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Time-Domain Near-Field Analysis
of Short-Pulse Antennas—Part I:
Spherical Wave (Multipole) Expansion

Amir Shlivinski and E. HeymanSenior Member, IEEE

Abstract—The radiation from a time-dependent source distri- a comprehensive TD “far-zone characterization” of antenna
bution in free-space is analyzed using time-domain (TD) spherical systems. The TD plane wave representation is based on a

wave (multipole) expansion. The multipole moment functions gjn: siack transform (SST) of the source distribution. It
are calculated from the time-dependent source distribution. The )

series convergence rate in the near and far zone and the boundsProvides a physically transparent representation for the field
on the near-zone reactive field are determined as functions of the in the radiation zone where the field is dominated by the

source support and of the pulse length. The formulation involves propagatingspectrum, but a complete spectral representation
a spherical transmission line representation that can be extended i the near zone must also involve the Eanescergpectrum

to more general spherical configurations. This formulation also - - . .
describes the field and energy transmission mechanisms in a[4]' Another difficulty is that each spectral constituent is

physically transparent fashion that will be used in a companion & global wave function and thereby noncausal. Although
paper to define and explore fundamental concepts such as TD all honcausal contributions cancel each other in the overall

reactive energy and@ and to derive bounds on the antenna prop- spectral integration, this property complicates the physical
ertles._FlnaIIy, the concepts dlscusseq above are de.mons”atedinterpretation [4].
numerically for pulsed radiation by a circular current disk. The spherical wave expansion, on the other hand, consists
Index Terms—Antenna theory, near field, short-pulse electro- gn|y of strictly outgoing (causal) wave solutions. Furthermore,
magnetics, time-domain analysis. it provides a convenient framework for addressing the causal
near to far zone transition, as each spherical wave combines
. , ) o both the propagating and the evanescent spectra. Spherical
HIS work is concerned with the analysis of radiation frony, 5, /e expressions have been used extensively in FD anal-
time-dependent source distributions directly in the tiMesis of near-zone fields and of fundamental antenna limits

domain (TD). The slant is toward the analysis of the near-fie g]—[lO]. More recently, the spherical wave expansion has
properties of short-pulse antennas, including the definition BE

) n extended for radiation from time-dependent source dis-
fundamgntgl concepts such as reactive power and.energy, [bgutions, using multipole expansion of the sources [11]—-[14].
the derivation of boun'ds of thg antenna pmpemes' In “13'1 alternative TD formulation has been used in [15] and [16]
present paper, we mainly consider NEw expressions for 1i?\econnection with the near-field spherical scanning problem
field solutions while the energy properties and bounds will

be considered in a companion paper [1]. The analysis in thes}é expend!ng the field in terms of decaying oscillations
corresponding to the resonances of the measurement sphere.

papers is based on a systematic time-dependent spherical wa\ﬁ this two-part paper, we explore the antenna properties as

expansion and a spherical transmission line procedure that can,. ; . .
. . ' . implied by the TD spherical wave expansion. The formulation
readily be extended to more general spherical configurations.

One way of analyzing radiation from source distribution t|||ze% a Tﬂ? sfpf}grlcaldtransmlsstlon Img r_epresen:]athn thaﬁ
is by using Green’'s function integration. It is sometime escribes the Tield and energy transmission mechanisms n
desirable, however, to express the field in a more tra systematic and physically transparent fashion that can also

parent form, using basis functions that conform with th® extended to more general spherical configurations. In the

field structure in a particular space—time regime. The md4St Part, we focus on the field solutions, while in the second
common representations are the plane wave and the sphef@f [1]. we use this new expansion to explore the energy
wave expansions, which are frequently used in the frequerfpPerties and to define fundamental TD concepts such as
domain (FD). The TD plane wave approach has been ud#je-dependent reactive energy and the antegn&or time-
recently in [2] and [3] for the analysis of radiation fromharmonic fields, these concepts are well understood in terms
planar apertures and in [4] and [5] for radiation from volum8f the stored energy [6]-[9], but they have to be redefined for

