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Time-Domain Near-Field Analysis
of Short-Pulse Antennas—Part II:

Reactive Energy and the Antenna
Amir Shlivinski and E. Heyman

Abstract—The time-domain (TD) multipole expansion, devel-
oped in the first part of this two-part sequence, is extended here
to analyze the power-flow and energy balance in the vicinity of
a pulsed antenna. Using the spherical transmission line formula-
tion, we derive expressions for the pulsed power-flow and energy
and identify the radiative and the reactive constituents. For
time-harmonic fields, the reactive concepts are well understood
in terms of the stored energy, but this interpretation is not
applicable for short-pulse fields where there is no stored energy.
By considering the TD energy balance, we clarify the transition
of the near-zone pulsed reactive energy to the radiation power
and show that the pulsed reactive energy discharges back to the
source once the pulse has been radiated. We thus introduce a TD
QQQ factor that quantifies the radiation efficiency. In particular,
we show that super resolution using short-pulse fields involves
large TD reactive energies andQQQ and is, therefore, not feasible.
The general TD concepts discussed are demonstrated through a
numerical example of radiation from a circular disk carrying a
pulsed current distribution.

Index Terms—Antenna theory, near field,Q factor, short-pulse
electromagnetics, time-domain analysis.

I. INTRODUCTION

I N Part I [1] of this two part paper, we developed a time-
domain (TD) multipole expansion describing the radiation

by short-pulse antennas. It has been shown that outside the
source domain, the field is completely described by the TD
multipole functions which are calculated directly from the
time-dependent source distribution. We have also established
bounds on the series convergence rate and on the field structure
in the near and far zones. In the present work, the emphasis is
on the TD representation and analysis of the pulsed power flow
and energy and on the resulting antenna properties. We derive
closed-form expressions for the TD power-flow and energy
and thus identify the TD “radiative” and “reactive” power flow
and energy (Section III). For time-harmonic fields, the reactive
energy concept is well understood in terms of the stored
energy, but it has not been defined yet for time-dependent
fields where no stored energy is involved. By considering the
TD energy balance, we also clarify the transition of the pulsed
reactive energy that dominates in the near zone to the pulsed
radiative power in the far zone. It is shown that the strong
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reactive energy pulse discharges back to the source once the
pulse has been radiated. Thus, in order to quantify the effect
of the TD reactive energy and on the radiation efficiency, we
introduce in Section IV a TD which generalizes a similar
frequency domain (FD) concept [2]–[6].

The TD concepts discussed above are demonstrated in
Section V through a numerical example of radiation from a
uniform current pulse on a circular disk, which has been
studied in [1] in connection with the calculation of the TD
multipole moments and fields. We calculate the TD radiative
and reactive energies and the TD utilizing the numerical
results of [1]. In particular, we calculate these constituents as
a function of the normalized source size where is the
source size and is the pulse length. Using this example,
we also demonstrate that the realization of the field of a large
source using a smaller source requires large reactive energy
and and, therefore, is not feasible.

Throughout the paper we shall refer to equations, sections,
and figures from [1], and shall use the prefix I to denote these
references [e.g., [1, eq. (3)] is denoted here as (I.3)].

II. TIME-DOMAIN MULTIPOLE EXPANSION

This section summarizes of the main concepts and results
from [1]. We consider the radiation from a time-dependent
source distribution bounded by a sphere of radius
. The propagation domain may have a general spherical

symmetry, i.e., it may be spherically stratified with
and and bounded by a general conical surface
whereon the boundary conditions are imposed. Utilizing the
conventional spherical coordinates system , the
field is expressed by the spherical mode expansion in (I.2),
which involves both - and -type modes, denoted by the
superscripts or , respectively, with denoting the
mode index. The functions , , and are the scalar and
vector eigenfunctions that are determined in [1, sec. II]: They
depend only on and on the cross-sectional geometry but
not on . The mode amplitudes and , on the other
hand, depend only on and are found from the spherical
wave equations [1, sec. II-B] wherein the source functions
and are found from via (I.8).

