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Superdirective Radiation from Finite Gratings
of Rectangular Grooves

Diana Carina Skigin, Vladimir V. Veremewember, IEEE and Raj Mittra,Life Fellow, IEEE

Abstract—in this paper, the superdirective property of arrays ~ semicircular [8] shapes. Recently, it has been extended by Li
comprising a finite number of rectangular grooves is studied [9] to handle infinite gratings with arbitrarily shaped grooves.
by using the modal approach, which is a simple but powerful - yq\vever, until quite recently, the application of the modal

technique for analyzing these gratings. Numerical results show . . B
that when a specific characteristic mode of the structure referred approach to finite gratings had been limited only to rectangular

to as the = mode is excited, the intensity of the field scattered cavities [10], and the extension to the problem of finite gratings

in the specular direction exhibits a maximum, which becomes with cavities of arbitrary cross section was carried out only

sharper and narrower as the number of grooves is increased. very recently [11].

The far-field patterns exhibit superdirectivity at these resonant In an earlier paper, the authors have demonstrated [12] that

frequencies as evidenced by their beamwidths that are narrower : .
than those expected from apertures of comparable size. The the scattered field of a structure formed by a finite number

model-based parameter estimation (MBPE) technique has been Of slotted cylinders exhibits superdirective characteristics at
employed to help locate extremely narrow resonances that are the resonant frequencies of the system. The occurrence of

characteristic of superdirective arrays and its usefulness has been superdirectivity can be attributed to the excitation of modes
demonstrated. that induce a phase reversal in the adjacent scatterers. It has
Index Terms—Gratings, superdirectivity. also been shown that the nature of field distribution in the
interior of the cavities plays an important role in the generation
of superdirectivity, since this phenomenon is highly sensitive
to the variations in the field amplitude. In this paper, we
T is well known that antenna arrays formed by a finithvestigate a structure formed by a finite array of rectangular
number of active elements can exhibit superdirective progrooves in an attempt to address the question whether this
erties [1]. The phenomenon of superdirectivity has attracted theyperty is a common attribute of systems formed by coupled
attention of many authors [2] since it appears to be promigesonant elements. This geometry has a distinct advantage over
ing for possible applications in high-gain antenna desigthe slotted cylinder array, because the spacing between the
However, despite a considerable amount of effort investgdjacent grooves can be made small arbitrarily. This, in turn,
in the investigation of these systems, they have been fougglables us to increase the coupling between adjacent cavities,
to be difficult to realize in practice, since they are extremelnd thereby improve the superdirectivity of the system.
sensitive to small changes in both the phase and amplituden Section Il, we outline the modal approach used for
distributions of the sources and this sensitivity increases wighe calculation of the scattered field from a surface with
the increase in the directivity. As a consequence, a highdy finite number of rectangular grooves of arbitrary widths
precise control of these quantities is needed and this dfd depths. Numerical examples for finite arrays with 3, 5,
technically very difficult to achieve. 7, and 15 grooves are shown in Section IIl. The frequency
The use of passive elements in antenna arrays enablesdéponses of the above structures are presented together with
to circumvent the difficulties associated with the excitatiomhe distribution of the fields in the interior regions of the
Passive superdirective antennas are characterized by a \&fyities, as well as the far-field patterns at the resonant
high level of stored electromagnetic energy in the vicinity Gtequencies of the system. In Section 1V, we illustrate the use
the antenna elements [3], [4]. The enhancement of the fielgisthe model-based parameter estimation (MBPE) technique
in the near region is associated with the excitation of Hijh to search for the resonant frequencies. We show that this
resonances in the system [5]. algorithm is very useful for locating extremely narrow peaks
In early works, the modal method has been widely applifat are otherwise likely to be skipped if the frequency scan
to the problem of diffraction by infinite periodic gratingswere carried out in a conventional manner. Finally, some
formed by cavities with rectangular [6], triangular [7], anoncluding remarks that summarize the findings of this work
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and a,,,; are the unknown modal coefficients. It is evident
that the modal functions satisfy the boundary conditions at the
free walls of the grooves, viz.,
space
OH, .
A, A M = 0, on the perfectly conducting surface(6)
+«——> «—> on
0 X wheren is the normal to the surface of the grooves.
L The next step is to match the tangential magnetic fields in
perfect regions | and Il at the interfac@, = 0). This leads to the
- —— conductor
) CL —jagx - —jax
2eTI0% 4 R(a)e ™% do
Fig. 1. Cross section of groove arrays with rectangular cavities. e
o>
m
= ami cos | —(x — x1) | cos[pmihul]- 7
problem reduces to a two-dimensional one. The groove widths g::o ! [ G ( 1)} (i 0