source distributions. In [5], it has also been used to formulat80rt-pulse fields where there is no stored energy.
Concerning the layout of presentation, we start in Section Il
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E (r,0,0;1) where 9, ! = fioo dt, c(r) = 1/\/ep, andn(r) = Ve
Here, 2(8, ¢), e%(8, ¢), and h& (6, ¢) are the transversal
scalar and vector mode functions which depend onlySon
and are independent ¢f, ¢), while v denotes the mode index
anda = ¢ or i (see Section II-A). Note that the summation
for E; andH, involve all modegr) of both types & = ¢, A),
while the summations fo#,. and H,. involve only £ or H
modes, respectively. In (2)V,*(r, t) and IS(r, t) are the
modal amplitude functions which depend only on ¢) as
described by the time-dependent radial transmission line in
Section 1lI-B. Also, for simplicity, (2b) is written only for
r > a (outside the source domain).

Fig. 1. A spherical transmission line.
A. Spherical Mode Functions

Section Ill, the general formulation is applied for radiation in The modal fields are determined by the scalar eigenvalue
free-space. The radiated field is completely described by theblem

“TD multipole moments,” which are calculated in Section IlI- ) W o .

C directly from the time-dependent source distribution. The (Vi + k) 20(0,)=0 inS ®3)

convergence properties and bounds on the near-zone reat: ihe boundary conditionsbt|c = 0 and 3,®"|c

tive f!eld are explored in Section III-D_. F|nall_y, the concepta where n is the coordinate normal ta and VZ =
mentioned above are demonstrated in Section IV for puls Sqn 6)~10, sin 03 + (sin 6)~202. Here &2, k2 are the
radiation by a circular current disk. In order to check th o o ¢ v

. . . . igenfunctions and eigenvalues, is the mode index an
validity of the calculations, the multipole expansion of thg genfunctions and eigenvalues, is the mode index and

TD radiation pattern is compared in Section IV-C with N ;v(iaoirshr.ez(l);féa BgeﬁTEEA g%i?;’nihe boundary condition
closed-form expression obtained independently via the S The transverse vec{of eigenfunctioaléﬁ andhe = § x e
formulation of [5]. In [1], this example will be further studiedare found from®® via v v
from a reactive energy perspective. v

e = —(ki,)"'Ve),  hy=—(k)T'Vo, (4)
II. TIME-DOMAIN SPHERICAL . .
TRANSMISSION LINE REPRESENTATION where ¥V = 69, + ¢(sin 6)~'9,, (note that our definition of
hV and V2 differ from those in [17, sec. 2.5] by a factor
r). The scalar eigenfunctions may be normalized to obtain a
real orthonormalset. From the definition in (4), the vector
eigenfunctions are also orthonormal, with

Referring to Fig. 1, we consider first the propagation i
a spherically stratified domain with(») and n(r), bounded
by a perfectly conducting, general conical surfad@, ¢).
The spherical cross section bounded ®yis termedS. In

Section lll, we shall consider the special case of a homo- amal o« o
geneous medium and unbounded spherical donsaia 4. Ao, @y = dide) - e, = byl o (5)
The source distributiod(r, ¢) is assumed to be confined in s s

the regionr < a where we utilize the conventional sphericajyhered2 = sin 6 d6 dp and§; ; is the Kronecker delta.
coordinate systent = (7, 6, ¢). ’

In view of the problem symmetry, the field is decomposeg The Time-Dependent Radial Wave Equations
into radial and transverse components ' ) ) ) )
The mode amplitudes in (2) are described by radial wave

E(r,t)=E, +tE., E;,=0E; +¢E, (1) equations which are independent @, ). There are two

where the carets are used to denote unit vectors. The fiQf-L cipal modes functions?;;(r, t) for the £ modes and
may be decomposed int&- and H-type modes denoted, V¥ (r, t) for the H modes, which are governed by [cf. (38)]

respectively, by superscript and 4. As discussed in the o _, 0 192 k2 9 9
Appendix, the expansion has the form [6 ar € a2 ar 74 y =t 9t v, — ¢ ar f
1 6
Et(r7 t) = Vz/(ye:/yv ( a)
T ; g _, 0 1 8% k2 a ,
7707 Part  ar " 2o 2 Vubzﬂali (6b)
En(r,t) =5 > k2007 (2 L 9" ¢ '
”
v where k¢, are the eigenvalues of (3). Having found these
H,(r, t) _1 Z ISh® principal mode amplitudes, the associate amplitudeé, ¢)
T and I"(r, t) are calculated via [cf. (39)]

