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Time-Domain Near-Field Analysis
of Short-Pulse Antennas—Part II:
Reactive Energy and the Antenda

Amir Shlivinski and E. Heyman

Abstract—The time-domain (TD) multipole expansion, devel- reactive energy pulse discharges back to the source once the
oped in the first part of this two-part sequence, is extended here pulse has been radiated. Thus, in order to quantify the effect
to analyze the power-flow and energy balance in the vicinity of of the TD reactive energy and on the radiation efficiency, we

a pulsed antenna. Using the spherical transmission line formula- . trod in Section IV a T hich i imil
tion, we derive expressions for the pulsed power-flow and energy Infroduce In section a TOR which generalizes a similar

and identify the radiative and the reactive constituents. For frequency domain (FD) concept [2]-[6].
time-harmonic fields, the reactive concepts are well understood The TD concepts discussed above are demonstrated in
in terms of the stored energy, but this interpretation is not Section V through a numerical example of radiation from a
applicable for short-pulse fields where there is no stored energy. \hitorm current pulse on a circular disk, which has been
By considering the TD energy balance, we clarify the transition tudied in 111 i Hi ith th lculati f the TD
of the near-zone pulsed reactive energy to the radiation power stu !e in [1] in connec !on wi € Calculation o e. :
and show that the pu|sed reactive energy discharges back to the mU|t|p0|e moments and f|e|dS. We Calculate the TD rad|at|Ve
source once the pulse has been radiated. We thus introduce a TDand reactive energies and the T utilizing the numerical
Q factor that quantifies the radiation efficiency. In particular,  results of [1]. In particular, we calculate these constituents as
we show that super res_,olutlon using _short-pulse fields |nv_olves a function of the normalized source siagcT whereq is the
large TD reactive energies and@ and is, therefore, not feasible. . a is th Ise | th. Using thi |
The general TD concepts discussed are demonstrated through gSource size and IS the puise eng . sing _'S example,
numerical examp]e of radiation from a circular disk Carrying a we aISO demonstrate that the rea“za“on Of the f|e|d Of a |arge
pulsed current distribution. source using a smaller source requires large reactive energy
Index Terms—Antenna theory, near field, () factor, short-pulse and @ and, therefore, is not feasible. . .
electromagnetics, time-domain analysis. Throughout the paper we shall refer to equations, sections,
and figures from [1], and shall use the prefix | to denote these

| INTRODUCTION references [e.g., [1, eq. (3)] is denoted here as (1.3)].

N Part | [1] of this two part paper, we developed a time-

domain (TD) multipole expansion describing the radiation
by short-pulse antennas. It has been shown that outside th&his section summarizes of the main concepts and results
source domain, the field is completely described by the Tilom [1]. We consider the radiation from a time-dependent
multipole functions which are calculated directly from theource distributionJ(r, ¢) bounded by a sphere of radius
time-dependent source distribution. We have also establishedThe propagation domain may have a general spherical
bounds on the series convergence rate and on the field struceymmetry, i.e., it may be spherically stratified wit§r)
in the near and far zones. In the present work, the emphasisul 1.(r) and bounded by a general conical surfakd, ¢)
on the TD representation and analysis of the pulsed power flovhereon the boundary conditions are imposed. Utilizing the
and energy and on the resulting antenna properties. We dere@ventional spherical coordinates systers (r, 6, ¢), the
closed-form expressions for the TD power-flow and enerdield is expressed by the spherical mode expansion in (1.2),
and thus identify the TD “radiative” and “reactive” power flomwhich involves bothE- and H-type modes, denoted by the
and energy (Section Ill). For time-harmonic fields, the reactiiperscriptsc = ¢ or h, respectively, with denoting the
energy concept is well understood in terms of the storenode index. The function&?, e, andh{ are the scalar and
energy, but it has not been defined yet for time-dependesgctor eigenfunctions that are determined in [1, sec. Il]: They
fields where no stored energy is involved. By considering tlieepend only orfé, ¢) and on the cross-sectional geometry but
TD energy balance, we also clarify the transition of the pulsemt on (r, ¢). The mode amplitude¥® and {2, on the other
reactive energy that dominates in the near zone to the puls$ethd, depend only ofr, ¢) and are found from the spherical
radiative power in the far zone. It is shown that the strongave equations [1, sec. |I-B] wherein the source functiiihs
. . o __andwv are found fromJ(r, ¢) via (1.8).
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where the “TD multipole momentsM$(t) are calculated . L ey B

