by frequency
transform into the TD, the TD analysis above involves only
a geometrical projection of the source disk. In particular, for

: and , giving

(37)

This result is used in Fig. 5 to verify the result of the mul-
tipole expansion. As noted earlier, full agreement is obtained
provided that one takes a sufficient number of multipoles.

V. CONCLUDING REMARKS

We presented a TD multipole expansion of the electromag-
netic field radiated by a pulsed source distribution of finite
support. The formulation has been based on the TD spherical
transmission line representation, which can be applied to any
spherically stratified medium of any conical cross section,
but explicit expressions have been derived only for radiation
in free-space. The spherical transmission line formulation
describes the TD field and energy transmission mechanisms
in a physically transparent fashion which will be utilized in
a companion paper [1] to define and explore the TD energy
concepts such as TD reactive energy and.

The final expression for the field have been expressed
explicitly in terms of the TD multipole moments, which are
calculated from the TD current distribution via (22). The
TD multipole functions may be found, alternatively, from
measurements of the TD field distribution [see, e.g., (23)].
Bounds on the convergence and on the number of the relevant
terms have been established in Section III-D. In particular,
it has been shown that the near-zone field consists of strong
reactive constituents, but they are practically confined within
the TD Fresnel zone [see (30)]. Bounds on the reactive fields
have also been established there.

Finally, we demonstrated the TD multipole expansion
through a numerical example of pulsed radiation from a
circular current disk. We calculate the TD multipole moment
functions and demonstrated that the number of relevant
spherical modes is governed by the ratio between the
source size and the pulse length . To check the validity
of the calculations we compared the TD radiation pattern
obtained via this approach with the closed-form expression
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(a) (b)

Fig. 7. Geometrical interpretation of the SST integration. (a) Front view. (b) Side view.

in (36) obtained independently via the SST approach of [5].
Further analysis of this example from an energy perspective
will be presented in [1].

APPENDIX

RELATION TO THE FREQUENCY-DOMAIN EXPANSION

In this section, we briefly summarize the generalized spher-
ical transmission line representation for time harmonic fields
[17, secs. 2.5–2.7], which is recast here in a format that can
readily be extended to the TD. No special symbols are used
to denote the FD field constituents, which have a suppressed
time-dependence .

A. Spherical Transmission Line Formulation

Following [17, eq. (2.5.8)], the time-harmonic field in
the spherical configuration of Fig. 1 can be described as a
superposition of spherical modes of the form (1) and (2), where
the transverse mode functions are found via the eigenfunction
analysis of Section III. The modal amplitudes and

are described most systematically by the first-order
transmission line equations [17, eq. (2.5.9)]. However, since in
this formulation appears implicitly inside square roots, here
we use the wave equations whose form is more amenable for
transformation into the TD. The principal amplitude functions
for the and modes, and , respectively, satisfy the
spherical wave equations

(38a)

(38b)

Noting that are independent ofand , these equations are
readily transformed into the TD equations in (38). The other
two amplitude functions are determined from their solutions
via

(39)

The transmission line source functions and in (38)
are obtained by projecting the source distribution on the
transversal mode functions as shown in (8).

For the problem of radiation in free-space is given in (9).
The solution of the spherical wave equations (38) for

(outside the source region) can be expressed as

(40)

where are the spherical Bessel functions [18], and
are constant to be derived below. The associated amplitudes
obtained via (39) are

(41)

In order to transform these solutions into the TD, we use (see
[18, eq. (10.1.17)]) ,
where are given after (14) to rewrite (40) as

(42)

The final result in (13) is obtained by transforming this
expression into the TD, using

(43)

Note that the transformation from (42) to (13) utilizes the small
behavior with defined in (18), which

follows from (46) and (47) by using .

B. Calculation of the Multipole Moments

Consider the mode first, we note from (8) that the source
term in (38) is given by

(44)

Next, we express the solution of (38) as
where the Green’s function of (38) is

with .

We thus identify in (40) and,
from (44)

(45)
Using the identity

and collecting terms we
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obtain

The last integral yields

and, thus, we end up with

(46)

where in getting to the last expression we rewrite the integrand
of the first one as

and then note that the volume integration of the
divergence reduces to a surface integration over the envelope
of whereon vanishes.

For the mode we use (8b) to express the source term
in (38) as

Noting from (4) that and proceeding
as above we obtain

(47)

Equations (46) and (47) are similar to those given in the
literature (e.g., [19, eq. 4.18]), which were calculated directly
from Maxwell’s equation without recourse to the transmission
line procedure.

The TD expressions for are obtained by using in
(46) and (47)
(see [18, eq. (9.1.20)]), giving

(48a)

(48b)

These expressions can be inverted to the TD via (43), giving
the final results in (22).
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