-1
n c W v y— v € € 7€
Hy () =255 37 koo, V) (2b) {‘1’7 } ettt {81 ;V ;rhﬁy } @
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In the aboveuS(r, t) andiS(r, t) are the transmission line Outside the source region, for> «, the solution of (12) can
sources. They are calculated by projectifig, t) onto the be expressed as
mode functions via {Ie(T £)

, S } =LOM(r),  r=t-rfc  (13)
v (r, t) = — nek;,0; # dQ.J,(r, (6, ¢) Vo t)
where the/:ﬁll) have either one of the following alternative

V=0 (8a) forms:
" n l
i%(r, t) =7 (P dQI(r, t) - e%(6, L — AW
20 =r ff 423, 1) €206, ) (=3 ani(5) 0 (1)
for « = e or h. (8b)

wherea, ; = 27 ((n + D1)/(U!(n — 1)!). The “TD multipole
moments” M2 (t) are obtained from the transmission-line
sourcesy? andig. Expressions foRf(t) directly in terms of
J(r, t) are given in (22) below.
From the series solution in (14) one observes that only the
[ = 0 terms are propagating with pure delay and without
From here on we consider radiation in free-space onigistortion, i.e., they are proportional t&/>(7). The largel
For an unbounded spherical domain, the normalized scal@fms, on the other hand, decay like!, leaving the far-zone
eigenfunctions and eigen\/a|ues of (3) are field dominated by thd = 0 terms. The high-order terms
dominate in the near zone where they contribute to the “TD
(0, 6) =Y, 50, ¢), ki =+v/n(n+1) (9 reactive energy.” The role of these constituents will be defined
and explored in Part 1l [1].

lll. FREE-SPACE SOLUTION:
SPHERICAL WAVES AND MULTIPOLE MOMENTS

A. Spherical Mode Functions

where v is a triple indexy = (n, m,s), s = 1,2, n =

0.1 40 < < o) th | ‘soherical Having found/¢ and V", the associate solutiong’ and I/
b, andis me s ne Yam @re thereal spherical - isige the source domain are calculated via (7), giving

harmonics Ve )
Y, cos {Il’: 7 ; } =L@ M (r), a=ecorh (15)

Y(2) =Ynm )" (cos 0) sin me L, 1)

nm where
2n+1 (n—m)! nt1 .
nm — m Ty 10 2) E -1
Y \/E dr (n+m)! (10) /:"gl) = Z bn,l(T) 9; (16)
=0

with P}*(z) being the associate Legendre functions [18, clvith b, ; = a, ; + (I — 1)a, ;1 for 0 <1 < n +1 (note that

8] ande;,, =1 or2form =0orm > 1, respectively. From p, o = a, ¢ = 1 and b, ,4+1 = nan, ).

(4), the orthonormal vector mode functions are given by The final expressions for the TD field are obtained by
o — " substituting (13) and (15) in (2), giving

n
L E ,t:—Ej e (0, p)LDME
= Ym [0an(cos 6) sin 9{23? }md) o(x, 1) r w9, ) o)

n(n+1)
. += Z (0, ¢)LD M (1) (17a)
+ ¢ P (cos 9){ st }m</)}
sin 9 cos
(11) E.( Z n(n + 1)®,(8, $)a;7 LEME(T)
while el = - —hj, are obtained by replacing in (1ﬁ)—> —q3 (17b)

and ¢ — Herer( ) = (8/02)P*(x) and the upper
and lower cases are for = 1,2, respectively. The set of
scalar and vector spherical harmonics satisfy the orthogona
condition (5) with respect to the indexes n, m, s, and are

with similar expressions faH. A slightly modified representa-
fon which may be more convenient in numerical calculations,
& obtained by noting thab/>(¢) can be expressed as [see

also completey™ | Vi (B)Yam(¥) = 8(¢ — ). (22) below] o
o Mg(t) = 9 mi(t) (18)
B. The Mode Amplitude Solutions where N = n or n+ 1 for &« = ¢ or h. Expressions (17)
From (6) with (9), the wave equations fdi(r, t) and C&n be rewritten now as
Vi(r, t) are E(r, t) = Z VLD me (7)
o? 1 9% nn+1D][I X
a? 2o g2 Vh + - Z L, $)LYml(r) (19a)
a M= a €
[mrs ] me=E Y e
sk
Mot ' (19b)
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where the integral operatoriﬁ}’” of (14) and (15) D. Approximate Expressions and Series Convergence