and heights are; and h;, respectively, and their spacing is

A;. This is a generalized version of the geometry investigat&imilarly, the companion equation is derived by matching the

earlier by the authors [10], where all the grooves had identidangential electric field=, (=, y) at the interface and enforcing

depths. the boundary condition on the perfectly conducting surfaces.
Let an H-polarized (magnetic field parallel to thedirec- It reads

tion) plane wave be incident at an andle from the y axis. 0o ' 00 -

Assuming anexp(jwt) time dependence, we can derive thej/ BR(a)e™% doy = Z — i Gl COS[—(&: — a:l)}

following wave equation satisfied bif . : —oo m=0 a

(Vi K BL{u) =0 ® w<silpnihi e (7))

where k is the free-space wavenumber. The field in the
free-space region must satisfy (1) together with the radiatigfhererect(s) is the rectangle function defined as
condition at infinity and the boundary conditions on the surface

of the conductor. Next, we subdivide the domain of analysis rect(s) = {
into two: region-I (y > 0), i.e., the upper half-space and

region-I| (__h <y< _0), i.e., interior of cavities. The field gy projecting (7) and (8) on convenient bases, we can derive

in region-Il is expressible as a sum of three terms as followgy, infinite system of equations for the unknown Rayleigh
HZI(a:,y) = H;m(a;’y) + HP () + HE(z, ) (2) function R(«). Toward this end, we project (7) on the modal

eigenfunctions basis of thi¢h groove, viz. {cos[“" (x — x;)]}

and this enables us to relate the modal amplitul;l@s".n terms

1, for0<s<1
0, otherwise.

(9)

where H»<(z, ) represents the incident plane wave

Hi™ (g, ) = e~ i(coz—Foy) (38) of R(«) as follows

Hepes(z,y) = e J(@0o+5v) js the plane wave reflected ey > jami

specularly by a flat surface anH:“**(x,y) represents the 2e7%0 " Ini( o) +/_Oo E(ae Ini(ar) dex

field scattered by the indentations of the surface. Our interest = Chini co8[linihi] (10)

in this work is to investigate the last term (see [10]).
The scattered field admits a spectral domain representatigfere

H (2, y) = / R(a)e "+ do ©) Li(a) = / ‘7 cja“”cos[ﬂx} dx (11)
e ; ‘

c7,

where the complex functiol®(«) is the unknown Rayleigh
function; 32 = k?—«? andag = ksin(fy) andfy = k cos(6g)
are thex andy components of the incident wave vectay, C,; = { ¢ forn=0 } (12)
respectively. ci/2 forn#0

Next, the fields inside the cavities are expanded in ter
of the waveguide modes associated with each groove.
instance, inside th&h groove we can write théf! field as

and

Efpally, (8) is projected on the basis functiofis=/**}, that
are orthogonal in the intervgl-oo, oc]. The result is

o0 L oo
mm .
Hi(x,y) = Z G COS {c—l(x — xl)} cospmi(y+hy)] 5) —2njBR(a) = Z Z — Mol Qo SO o] €74 L (— ).
m=0 =1 m=0
where (13)
2

pl, =k — <@> Substitution of (10) in (13) yields a Fredholm equation of the

G second kind for the unknown amplitude distribution function



378 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 2, FEBRUARY 1999

R(«). This integral equation is discretized and truncated to  o.16- o k*h=1.56936
transform the system into a matrix equation of the form (r—mode)
M“RJ — V’Z (14) 0.012

where R; = R(«;). The solution of the above equation is
derived by using standard matrix inversion schemes.

The intensity of the scattered field in the direction deter- -
mined by «; is defined as 0004

3; ] .
I{aj) = |R(aj)|2§3—;. (15) - /}\

=
@ 0.008
c
2
=

1 2 3 4 5 6
Ill. NUMERICAL RESULTS k*h = 2zh/r
We begin this section by interjecting a comment on the @
numerical implementation of the system of (10) through (13). 90

To transform the original system into (14), the infinite inte-

gration interval in the variabler is reduced to the interval

[cvo — EXT, 9 + EXT] whereEXT = 2.2k guarantees the

convergence of the results. Once this interval is determined,

the integral is discretized. The number of subdivisions is

closely connected to the total width of the structure, i.e., to

the number of grooves in the surface. However, for the cases

illustrated here, it was sufficient to consider 260 subintervals.