from J(r, t) via (1.22) and the integral operator,”? are w1 1) =7 ) (7_) _z: tn, p—gbn, q
defined in (1.14) and (1.16). The final field solutions expressed qf:l . qj;l“‘i“a

explicitly in terms of M(t) are given in (1.17). Alternatively, 0 T M(D]10, T M (T)] (6)

it might be convenient to express the field in terms of t
H @ _ —N%pre a
funCtIOI’lSmu(t.) = 077 Nj(t) where N* = n or n + 1 (i.e., for p € (1,7n) ¢ goes from zero tg while for p €
for & = e or h: m2(¢t) are the integral part in (1.22), and the 12 it f ¢ 1
i for the field are now givenin (1.19) and involve th@ + 1, an ) It goes fromp — nton+ ) L
gmpresstlio?s tor£ 2 Finallv. the | ' The leading order tern®  (7) is the modal “TD radiative
merential operator - Hinally, the largen convergence power”: It is always positive and, being a functionobnly, it

of_lt_r;e ser|_esthas> bezn exp(ljored n f[lt,hsec. :”{.D]' i (] 13)rT)ropagates without distortion or decay all the way to infinity.
er = t—r/cdependence of the solutions in (I, he remainder tern?* _ (r, t) is denoted as the “TD reactive

and (1.15) describes the outgoing nature of these SOlu“O%%Wer flow”: It vanishes at infinity and for any finiteit has
Yet for eachn, only thel = 0 term in the series for’? Jero mean. ie.

propagates with pure delay and without decay or distortion. -
When substituted in (1.2), this term describes the dominant / dtP*  (r,t) =0. 7)
r~! field term asr — oo [see also (1.20)—(1.21) for the TD —oo Proset 2

radiation pattern]. Thé > 1 terms, on the other hand, ber]a\’efhis property will also be proved in the Appendix [via a direct

ike p—i—1 iR i :
like # gnd, theref.o.re, vanish in the far zone b,Ut C(_)ntr'b,Utgnalysis of (6)] and will also be verified in (18) from the point
to what will be identified here as the “TD reactive field” in ¢\ of energy conservation

:ZZCTS? 55:12'0:2::;’ ?Eetgzr%eegfdzisnga;i r\?\)iiti\égye:(ag%? EEQ]Relation (7) implies that the radiated energy is described
: ly by P> and is thus independent of i.e.,

below, this sets bounds on the ordef the multipoles that Y Y Fraa P f

can be excited by an antenna with a given suppaid, thus, £o = = dt PO (r, ) = e @ P () (8)

on the antenna gain. v vA T Vraa N1/

h\ﬁhere Gmin = max{0, p — n} and guax = min{n + 1, p}

Furthermore, as will also be shown in Section 1lI-C (see also
numerical example in Section V), the pulsed reactive power
flow is initially positive and then has several oscillations so

Ill. TD ENERGY AND POWER-FLOW

A. The Pulsed Power Flow that finally (7) is satisfied. The positive part B> (r, t)
The radial power flow with respect to a sphere of radius describes power transmitted from the source to build up the
is defined as local reactive energy while the negative part indicates energy
transmitted back to the source as the pulsed field passes over
P(r, t) = ﬂ r2dQt - [E(r, t) x H(r, t)] (1) the observation point. This behavior will be clarified further
4 in connection with the conservation of energy relation (17)

hereE x H is the time d dent P . Usi hbetween the power flow and the energy density.
wherek:x H is the time dependent Poynting vector. UsIng the 1, 4, ctional form ofP _, implies thatin the “near zone”

modal representation (1.2) and the mode orthonormality [S%ea > P> so that while the total power flow there is

Vycact ad
(1.5)], P may be expressed as a sum of modal powers strong only a fraction of it is used for the radiation power. In

P(r, t) = Z P(r, 1), P(r, t) = VO (r, I (r, ). the “far zone,” on the other hand”’ | vanishes ag — oo.
~ Following the analysis of [1, sec. IlI-D], the modal transition
’ @) from the near to far zone occurs at~ O(n?cT). Thus, the
reactive zone of the large modes extends well beyond the
Using (1.13)—(1.16) forV> and I we obtain source support. Recalling (1.28), however, these modes are
weakly excited. Thus, considering the bounds on the multipole

o 41 NI e g moments, it follows that for the large modesPy _ is well
by =n Z Z a"ilb’“‘l(r> [ My M) penaved and is bounded oy /)27t for all » > a.