. . 1
are now replacedl l?l)y the Agl)fferentlalJr(l)peratofél) :z In this section, we derive large approximations for the
Y ieo qn,z(C/T)lat Hland Ly = 310 ba,i(e/r)'o; TD multipole moments and, thus, establish the dominant field
operating onmg(t). structure and the series convergence rate. The approximate

Finally, as indicated above, the far-zone field is dominateskpressions will also be use in [1] in connection with the
by thel = 0 term in £, giving £&? ~ 1. Thus, the bounds on the gain.

far-zone field has the form We first note that the effective width of tije—£2)™ window
in (22), henceforth termed,,, can be quantified by
E(r,t) ~r*F(t —r/c, T) (20) L 12
5 - & =| [ wcea-er]
where the “TD radiation patternF' is given by -1
2(2n)!! Y2 1/4_—(3/4)
F(t,8) =1y el(6. M)+ D eli(6. $)M](t). (21) = {W n :M ~ (/4 (24)

where (2n)!! = 2-4---2n ~ /7(2n)" T2~ and (2n +
Note thatF can also be calculated via the slant stack transform)!! = 1-3---(2n + 1) ~ /2(2n)**te™™ (the largen ap-
(SST) of J(r, t) (see [5] and also (34) below). proximations follow from Stirling’s formula [18, eq. (6.1.37)]).
For largen, &, — 0 so thatJ is approximately constant
within the time windowt + &,»/c and may be pulled out

of the £ integration in (22). This approximation is valid if

The expressions for calculating the TD multipole momenis . : : : :
) ) o - Swr/e < T, whereT is a typical pulse length id. Applyin
from J(r, t) can be derived via the TD transmission “n‘%ii;/rcequirement for alk eyr‘)/ Wepobtain g ppying

procedure as described after (14). Alternatively, they may be
derived via the frequency-domain analysis in the Appendix. Ia> & ~ (n)H)Y =G, (25)
The result is

C. The Time-Domain Multipole Moments

This sets a lower bound on the valuesrofor a givena and

. -1 T\" . T, for which the analysis below applies.
My(t) = ﬁat ﬁdv(g) h,, Under the conditions above we may pullout of the ¢
4 integration in (22). Using_l1 de(1-&2)" = (2" ) /((2n+
! . , 1! for the ¢ integral we obtain
/ d&(1 ="V x J(r, t+&r/c)  (22a)
—1 -1 " a
-\ ms(t) ~ —_— drr™t2p(r, t 26
M (t) :%a?H ﬁdv(éc) el + ) {77/0}(271-1-1)”/0 potr ey 29)
' Vv where upper and lower signs corresponddto= ¢ or h,
L respectively, and
- / de(1— Y I(x, £+ &r/c) (22b)
—1

o (r, t) :#dﬁhi -V x J(r, t)
[in (22a) the V operates only on the variable inJ]. The
fu_nctions ms of_ (12_3) aremdefined by the same integrals but ) :ﬂdﬁ e J(r, t). (27)
without the derivatives)}¥".
Equation (22), should be understood as follows. First,
for source points on any spherical shell of radiysthe ¢ The integration in (26) is bounded lgy +3)~*a™*3pg (1),
integration represents a local temporal average of the curréfiterepg  are bounds o (r, t). Using also the Stirling
in the time windowt + r/c. Next, the time-averaged sourcdormula for (2n + 1)!! we obtain
distribution on each spherical shellis projected onto the _1 o3 e a\n
O~ { o g (5 ) T @)

basis functiond® ande” via the angular) integration and, m;, - —

finally, the result is integrated as a%unct%moﬂ\l%te that for nfe J 2%/ 2n(n +3)\2 ne

the largen the main contribution comes from sources close ®ubstituting (28) into (18) and using ~ O(T~!), whereT’

the external boundaryr(~ a). is a typical pulselength of the source, one finds for lange
The TD multipole functions may also be found by measuthat M ~ (a/ncT)™. The relevant terms in the series (21)

ing the radiated field on any sphere. Specifically, from (2%pr the radiation patterd® in are, therefore, of order
they may be found from the TD radiation pattern via

n~ O(a/cT) (29)
ME(t) :nflﬂ dQet - F(t, t) (see also numerical example in Section 1V). Additional decay
of the series is provided yf. () in (28), i.e., by the angular
N N . spectrum of the source, but it is not considered here.
My (¢) Iﬂdﬁ e, - F(t, 1) (23)  considering now the full-field solution in (17) [or