On the other hand, just 26 modal terms for the representation 180

of the fields inside each cavity was sufficient to ensure the (b)

accuracy of the results. As a test of the computations, WR. 2. (a) Frequency scan of the field intensity scattered in the normal

also calculated the Poynting flow through a closed-surfa@iection by an array of three identical grooves with equal spacing. The
. . - . arameters arec = 0.2h, A = 0.1h, andfy = 0°. (b) Far-field pattern

enclosing the corrugations and verified that this flow was legdine siructure in Fig. 2(a) for the mode(kh = 1.569 36).

than 10716 for all the calculations performed. This guaranteed

the fulfillment of the energy balance condition.

In the following examples, we analyze the fields scatterggin a petter understanding of this phenomenon, we examine
by structures formed by 3, 5, 7, and 15 equally spacgde behavior of the fields inside the cavities. Fig. 3(a) and (b)
grooves, illuminated by a normally incident plane wavehows the amplitude and phase distributions of the resonant
and plot the intensity of the field scattered in the speculfg|d within the interior of the grooves. In these figures, the
direction [see (15)] as a function of the normalized frequengértical axis represents the depth of the grooves and the
(kh = 2mh/X). The first case considered is a surface Withorizontal axis spans the total width of the structure. Fig. 3(b)
three identical grooves whose geometrical parameters g@fgarly demonstrates that the relative phase associated with this
¢ = 0.2h and A = 0.1h. Fig. 2 displays the behavior of mode alternates betwednand = radians along the interface.
scattered field intensity versush for this case. Owing to We also note that the excitation of this mode is accompanied

the symmetry of the normally incident field, the structurgy an enhancement of the field inside the grooves, as shown
admits only two characteristic modes. The first of thesa Fig. 3(a).

exhibits a phase behavior that is uniform across the interfaceThe next example we consider is formed by five grooves
whereas the second has an alternating phase variation, ongliidse geometrical parameters are the same as those for the
which the phase shifts by between the adjacent groovesthree-groove case, resulting in a total widthi&f= 0.35 for
In the region neah = A/4 (i.e., kh = 7/2), both of the the structure. The intensity versus frequency plot is presented
eigenmodes of the structure are excited and, consequenilyFig. 4(a) on an extended scale, in order to enable us to
the response curve has two maxima. The maximum wigapture the fine features of the frequency behavior that are
the lower () is located atkh = 1.3 and corresponds to theassociated with this five-groove structure. We observe that the
in-phase mode, whereas the sharp peak is associated Withh () resonance is now split into two, each of which has a
the excitation of ther mode. This mode also has certairvery high (. Furthermore, the low resonance is shifted in
interesting properties, as will be evident from the resulfsequency relative to that of the three-groove structure. The
presented below. appearance of a new resonance may be explained by the fact
In Fig. 2(b), we plot the far-field pattern corresponding tthat an increase in the number of grooves is accompanied
the high @ resonance. It is evident that the pattern exhibitsy an increase in the number of eigenmodes of the system.
a superdirective character since the total width of the The = mode(kh = 1.570788), which now has a highe)
structure is small compared to the wavelengtt0.2)\). To than it did previously for the three-groove case, also produces
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Fig. 3. Magnetic field distribution inside the cavities of the resonant structure

(b)

described in Fig. 2 for the highy resonance frequendy:h = 1.56936). (a) F19- 4. (@) Frequency scan of the field intensity scattered in the normal
Amplitude. (b) Phase. direction by an array of five identical grooves with equal spacing. The
parameters are: = 0.2h, A = 0.1h, andéy = 0°; (b) Far-field pattern
of the structure in Fig. 4(a) for the mode (kh = 1.570788).