£=0 ¢g=0
3) B. The Pulse-Energy Density

where here and henceforth the upper and lower signs arefhe magnetic and electric pulsed-energy densities in a

used for theE and H modes, respectively. Arranging thespherical shell of radius (i.e., densities per unit of radius)
summation as an ascending series of powers, af may be are defined as

n n+l

expressed as
- ) wn(r, ) = e & B, o
Pl/ = Pl/rad(T) + Pl’rcact (T? t) (4)
where P2 is the lowest order term whilé’  represents we(r, t) zﬂdg 72 % e|E(r, t)|2 9)
all other terms. They are given by

P (1) = M ()] (5) and thetotal energy isw(r, t) = w,(r, t) + we(r, t).

Vrad
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Performing the surface integration in (9) and using mode. Energy Conservation
orthogonality, the pulsed-energy densities can be expressed aSifferentiating P2 (r, )

, in (2) with respect to- and using
a sum of the modal energies

the transmission line (1.7) we obtain

win(r, 1) = Y wpy, (ry 1), we(r, ) =Y wl (r, 1) _ag P(r, t) = Oy wl(r, ). (16)
.
(10) This relation is readily recognized as the modal analog of the
Poynting theorem for the field, which, fer> a, is given by

where for E modes —V - (E x H) = 8:(5 €|E]* + § p|H|?). In view of (4) and
(14) it follows that the relation in (16) is satisfied separately
wt, (r, t) = % plIs? (11a) by the radiating and reactive constituent. In particular
wl, () =3 [V + < n(n + )0, )] (11b) g =2 . an
r act react

and for H modes This expression clarifies the role of the reactive constituents.
, At early time P2 > 0 and describes the local build up
Wy, (7, 1)

wh (r, t) =

Vrcact

V2, (12b) £, <0 and transmits the energy back to the source zone.
Finally, integrating (17), we obtain

Note that the terms containirigj * are due to the longitudinal o [t ,
field components (i.e.F, and H,. for the £ and H modes, "o / dt
respectively). Thetotal modal energy densitiea)S(r, t) = - - .
wg, (r, ) +w? (r, t) for the E and H modes are given now where we used the initial conditions? _ |=_.. = 0. Noting

e

by that for a finite duration pulsev;;, ~ — 0 ast — oo we
obtain the result in (7).

32+ 7 (e +1)(8,'V))?] (128) of the reactive energys® _, but whenw?®__ discharges,
1
ey 3¢

Pr (rt)y=wl (rt) (18)

Vycact Vrcact

+1
ar,. g1 8 VTN @) pfe 2
wy (r; 1) = % L My () + [£:7 M, (7)] D. Example: Energy and Power Flow

+nln+ 1) (c/r)?[07 LV M (r)]?} (13) inthe Near and Far Zones
To demonstrate the concepts above, we shall explore in this
where we have also substituted the expression¥foandy section the structure of the TD power flow and energy in the
from (1.13) and (1.15). Rearranging terms, separating the paktar and far zones. We shall calculate these constituents for a
that does not decay with from the rest, we express (13) as synthetic example of a singl€ mode multipole whose mo-
mentm¢(¢) is a twice differentiate Gaussian pulse (specifically
wi(r, t)=c Py (r)+w)  (rt) (14) we use the pulse in (1.32): note that unlike the examples in
Section V below, the moment function in the present example
where P,_, is the modal radiative power defined in (5)is not calculate from a given source distribution but it is rather
Following (4), the reminder is termed the “modal reactivepecified analytically). Figs. 1 and 2 depict the radiative and
energy”wy (v, t). An explicit expression forwg _ (r,t) the reactive TD power-flow’; —and Py __ for £ mode

Vrad

involving a series of inverse powers ofis given by multipoles of ordem = 2 andn = 5, respecétively, calculated
via (5) and (6). The results are shown as a function of
o o ntl Al o T =t — r/cfor several view pointst/cT" = 2, 5,10, and 50.
Wt (1 1) =T PL(r 8) + e Z (7_) The near-zone characteristics (dominance of the reactive
p=1 = min power flow and energy) are readily observed g7 < =,