(19)] one finds that a typicaln,!) term of the E or
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Fig. 2. (a) Physical configuration for the numerical example. (b) The normalized excitation pulse.

H mode behaves like(n/r)eb,, (cT/r)' T "mS(t) or We shall calculate the TD multipole moments for both
(1/r)ela, (cT/r)' T tml(t), respectively. For a given “small” and “large” disks identified by, ~ ¢I" anda > T,

n, we may compare now thk= 0 and1 terms in the series. respectively, and shall explore the convergence as a function
Recalling the expression fat, ; andb,, ; in (14) and (16), we of the normalized disk size/cI'. The multipole expansion
find that thel = 0 term dominates only if /cT" > n2. Thus, results will be verified by comparison with independent cal-
considering only the relevant defined in (29) we conclude culations for the far-zone field via the SST formulation of [5].
that the far-field approximation in (21) is valid for These multipole moments will also be used in Part Il [1] to

) calculate the TD reactive energy and #eof this source.
r>»a /T =1 (30)

where £’ is the TD Fresnel distance [20]. A. The Time-Domain Multipole Moments

~ For small~, on the other hand, the full wave solution gince the integrals in (22) are expressed in spherical co-
is dominated by the terms with the largdstNoting from ordinates, we first rewrite (31) ab = xr—8(6 — 7 /2)f(t).

(14) and (16) thata,, , = (2n)!/2"n! ~ V2(2n/e)" and Noting next forg = /2 thatk = £ cos ¢—¢ sin @, it follows
bn,nt1 = nan, » we find that mcl)/d2al fields in (17)Er (19)] arenat (22) vanish for alln except form = 1. Using also the
dominated byE* ~ ef(n/r)27/((2/e)(ne/r))" T Tmy, = yajues of P7(0) and P™(0) from [18, egs. (8.6.1), (8.6.3)],

e;n(a/r)" " cTal2e(n + )] Iy and \ve finally obtain for thef modes withm = 1 thatM¢(t) = 0
E" ~ ey (1/r)2t2((2/e)(ne/r)" T m}; ~ for s = 2 while for s = 1

eln(a/ry" T (a?/cT)[2n(n + 3)]7'p! ,  where we n

also used (28) forn. Thus, the near-zone field of the large (t) = -1 n+1/2 F(§ T 1) cos((n + 1)1 /2)

n modes is rapidly growing, but it is dominated Ky/+)N" v 20" n(n+ D! [ (n+1
and, hence, is bounded for all> a. 2

a 1
IV. EXAMPLE: X/O d7’7’"/1d€(1—€2)n

PULSED RADIATIONS FROM A CIRCULAR CURRENT DIsK
2o (4 ér ér (nt1) ér
The concepts above are demonstrate here for an example of x|(n+1)°f + t=7 +

c c
a circular disk of radius carrying a pulsed current (Fig. 2) (33a)
J(r, t) =%6(2)f(t), r<a (31) where f(*) = 97 f. For the H modes withm = 1 we obtain

. _ ” M!(t) = 0 for s = 1 while for s = 2
where f(¢) is an arbitrary pulse. Specifically, we shall use the

twice differentiated Gaussian o JnFif2 F(n * 3)
~1/2 . Mty = 2E VT sin((n + 1)7 /2
10 = (/) e ) @ TR w1 r(3) e
. . . a 1 .
where Hy(z) = 422 2 is the Hermite ponnorglaI of order 2. y / dr 7,n+1/ de(1 — £2yn D) <t n 5_7>
The constants in (32) were chosen so tiiak f(¢t) = 1 and 0 1 c

v = (12/7)}/2T whereT = [ dtt?f*(t) is the pulse length. (33b)



276 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 2, FEBRUARY 1999

x 10

0
t/T
@

Fig. 3. The time-dependent multipole momenis\Zs(t) (solid) and M/ (t) (dashed) for a disk of radius = 3¢T versus the normalized time/ 7.
(a) Low-order momentsz = 1 and2 for the E and H mode, respectively. (b) Large-order moments= 10 and11 for the H and E mode, respectively.