For radiation in free-space, the eigenfunctions are the scalar
and vector spherical harmonics in (I.9) and (I.11) with

being a triple index. Outside the source domain
, the solutions of the spherical transmission line equations

(the mode amplitudes) are expressed in (I.13) and (I.15),
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where the “TD multipole moments” are calculated
from via (I.22) and the integral operators are
defined in (I.14) and (I.16). The final field solutions expressed
explicitly in terms of are given in (I.17). Alternatively,
it might be convenient to express the field in terms of the
functions where or
for or : are the integral part in (I.22), and the
expressions for the field are now given in (I.19) and involve the
differential operators . Finally, the large convergence
of the series has been explored in [1, sec. III-D].

The dependence of the solutions in (I.13)
and (I.15) describes the outgoing nature of these solutions.
Yet for each , only the term in the series for
propagates with pure delay and without decay or distortion.
When substituted in (I.2), this term describes the dominant

field term as [see also (I.20)–(I.21) for the TD
radiation pattern]. The terms, on the other hand, behave
like and, therefore, vanish in the far zone but contribute
to what will be identified here as the “TD reactive field” in
the near zone. Thus, the largemodes have relatively large
reactive components in the near zone. As will be explored
below, this sets bounds on the orderof the multipoles that
can be excited by an antenna with a given supportand, thus,
on the antenna gain.

III. TD ENERGY AND POWER-FLOW

A. The Pulsed Power Flow

The radial power flow with respect to a sphere of radius
is defined as

(1)

where is the time dependent Poynting vector. Using the
modal representation (I.2) and the mode orthonormality [see
(I.5)], may be expressed as a sum of modal powers

(2)

Using (I.13)–(I.16) for and we obtain

(3)

where here and henceforth the upper and lower signs are
used for the and modes, respectively. Arranging the
summation as an ascending series of powers of, it may be
expressed as

(4)

where is the lowest order term while represents
all other terms. They are given by

(5)

(6)

where and
(i.e., for goes from zero to while for

it goes from to ).
The leading order term is the modal “TD radiative

power”: It is always positive and, being a function ofonly, it
propagates without distortion or decay all the way to infinity.
The remainder term is denoted as the “TD reactive
power flow”: It vanishes at infinity and for any finiteit has
a zero mean, i.e.,

(7)

This property will also be proved in the Appendix [via a direct
analysis of (6)] and will also be verified in (18) from the point
of view of energy conservation.

Relation (7) implies that the radiated energy is described
only by and is thus independent of, i.e.,

(8)

Furthermore, as will also be shown in Section III-C (see also
numerical example in Section V), the pulsed reactive power
flow is initially positive and then has several oscillations so
that finally (7) is satisfied. The positive part in
describes power transmitted from the source to build up the
local reactive energy while the negative part indicates energy
transmitted back to the source as the pulsed field passes over
the observation point. This behavior will be clarified further
in connection with the conservation of energy relation (17)
between the power flow and the energy density.

The functional form of implies that in the “near zone”
, so that while the total power flow there is

strong only a fraction of it is used for the radiation power. In
the “far zone,” on the other hand, vanishes as .
Following the analysis of [1, sec. III-D], the modal transition
from the near to far zone occurs at . Thus, the
reactive zone of the large modes extends well beyond the
source support . Recalling (I.28), however, these modes are
weakly excited. Thus, considering the bounds on the multipole
moments, it follows that for the large modes is well
behaved and is bounded by for all .

B. The Pulse-Energy Density

The magnetic and electric pulsed-energy densities in a
spherical shell of radius (i.e., densities per unit of radius)
are defined as

(9)

and thetotal energy is .
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Performing the surface integration in (9) and using mode
orthogonality, the pulsed-energy densities can be expressed as
a sum of the modal energies

(10)

where for modes

(11a)

(11b)

and for modes

(12a)

(12b)

Note that the terms containing are due to the longitudinal
field components (i.e., and for the and modes,
respectively). Thetotal modal energy densities

for the and modes are given now
by

(13)

where we have also substituted the expressions forand
from (I.13) and (I.15). Rearranging terms, separating the part
that does not decay with from the rest, we express (13) as

(14)

where is the modal radiative power defined in (5).
Following (4), the reminder is termed the “modal reactive
energy” . An explicit expression for
involving a series of inverse powers ofis given by

(15)

where the upper and lower signs are for theand modes,
respectively, while , and are defined in (6).