P, p—gbn, o0y H{[OF T MO M ()]} whereas forr /T > n? the field exhibits far-zone charac-
(15) teristics (the reactive power flow and energy vanish and the
total pulsed power flow and energy arendependent). The
where the upper and lower signs are for fie@nd # modes, transition zone is identified to be < r/cT" < n”.
respectively, whileP , gmin @ndgmax are defined in (6).
The first term in (14) is identifies as the “TD radiative IV. TIME-DOMAIN @ FACTOR
energy” associated with the radiated power fl&§ . The
remainder,wy _, describes a local build up of the pulsedd. The Global and the Modap
energy which accompanies the radiative power, but decays ag, this section, we introduce a parame@rthat quantifies
the pulse is transmitted. As will be discussed in (17) belowhe energy properties of the radiator by comparing the total
part of it is transmitted back to the source. Note that in thegiative energy with a measure of the total reactive energy.

[l —1 pa i i e} - F
near zonewy . > ¢ I7 . while in the far zonew; e start by defining the total radiating energy
vanishes as — oo. The convergence properties®of, _ are

similar to those of’ _, discussed at the end of Section IlI-A Er = / dt Pr._ (1) (19)
and will not be repeated here. —o0 )
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Fig. 1. (a) The radiative and (b) the reactive pulsed power-flow forzamode multipole of order = 2. The reactive power is shown as a function
of normalized timer/T = (¢t — r/c)/T for several view pointsr/cT" = 2,5,10, and 50 (full, dashed, dotted, and dashed-dotted lines, respectively).
The radiative power is unchanged as a functionrof
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Fig. 2. As in Fig. 1, for anE-mode multipole of ordem = 5.
where Pr,_,y = >, , ... (t) is the total TD radiated  We seek now an expression for ttegal @ in terms ofmodal
power. As a measure for the total reactive energy we use tpgantities. Such expression involves thedal @ (defined
time—averagedeactive energy at > a below) and the distribution of modal energi€s of (8)
which depends on the specific realization. Such an expression

Wr(a) =7 / dr / dtwr,_ (7, t) (20) explains how the totaf) depends on the specific realization
T and can be used to compare different source realizations.
wherewr, . (7, t) =3_, , wp._ _ (t)andIy is the root mean Following (22), the® of a given mod€ v, «) is defined as
square (rms) pulse Iength of the radiated field defined by N
Q3(a) = 20 2

Ty = \/ / dt 12 Py (t). (21) &

wherefZ are defined in (8), while the modal quantitidg> (a)
Without loss of generality it is assumed in this definition, thand 7> are defined in analogy to the definitions in (20) and

(23)

Pr, . (t)is centered at = 0, i.e., [*_ dtt Pr, (t) = 0. (21) above
A TD @ factor of the field with respect to the sphete - -
enclosing the antenna may now be defined as W2 (a) = % / dr dtw® (r,t) (24a)
Qr(a) =27 Wg—w). (22) oo
T o = \/ (Eo)— / P (1), (24b)
This general definition applies tany pulse shape with a —oo

finite energy. In particular, it reduces to the convention
definition for time-harmonic sources [4] given Wy(a) =
w (Wieact(a)/Pr), Wherew = 2x /T is the radian frequency, /

d7/ dtwy

EEquatlon (23) may, therefore, be expressed as

Pg is the average radiative power, an#f.....(a) is the ()
average reactive energy stored #in> a. This monochro- Q% (a) =27 i/ /2
matic expression is obtained from (22) 4 and Wy (a) [/ dt P (r )} [/ dt 2 Pa ()}
are understood as the average vali&Br and Wc,i(a), o —oo Frad

respectively. (25)
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Fig. 3. Modal energies an@ for three disks with radiin/cT" = 3, 6, and9 (identified by=, ¢, ando, respectively). Thet signs describe the realization
of the field due to the disk = 9¢T" by using a smaller source with= 8¢T'. (a) The modal energi&$, calculated via (8). (b) The reactive modal energies
W calculated via (22). (c) The mod&p? calculated via (26). (d) The total), calculated via.

where all terms have been previously expressed explicitly &ippropriate convergence of the modal radiative enegjider
terms of the multiple moment3/ (¢).
Next, we note from the relations above that

Er=> & Tr=

a,v

Wr(a) = Y (T3 /Tr)Wy(a), Wa) =

a,v

ConsequentlyQr(a) for the total field can be expressed i

terms of the modal quantities

Y (/e T

1/2

> ETrQg(a)

a,v

Qr(a) =

analog of (26) in [3].