7
1.5x10 . ' ‘ ‘ i}

1,

0.5f

Fig. 4. As in Fig. 3 for a disk of radiuss = 9¢T.

Note also thatM¢ "(¢) = 0 for even and odd values of, the number of modes needed is essentially~ 3(a/cT).

respectively. Next, Fig. 6 depicts the field along the axis for the disk
The integrals in (33) have been calculated numerically far = 9¢7° for which the Fresnel distance (30) is given by

f(t) in (32). Examples for the resulting/¢(¢) for a “small” F ~ a?/cI’ = 9a. The results are shown at three ranges:

and “large” disks with radiic = 3¢I" and 9¢T', respectively, » = 3a, 9a, and18q (i.e., in the near, intermediate, and far

are shown in Figs. 3 and 4, respectively. Each figure shoasnes, respectively).

examples for both low- and high-order modes. Note that for

the small disk case, the higher order modes are weakly excitgd The Radiation Pattern via the Slant Stack Transform

as predicted in (28) and (29). In [1] this observation will be

further quantified using energy considerations, In this section we use the SST to derive a closed-form

expression for the TD radiation pattern as an independent
check for the TD multipole calculations. Referring to [5, eq.
B. Field Calculations (10)], the TD radiation pattern (21) in the directiéncan be

Next we calculate the field via (17). The results are check&fPressed as
by comparing the TD radiation pattern obtained via (21) i
with the closed-form expression obtained independently via F(# t) = . /// dV' o (r', t+1-1'/c) (34)
the STT [see (35)—(37)]. Both results are available for all v
(6, ¢), but we only show here the waveforms fér= 0.
Using the limiting values of the spherical basis functions (1\yhereJ; = J — #(t - J) andt is the observation direction.
from [9, eq. (A1.7.3)], we obtain forn = 1 ands = 1, 2: Theintegral in (34) is termed the SSTdf(r, ). Its physical
elo—o = —(1/2)\/(n + (1/2))r{%; ¥}. et|o—o is given by interpretation is discussed in [5].
replacing in this expressiofix; y} — {—¥; X}. To calculateJ| for the present e>fample we note that the
Fig. 5 shows the radiation patternéat= 0 for disks of radii component ofx transverse ta is —6, sin 6., wheref, is
a = 3¢I" and 9¢T'. For each case, the figure compares thi@e angle oft from x and @, is a unit vector along thé,
“exact” SST result (37) to the mode summation result obtainedordinate. They are given byn 6, = V/1—sin? 6 cos? ¢
by summingn terms withn = a/cT and 2a/c¢T. Note that and 8, = (¢ sin ¢ — 8 cos 6 cos ¢)/sin 6,. Equation (34)
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x10°

x1071

0 0
t/T t/T
() (b)

Fig. 5. The TD radiation patterF at & = 0 versus the normalized time/7". (a) and (b): “small” and “large” disks with/cT" = 3 and9, respectively.

In each figure, the dotted, dash-dotted and dashed lines depict, respectively, the waveforms obtained by summing the multipole series tp:tb-The
modes, up to the: = 2a/cT mode, and up to thee = 24 mode. These results are compared with the exact SST result (37) (solid). For case (a),
the n = 24 result coincides with the SST.