The first term in (14) is identifies as the “TD radiative
energy” associated with the radiated power flow . The
remainder, , describes a local build up of the pulsed
energy which accompanies the radiative power, but decays as
the pulse is transmitted. As will be discussed in (17) below,
part of it is transmitted back to the source. Note that in the
near zone , while in the far zone
vanishes as . The convergence properties of are
similar to those of , discussed at the end of Section III-A
and will not be repeated here.

C. Energy Conservation

Differentiating in (2) with respect to and using
the transmission line (I.7) we obtain

(16)

This relation is readily recognized as the modal analog of the
Poynting theorem for the field, which, for , is given by

. In view of (4) and
(14) it follows that the relation in (16) is satisfied separately
by the radiating and reactive constituent. In particular

(17)

This expression clarifies the role of the reactive constituents.
At early time and describes the local build up
of the reactive energy , but when discharges,

and transmits the energy back to the source zone.
Finally, integrating (17), we obtain

(18)

where we used the initial conditions . Noting
that for a finite duration pulse as we
obtain the result in (7).

D. Example: Energy and Power Flow
in the Near and Far Zones

To demonstrate the concepts above, we shall explore in this
section the structure of the TD power flow and energy in the
near and far zones. We shall calculate these constituents for a
synthetic example of a single mode multipole whose mo-
ment is a twice differentiate Gaussian pulse (specifically
we use the pulse in (I.32): note that unlike the examples in
Section V below, the moment function in the present example
is not calculate from a given source distribution but it is rather
specified analytically). Figs. 1 and 2 depict the radiative and
the reactive TD power-flow and for mode
multipoles of order and , respectively, calculated
via (5) and (6). The results are shown as a function of

for several view points: and .
The near-zone characteristics (dominance of the reactive

power flow and energy) are readily observed for ,
whereas for the field exhibits far-zone charac-
teristics (the reactive power flow and energy vanish and the
total pulsed power flow and energy areindependent). The
transition zone is identified to be .

IV. TIME-DOMAIN FACTOR

A. The Global and the Modal

In this section, we introduce a parameterthat quantifies
the energy properties of the radiator by comparing the total
radiative energy with a measure of the total reactive energy.
We start by defining the total radiating energy

(19)
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(a) (b)

Fig. 1. (a) The radiative and (b) the reactive pulsed power-flow for anE-mode multipole of ordern = 2. The reactive power is shown as a function
of normalized time�=T = (t � r=c)=T for several view points:r=cT = 2; 5; 10; and 50 (full, dashed, dotted, and dashed-dotted lines, respectively).
The radiative power is unchanged as a function ofr.

(a) (b)

Fig. 2. As in Fig. 1, for anE-mode multipole of ordern = 5.

where is the total TD radiated
power. As a measure for the total reactive energy we use the
time-averagedreactive energy at

(20)

where and is the root mean
square (rms) pulse length of the radiated field defined by

(21)

Without loss of generality it is assumed in this definition, that
is centered at , i.e., .

A TD factor of the field with respect to the sphere
enclosing the antenna may now be defined as

(22)

This general definition applies toany pulse shape with a
finite energy. In particular, it reduces to the conventional
definition for time-harmonic sources [4] given by

, where is the radian frequency,
is the average radiative power, and is the

average reactive energy stored in . This monochro-
matic expression is obtained from (22) if and
are understood as the average values and ,
respectively.

We seek now an expression for thetotal in terms ofmodal
quantities. Such expression involves themodal (defined
below) and the distribution of modal energies of (8)
which depends on the specific realization. Such an expression
explains how the total depends on the specific realization
and can be used to compare different source realizations.

Following (22), the of a given mode is defined as

(23)

where are defined in (8), while the modal quantities
and are defined in analogy to the definitions in (20) and
(21) above

(24a)

(24b)

Equation (23) may, therefore, be expressed as

(25)
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(a) (b)

(c) (d)

Fig. 3. Modal energies andQ for three disks with radiia=cT = 3; 6, and9 (identified by�; , and�, respectively). The+ signs describe the realization
of the field due to the diska = 9cT by using a smaller source witha = 8cT . (a) The modal energiesE� calculated via (8). (b) The reactive modal energies
W�
� calculated via (22). (c) The modalQ�

� calculated via (26). (d) The totalQT calculated via.

where all terms have been previously expressed explicitly in
terms of the multiple moments .