B. Bounds on Source Realizatio

[Er) " EoTe? '

Equation (27) is the main result of this section and is the TD

n

(2m) 71 ErQp(a).
(26)

n

(27)

n > a/cT. This later requirement restricts the directivity that
can be achieved by physically realizable short-pulse sources.
Recalling (1.23), the TD radiation patteB(¢, ) is uniquely
realized by a series of multipolé€ 2(¢), identified by modal
energies&y. The series€> controls the directivity and is
typically decaying for largen, say forn > N where N
is large for highly directiveF. Thus, it is required that the
Q%(a) will be bounded at least up te = N so that the series
EXQ%(a) will be well behaved. This implies that must be
large so that: > N¢T'. Trying to synthesize the same radiation
pattern with a smaller source, say < «, requires large modal
reactive energie¥Vo (a) for a1 /¢’ < n < N leading to large
Qr(a). This condition will be demonstrated in the example
of Section V (see Fig. 3).

V. EXAMPLE: PULSED RADIATION
FROM A CIRCULAR CURRENT Disk

The concept of the T is demonstrate here for an example
of a circular disk with radius carrying a uniform distribution
of pulsed current (see [1, fig. 2]). As in [1], we consider

Equation (27) describes the tot§} as a weighted sum both “small” and “large” disks. The TD multipole moments
of £2Q%(a), which from (26) are proportional to the modahave already been calculated in [1, sec. IV-A] where we also
reactive energie3Vy;' (a). Sincew;,__ (r, t) is large forr < determined the number of the relevant terms as a function of
ncT it follows from (24) that the serie§)%(a) diverges for the normalized disk size/cT needed to calculate the field.

n > a/cT and, therefore, it should be compensated by @elow, we shall explore the convergence of the modal series
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for Q1 as well as the possible realization of the field due tHeelds practically vanish for > F' = a? /cT" (¥ can be termed
“large” source by a smaller source. the TD Fresnel distance).

Using the £- and H-modes multipole moments calculated In this second part, we considered the energy content of the
in Section I-D. we calculate the radiative and reactive powéeld. Using the spherical transmission line representation, the
flow (5), (6) and energy (14), (15), then the mod¥} (23), TD power-flow and the TD energy have been expressed in
and, finally, the totalQr (27), which represents the whole(2) and (10) as sums of modal quantities consisting of both
composition of modes. radiative and reactive components [see (4) and (14)]. The

Fig. 3 shows the energy constituents for three different diskadiative power is a positive pulse that propagates without
with radii « = 377, 677, and9¢T (indicated byx, $, ando, distortion or decay, while the reactive power is a pulse with a
respectively). The subfigures depict, as a function of the modero mean [see (7)], strong in the near zone but vanishing in the
index n: 1) the radiative energies of the modég of (8); far zone. At an early time, it is positive and builds up the local
2) the modal reactive energi@¥(a) of (26); 3) the modal reactive energy, while at later time it is negative, representing
Q% = 2aWs(a)/E2Q% (a)/2n of (23); and 4) the total) energy discharge back to the source (see Section IlI-C).
of (27) as a function of the number of modes used. Note Based on the reactive power flow and energy interpretation,
from the modal energy distributiofiS and from the results we have introduced a TI0) factor (Section IV) to quantify
for the total quality factorQ that the relevant modes arethe radiation efficiency of the pulsed antenna. It is defined in
those withn ~ 2a/cT" (note also from (1.33) that the even and22) as the ratio between the time-averaged reactive energy
odd n correspond, in this special case, #band H modes, surrounding the antenna and the total radiation energy. Next,
respectively). Beyond this value, the modal energies are smiall(27) we derived and expressed the (total) ante@nas a
and their contributions to the tot&} are negligible. weighted sum of modal quantities: the modals and the