6 — 0: D(t; ) — ma?6(t) andd, = =/2, giving
F(t)]omo = —X(u/4m)ma’ (1) 37

This result is used in Fig. 5 to verify the result of the mul-
tipole expansion. As noted earlier, full agreement is obtained
provided that one takes a sufficient number of multipoles.

x10°

V. CONCLUDING REMARKS

YA _ We presented a TD multipole expansion of the electromag-
2 . . . . . netic field radiated by a pulsed source distribution of finite
Y S support. The formulation has been based on the TD spherical
Fig. 6. The radiated waveforms along theaxis due to a current disk with transr_nlssmn Ime- _represeqtatlon, which Ca-n be applied tO_ any
a = 9¢T versus the normalized time/T. Dotted, dashed, and solid lines Sphe”ca_”y stratlfleq medium of any C_O”'Ca' Cross Se(_:t'(_m’
depict the waveforms at = 3, 9a, and 184, respectively. but explicit expressions have been derived only for radiation
in free-space. The spherical transmission line formulation
describes the TD field and energy transmission mechanisms
in a physically transparent fashion which will be utilized in
a companion paper [1] to define and explore the TD energy
F(t; t) = 0, sin 6, —H I(t) // dV'§(2)é(t +¢-1r'/c) concepts such as TD reactive energy &nd

4 The final expression for the field have been expressed
(35) explicitly in terms of the TD multipole moments, which are
where f' = 9,f andx is a time convolution. The integral in calculated from the TD current distribution via (22). The
(35), henceforth termed(¢; 6), is related to the TD effective TD multipole functions may be found, alternatively, from

height defined in [5, eq. (5)]. This integral reduces to the lengtheasurements of the TD field distribution [see, e.g., (23)].
of the line of intersection between the source disk orethe0  Bounds on the convergence and on the number of the relevant

plane and the slanted plasie r’ = —ct (Fig. 7). For a given terms have been established in Section IlI-D. In particular,
t the distance of this line from the origin is/sin 6, hence, it has been shown that the near-zone field consists of strong

with (31) therefore becomes

r’'<a

its length is2+/a? — (ct/sin #)2, giving reactive constituents, but they are practically confined within
the TD Fresnel zone [see (30)]. Bounds on the reactive fields
2¢ have also been established there.

D(t; 0) = Va2 —(ct/sin 0)2,  for[ct| < asin 0 Finally, we demonstrated the TD multipole expansion
(36) through a numerical example of pulsed radiation from a
and zero otherwise. This expression is the TD analog of thi&cular current disk. We calculate the TD multipole moment
well known FD expression for the a radiation from a circulafiunctions and demonstrated that the number of relevant
disk. However, unlike the FD analysis that involves spatiabherical modes is governed by the ratif:7" between the
Fourier transforms and Bessel functions followed by frequenspurce sizez and the pulse lengti’. To check the validity
transform into the TD, the TD analysis above involves onlgf the calculations we compared the TD radiation pattern

a geometrical projection of the source disk. In particular, fabtained via this approach with the closed-form expression

sin €
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A z side view

1>

2,/a? — (ct/sin0)?

Fig. 7. Geometrical interpretation of the SST integration. (a) Front view. (b) Side view.

in (36) obtained independently via the SST approach of [Jputside the source region) can be expressed as

Further analysis of this example from an energy perspective I¢(r)
. . v 1 h(2) N e, h
will be presented in [1]. {VVJL(T) } = krhy (kr) M5 ™ (w) (40)
APPENDIX where hﬁf) are the spherical Bessel functions [18], ah*
RELATION TO THE FREQUENCY-DOMAIN EXPANSION are constant to be derived below. The associated amplitudes

. . . . . obtained via (39) are
In this section, we briefly summarize the generalized spher- Velr d
ical transmission line representation for time harmonic fields { 2(7)} = jnilM;"h(w) — [rh;”(kr)] (42)
[17, secs. 2.5-2.7], which is recast here in a format that can Ip(r) . dr _
readily be extended to the TD. No special symbols are uskyorder to transform these solutions into the TD, we use (see

(2) _ an —jz n oN—1—
to denote the FD field constituents, which have a suppresééé' eq. (10-1-17_)])’“1 () = —j"e™ leo an,1(jz) =71,
time-dependence’**. wherea,, ; are given after (14) to rewrite (40) as