a narrower far field pattern [see Fig. 4(b)]. This demonstratesnext, we address an important question regarding the stabil-
that the superdirective property of the structure is enhancedifyof the superdirective resonances. We inquire, for instance,
an increase in the number of grooves, at least forrtimeode. aphout the sensitivity of these resonances to the tolerance with
Finally, we increase the number of grooves yet again {ghich the structure is fabricated and ask to what extent we can
seven withc = A = 0.2h, which implies a total width vary the depths and widths of the grooves and still maintain the
W = 0.65\. The results for this case, shown in Figs. Superdirectivity characteristics. This is an important question
and 6, again show a trend similar to that we found whafat we attempt to address by carrying out the numerical
the number of grooves was increased from three to five. Weperiment described below.
observe, once again, that the highresonance is splitinto two  We consider the simple case of a three-groove array and
very narrow peaks while the lowep resonance shifts and itsmodify the original structure in two different ways, viz.: 1)
quality factor decreases [see Fig. 5(a)]. The far-field patteny changing the depth of the leftmost cavity, i.e., letting
corresponding to the mode is found to be even narrower now,; # h, = hs and 2) by varying the width of the same
than it was in the previous two examples [see Fig. 5(b)]. Thgoove (c; # c2 = c3). Fig. 8(a) presents a set of curves
distribution of the field inside the grooves is shown in Fig. Gorresponding to different values df; and an expanded
for the high @ resonance associated witth = 1.570795. version of the above is plotted in Fig. 8(b) to better display the
Its phase distribution, shown in Fig. 6(b), clearly indicateesults in the resonance region where the frequency responses
that it corresponds to the mode. We also see that for thisvary very rapidly. The three curves presented in the above
mode the enhancement of the field inside the cavities [sgures correspond to depth variations of 1%, 3%, and 5%
Fig. 6(a)] is considerably larger than in the previous cases$ the left groove. It is evident that although the resonance
with smaller number of grooves and that the same is trpeak is still noticeable when the depth deviation is 5%, its
for other resonances of this structure. In Fig. 7 we show tlenplitude is reduced considerably. Furthermore, Fig. 9 shows
far-field pattern associated with different resonant frequencigmt the superdirective characteristic of the far-field pattern
and, once again, we notice a continuation of the trend that wegally disappears. This behavior is not entirely unexpected,
saw earlier when the number of grooves was increased frétowever, since the resonant excitation of an eigenmode of the
three to five. multigroove structure is strongly determined by the depths of
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(b) Fig. 6. Magnetic field distribution inside the cavities of the resonant structure

Fig. 5. (a) Frequency scan of the field intensity scattered in the nor djscnbed in Fig. 5 for the higty resonance frequendy:/ = 1.570795).

direction by an array ofseven identical grooves with equal spacing. T
parameters arez = 0.2h, A = 0.2h, andfy = 0°. (b) Far-field pattern
of the structure in Fig. 5(a) for the mode(kh = 1.570795).

Amplitude. (b) Phase.

—kh=1.570795

_ _ . o w | kh=1.566098
its corrugations. However, in contrast to the depth variation, e U kh=1.39115

changes in the width of the left groove by 10%, 50%, or even
100%, alters the frequency characteristic as well as the far-
field pattern only very slightly, as may be seen from Fig. 10(a) 1so
and (b), which may be compared with Fig. 2(a) and (b). We
recall that we are investigating the/4 resonance, which is
determined by the depth of the grooves. Their width, on the,

other hand, does not play an important role in the production , _
. Fig. 7. Far-field patterns radiated by the structure formed by seven grooves
of such a resonant behavior.

k - ’ . _.shown in Fig. 5 for three different resonant frequencies.
As mentioned earlier, an increase in the number of cavities

produces a split in the resonance characteristic of the structure ) o
accompanied by an increase in thefactors of the peaks. Although two extremely narrow peaks appear in this figure,

Thus, when the number of grooves is large, it is possible f¢ne Of the maxima correspond to themode. Nonetheless,
have a set of very high) resonances for which the far-fielgthe _rgdlatlon _patte_:rns associated with the main peaks still
pattern is superdirective. However, although the multigroo&NiPit superdirectivity, as may be seen from Fig. 11(b).
structures admit many eigenmode solutions, not all of these

are found in the intensity versus frequency curve, since their IV. MBPE TECHNIQUE

eigenfrequencies are very similar, which causes their peaksthe examples given in the last section have demonstrated
to overlap. For instance, for the case of an array comprisitigat structures formed by an array of open rectangular cavities
five groups of three cavities (total number of grooved5, exhibit superdirective properties when a high resonance
c=0.2h, A; = 0.1k for ¢ # 4,7,10, and 13; A, = 0.7k for mode is excited by the incident plane wave. Furthermore, these
i =4,7,10, and13; W = 1.7)), we obtain the curve shown inresonant frequencies are characterized by a noticeable increase
Fig. 11(a), where the frequency interval has been reduced ewerthe energy of the field scattered in the specular direction
further to facilitate the visualization of the different maximaand are accompanied by an enhancement of the fields excited
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] Fig. 10. (a) Frequency scan of the field intensity scattered in the normal
0.000 T T direction by an array of three grooves with equal spacing, equal depth but

— T

150 151 152 153 154 155 156 157 158 159 160 (ifferent widths(ci # co = c3 = ¢), A = 0.1h, 8 = 0° for different
k*h = 2nh/A values ofc; .; (b) Far-field pattern radiated by the structure formed by three
®) grooves shown in Fig. 10(a) far, = 2c.