Finally, we also explore in that figure the possible realizatiomodal energies£?. Since Q%(a) diverge forn > a/cT,
of the field corresponding to the = 9¢I" disk by using a convergence of (27) requires a stronger convergencésof
smaller source bounded k= 8T (the results are indicated This weak excitation of the higher order modes sets a limit on
by a+). The moments\/&(t) were taken to be those of thethe TD radiation pattern and directivity that can be achieved
a = 9¢T case, leading to the same mode energjefcompare by physically realizable short-pulse antennas.
the « and the+ marks in subfigure (a)]. In subfigures 2)-4), Finally, the TD concepts discussed above were demon-
however, one observes that the smaller source realizat&irated for a circular disk carrying a pulsed current distribution
requires larger reactive energidg’ (o) and modaly%(a) and, (Section V). This configuration has been analyzed first in [1],
finally, to a slowly converging series f@pr. The conclusion where the emphasis was the calculation of the TD multipole
is that super resolution using short-pulse fields is not feasililenctions and the field. To check the calculations we have
since it involves large TDQ. compared the radiation pattern calculated via the multipole

expansion with a closed-form expression obtained indepen-
dently via the TD plane wave spectrum and the slant stack
VI. CONCLUDING REMARKS transform integral (1.34), and obtained a full agreement. The

The near-field antenna characterization presented in thigmerical results of [1] have been utilized in this second part
two-parts series has been derived entirely in the TD using tife explore the TD reactive energy around the antenna and
spherical transmission line representation. This representatiercalculate the TDQ. Specifically, it has been shown that
app"es for any Spherica”y stratified medium and for anQ, as well as the number of the relevant modes needed to
conical cross section, but it is used here explicitly for radiationodel the TD field, is governed by the ratigcT". Trying to
in free-space where the mode functions are the scalar gﬁwthesize the TD radiation pattern of a Iarge antenna with a
vector spherical harmonics. The transmission line formulatiGfnaller one results in rapidly divergi@ and a nonrealizable
decouples the transversal field structure §ing) from the source distribution. Thus, trying to achieve super resolution
radial propagation problem (in t) [see (1.6)], thus providing Using short-pulse antennas is probably not feasible.

a systematic and physically transparent format to analyze the
TD energy transmission mechanism in the radial direction. APPENDIX

The first part [1] dealt with the spherical field expansion. PROOF OF (7)

The radiated field outside the source domain is completely

described by the TD multipole moment functions [see (1.17 X : : :
or (1.19)], which are calculated directly from the TD curren onservation relation. Here we shall verify this property by
' analyzing the expression far> _ (r, t). Using (1.22) for the

distribution via (1.22). Alternatively, the multipole moments™ ™ - . . .
can be determined by scanning the field on any sphere encl'iﬁ%’ItIpOIe moments from in (5) and (6) and inserting the result

ing the source and in particular from the TD radiation pattelln 0 (8), we obtain

The proof of (7) in (18) has been based on the energy

[see (1.23)]. Finally, using these relations we determined the Al )

convergence of the TD multipole expansion in both the nea€® =»*!(-1)N" Z (—) ApagN PR (§e=0 (28a)
and far zones [1, sec. llI-D]. In particular, it has been shown =0

that the order of the relevant modes@a/cT’) wherea is qmax

the source support arifl is the excitation pulse length. Based With Ap = Z (=1)%an, p—qbn, 4 (28b)

on this observation it has been verified that the TD reactive =%min
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Where ¢min, max as defined in (6). In 8)R,:(§) = [2] R. F. Harrington, “On the gain and bandwidth of directional antennas,”
@ af4 i i @ IRE Trans. Antennas Propagatiol. AP-6, pp. 219-225, July 1958.
f dtmy (t)m” (t 5) Is the auFocorreIatlon Ofi;) (t) [3] , “Effect of antenna size on gain, bandwidth and efficiency,”
The p = 0 term in (28a) has the form Res. Nat. Bureau Standaideol. 64D, pp. 1-12, 1960.

77:|:1(_1)N“ anN“ R (£)|5=0 and is readi|y recognized [4] R. E. Collin and S. Rothschild, “Evaluation of antenf)d’ IRE Trans.
oo . Ly . . Antennas Propagatyol. AP-12, pp. 23-27, Jan. 1964.

as fToo _dt Py (r,t) of (8) The remaining Sseries, the [5] R. L. Fante, “Quality factor of general ideal antennatEEE Trans.

contribution of the reactive power, vanishes term by term. Antennas Propagatyol. AP-17, pp. 151-155, 1969.

For p even, the coefficientsd, vanish since from (| 14) [6] J. E. HansenSpherical Near-Field Antenna Measurementsondon,
' . p . . . U.K.: Peter Peregrinus, 1988.
and (1.16) the terms in thg summation forA, in (28b)
cancel each other. Fgr odd 852’\‘ TPRone (€)|e=o = 0 since
Rme(€) is an even function. This proves (7).
Amir Shlivinski , for a photograph and biography, see this issue, p. 279.
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