A. Spherical Transmission Line Formulation {é’;&% } = jntle=ikr lz: a1 (Ghr) M (). (42)
. . . . . v =0

Followmg [17, €qa. (2.'5'8)]’ the time-harmonic _f|eld ""The final result in (13) is obtained by transforming this
the spheg.cal conﬂgur.atlon of Fig. 1 can be described ase?pression into the TD, using
superposition of spherical modes of the form (1) and (2), where 1 [ ’
the transverse mode functions are found via the eigenfunction M) = 2—/ dw 7t T M (w). (43)
analysis of Section lll. The modal amplitudés*(») and - -
I2(r) are described most systematically by the first-ordyote thaF thetr’ansform?\ynon f_rom (42) tq (13)'ut|I|zes the.small
transmission line equations [17, eq. (2.5.9)]. However, since behavior My (w) ~ w™ with NQ, defined T'Ln (18), which
this formulationw appears implicitly inside square roots, her21OWS from (46) and (47) by using,(z) ~ «" /(2n + I
we use the wave equations whose form is more amenable for
transformation into the TD. The principal amplitude function

for the £ and H modes,/: and V*, respectively, satisfy the
spherical wave equations Consider the&’ mode first, we note from (8) that the source

term in (38) is given by

— o0

E. Calculation of the Multipole Moments

e2 Je
eie_liﬂ-kQ—kt” I :jweve—eiL—” (38a) d
dr dr 2 |t v dr . e e
7 7 ]72 T q(r) = — jwev], + s
d -1 d 2 ktLV o __ o
{N e i R }Vy = Jwpty. (38b) = ﬂ s [.],,kf,,d)f,’ + di (r3 -e%)|. (44)
",

Noting thatk!, are independent of andw, these equations are )
readily transformed into the TD equations in (38). The othd}ext, we express the solution of (38) af(r) =

two amplitude functions are determined from their solutiond @ 9n(r 7)a(r") where@ghe Green’s function of (38) is

ia (s ) = ghrr ol D () With < = M 7.
-1 d -1/4d . We thus identify in (40)M:(w) = j [3 drrj.(kr)g(r) and,
Ih:—— h [l I i€ ). v 0
Yo jwp dr Vo v Jwe <d7’ vt L”) (39) from (44)

The transmission line source functioss(r) and:< () in (38) M (w) = j/a dr v (,W,)# dQ - #k5, @, + 9,(rd - ).
are obtained by projecting the source distributikfr) on the v 0 " LR Y

transversal mode functions as shown in (8). (45)
For the problem of radiation in free-spakg is givenin (9). Using the identity tj,(kr)k;,®, = k§rV x V x
The solution of the spherical wave equations (38)/fas a [rj,(kr)®,] + O.[rjn(kr)leS and collecting terms we
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obtain

JTV///dVlV % [rjn (kr)he]
ny /0 " ar ﬂ dQ0ye;, - [r%jn(kr)J].

The last integral yields
ﬂd(h Jn(kr)d - ell—q+ =0

and, thus, we end up with

ME(w) =j / / [ v x i)
:J/// den(/W’)

he -V xJ (46)

(2]

(3]

(4]

(5]

(6]
(7]
(8]
[9

[10]

where in getting to the Iast expression we rewrite the mtegrand

of the first one ad - V x [j,(kr)h¢] = 4 (kr)he - VXxJ -V
[T jn(kr)h

of V whereonJ vanishes.
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¢] and then note that the volume integration of the12]
divergence reduces to a surface integration over the envelope

[13]

For the H mode we use (8b) to express the source term

in (38) as

() = —jwpil(r) = ~L2E ﬂ dQJ - [f x VO]

h
ktu

Noting from (4) thate” = (k})~*
as above we obtain

y) =k [[[av 3 intenel).
J

t x V" and proceeding

(47)

[14]

[15]
[16]
[17]

18
Equations (46) and (47) are similar to those given in th[e]

literature (e.g., [19, eq. 4.18]), which were calculated directh}®]
from Maxwell’'s equation without recourse to the transmission

line procedure.

The TD expressions foM“( ) are obtained by using in
(46) and (47)j.(2) = (2n))~1(z/2)" f dé(1 — €2)ned*
(see [18, eq. (9.1.20)]), giving

JTME (W) = o < ) /// dV[V x J]

-[hfﬁ’" / d§(1—§2)"eﬂ”’f} (48a)
-1

o n+1
i) Jffas
n!\ 2¢
v

1
el [ de(1—)reMe | (48D
o [ asa- gy s

JTIM (W) =

[20]

These expressions can be inverted to the TD via (43), giving

the final results in (22).
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