Next, we note from the relations above that

(26)

Consequently, for the total field can be expressed in
terms of the modal quantities

(27)

Equation (27) is the main result of this section and is the TD
analog of (26) in [3].

B. Bounds on Source Realization

Equation (27) describes the total as a weighted sum
of , which from (26) are proportional to the modal
reactive energies . Since is large for

it follows from (24) that the series diverges for
and, therefore, it should be compensated by an

appropriate convergence of the modal radiative energiesfor
. This later requirement restricts the directivity that

can be achieved by physically realizable short-pulse sources.
Recalling (I.23), the TD radiation pattern is uniquely

realized by a series of multipoles , identified by modal
energies . The series controls the directivity and is
typically decaying for large , say for where
is large for highly directive . Thus, it is required that the

will be bounded at least up to so that the series
will be well behaved. This implies that must be

large so that . Trying to synthesize the same radiation
pattern with a smaller source, say , requires large modal
reactive energies for leading to large

. This condition will be demonstrated in the example
of Section V (see Fig. 3).

V. EXAMPLE: PULSED RADIATION

FROM A CIRCULAR CURRENT DISK

The concept of the TD is demonstrate here for an example
of a circular disk with radius carrying a uniform distribution
of pulsed current (see [1, fig. 2]). As in [1], we consider
both “small” and “large” disks. The TD multipole moments
have already been calculated in [1, sec. IV-A] where we also
determined the number of the relevant terms as a function of
the normalized disk size needed to calculate the field.
Below, we shall explore the convergence of the modal series



SHLIVINSKI AND HEYMAN: TIME-DOMAIN NEAR-FIELD ANALYSIS OF SHORT-PULSE ANTENNAS—PART II 285

for as well as the possible realization of the field due the
“large” source by a smaller source.

Using the - and -modes multipole moments calculated
in Section I-D. we calculate the radiative and reactive power
flow (5), (6) and energy (14), (15), then the modal (23),
and, finally, the total (27), which represents the whole
composition of modes.

Fig. 3 shows the energy constituents for three different disks
with radii , , and (indicated by , , and ,
respectively). The subfigures depict, as a function of the mode
index : 1) the radiative energies of the modes of (8);
2) the modal reactive energies of (26); 3) the modal

of (23); and 4) the total
of (27) as a function of the number of modes used. Note
from the modal energy distribution and from the results
for the total quality factor that the relevant modes are
those with (note also from (I.33) that the even and
odd correspond, in this special case, toand modes,
respectively). Beyond this value, the modal energies are small
and their contributions to the total are negligible.

Finally, we also explore in that figure the possible realization
of the field corresponding to the disk by using a
smaller source bounded by (the results are indicated
by a ). The moments were taken to be those of the

case, leading to the same mode energies[compare
the and the marks in subfigure (a)]. In subfigures 2)–4),
however, one observes that the smaller source realization
requires larger reactive energies and modal and,
finally, to a slowly converging series for . The conclusion
is that super resolution using short-pulse fields is not feasible
since it involves large TD .

VI. CONCLUDING REMARKS

The near-field antenna characterization presented in this
two-parts series has been derived entirely in the TD using the
spherical transmission line representation. This representation
applies for any spherically stratified medium and for any
conical cross section, but it is used here explicitly for radiation
in free-space where the mode functions are the scalar and
vector spherical harmonics. The transmission line formulation
decouples the transversal field structure (in ) from the
radial propagation problem (in ) [see (I.6)], thus providing
a systematic and physically transparent format to analyze the
TD energy transmission mechanism in the radial direction.

The first part [1] dealt with the spherical field expansion.
The radiated field outside the source domain is completely
described by the TD multipole moment functions [see (I.17)
or (I.19)], which are calculated directly from the TD current
distribution via (I.22). Alternatively, the multipole moments
can be determined by scanning the field on any sphere enclos-
ing the source and in particular from the TD radiation pattern
[see (I.23)]. Finally, using these relations we determined the
convergence of the TD multipole expansion in both the near
and far zones [1, sec. III-D]. In particular, it has been shown
that the order of the relevant modes is where is
the source support and is the excitation pulse length. Based
on this observation it has been verified that the TD reactive

fields practically vanish for ( can be termed
the TD Fresnel distance).

In this second part, we considered the energy content of the
field. Using the spherical transmission line representation, the
TD power-flow and the TD energy have been expressed in
(2) and (10) as sums of modal quantities consisting of both
radiative and reactive components [see (4) and (14)]. The
radiative power is a positive pulse that propagates without
distortion or decay, while the reactive power is a pulse with a
zero mean [see (7)], strong in the near zone but vanishing in the
far zone. At an early time, it is positive and builds up the local
reactive energy, while at later time it is negative, representing
energy discharge back to the source (see Section III-C).

Based on the reactive power flow and energy interpretation,
we have introduced a TD factor (Section IV) to quantify
the radiation efficiency of the pulsed antenna. It is defined in
(22) as the ratio between the time-averaged reactive energy
surrounding the antenna and the total radiation energy. Next,
in (27) we derived and expressed the (total) antennaas a
weighted sum of modal quantities: the modal’s and the
modal energies . Since diverge for ,
convergence of (27) requires a stronger convergence of.
This weak excitation of the higher order modes sets a limit on
the TD radiation pattern and directivity that can be achieved
by physically realizable short-pulse antennas.

Finally, the TD concepts discussed above were demon-
strated for a circular disk carrying a pulsed current distribution
(Section V). This configuration has been analyzed first in [1],
where the emphasis was the calculation of the TD multipole
functions and the field. To check the calculations we have
compared the radiation pattern calculated via the multipole
expansion with a closed-form expression obtained indepen-
dently via the TD plane wave spectrum and the slant stack
transform integral (I.34), and obtained a full agreement. The
numerical results of [1] have been utilized in this second part
to explore the TD reactive energy around the antenna and
to calculate the TD . Specifically, it has been shown that

, as well as the number of the relevant modes needed to
model the TD field, is governed by the ratio . Trying to
synthesize the TD radiation pattern of a large antenna with a
smaller one results in rapidly diverging and a nonrealizable
source distribution. Thus, trying to achieve super resolution
using short-pulse antennas is probably not feasible.

APPENDIX

PROOF OF (7)

The proof of (7) in (18) has been based on the energy
conservation relation. Here we shall verify this property by
analyzing the expression for . Using (I.22) for the
multipole moments from in (5) and (6) and inserting the result
into (8), we obtain

(28a)

with (28b)
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where as defined in (6). In (8)
is the autocorrelation of .

The term in (28a) has the form
and is readily recognized

as of (8). The remaining series, the
contribution of the reactive power, vanishes term by term.
For even, the coefficients vanish since from (I.14)
and (I.16) the terms in the summation for in (28b)
cancel each other. For odd since

is an even function. This proves (7).

REFERENCES

[1] A. Shlivinski and E. Heyman, “Time domain near field analysis of short
pulse antennas—Part I: Spherical wave (multipole) expansion,”IEEE
Trans. Antennas Propagat.,this issue, pp. 271–279.

[2] R. F. Harrington, “On the gain and bandwidth of directional antennas,”
IRE Trans. Antennas Propagat.,vol. AP-6, pp. 219–225, July 1958.

[3] , “Effect of antenna size on gain, bandwidth and efficiency,”J.
Res. Nat. Bureau Standards, vol. 64D, pp. 1–12, 1960.

[4] R. E. Collin and S. Rothschild, “Evaluation of antennaQ,” IRE Trans.
Antennas Propagat.,vol. AP-12, pp. 23–27, Jan. 1964.

[5] R. L. Fante, “Quality factor of general ideal antennas,”IEEE Trans.
Antennas Propagat.,vol. AP-17, pp. 151–155, 1969.

[6] J. E. Hansen,Spherical Near-Field Antenna Measurements.London,
U.K.: Peter Peregrinus, 1988.

Amir Shlivinski , for a photograph and biography, see this issue, p. 279.

E. Heyman, for a biography, see p. 528 of the May 1995 issue of this
TRANSACTIONS.