Fig. 8. (a) Frequency scan of the field intensity scattered in the normal . . L .
direction by an array of three grooves with equal spacing, equal widthe resonant frequencies are skipped. This, in turn, increases

(¢ =0.2h, A = 0.1h), but different depthgh, # hy = hy = h), 60 =0°,  the computation time very substantially and prompts us to
for different values of.; . (b) Enlargement of the marked region of Fig. S(a)'explore the possibility of using alternate numerical schemes
to search for the resonant frequencies.

90 One such approach is the MBPE technique [13]-[14], which
is a numerical algorithm useful for generating the frequency
response over a wide-frequency range from a sparse set of
sample points, by using a curve-fitting model based on the
physics of the problem. A ratio of two polynomials is used
as a fitting function and their coefficients are the unknowns
to be found using the sample points. The degrees of the
polynomials in the numerator and denominator are determined
by the number of samples and, typically, four in the numerator
and three in the denominator are found to be adequate.
Consequently, we only need seven samples to generate the
Mfréquency response curve even though it may contain sharp
resonances. We should mentioned that sometimes, depending
on the structure and the choice of parameters, the matrix for

inside the cavities. However, the peaks become extreme¥termining the coefficients becomes ill-conditioned, if larger
narrow with an increase in the number of grooves, makigimber of samples are used.

it rather difficult to track them. Thus, it becomes necessary Typically, the numerical efficiency of this technique is sev-
to choose an extremely small stéph while calculating the eral orders of magnitude better than the brute force approach,
frequency response of the structure. For instance, we chooggch requires approximately 30 s per frequency point on
A(kh) = 1078 for the seven-groove case to insure that none af Dec Alpha workstation. In the conventional approach we

180

0

Fig. 9. Far-field pattern radiated by the structure formed by three groo
shown in Fig. 8 forky = 1.05h.
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Fig. 11. (a) Frequency scan of the field intensity scattered in the nor- 0054

mal direction by an array of fifteen identical grooves distributed in five
groups of three grooves. The parameters are: 0.2h, A; = 0.2h for

1 #4.7,10,13 andA; = 0.7h for : = 4,7,10,13, 6 = 0°. (b) Far-field
pattern of the structure in Fig. 11(a), for the high resonance frequency
(kh = 1.57079628).
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T T T
1.5704 1.5706

k*h

T T T T T 1
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Fig. 13. Comparison of MBPE results (expanded scale) for an array of 15
start with 100 points, guess the interval where the resonarggoves with those presented in Fig. 11, inthe vicinitykef = 1.57.

is located and proceed to use a finer discretization in this
interval. Even so, sometimes the resonance point associated
with a very high@ system can be missed even when 200@sonance the difference between the MBPE and the exact
points are computed in an already-identified interval that canrves does not exceed 0.2%), it nonetheless provides us with a
require ~1000 min of computation. This difficulty can beuseful tool for finding the location of the resonance frequency.
circumvented by using the MBPE technique, which accuratef\s mentioned earlier, the problem of finding the resonant fre-
generates the entire curve with only 10 or 20 sample poirdaency peak becomes increasingly difficult, with the increase
in about 30 s, and detects the resonance with the neededhe number of cavities on the surface. The advantages of
precision. using the MBPE algorithm become even more apparent in this
To illustrate the application of the MBPE method to thease because of substantial time saving realized in the process.
present problem, we present two examples below. The cunfes instance, in Fig. 11 we see that there are two sharp and
in Fig. 12, pertain to a three-groove array with the samextremely narrow peaks within a very small interval /of.
parameters as used to generate the results in Fig. 2. The MBRHact, during the first pass of the computation, the peak
curve was generated by using four sets of seven sampdésch = 1.57079628 was missed even when a very small
uniformly distributed, i.e., by working with seven unknowngA(%kh) was employed. However, the MBPE method yielded
at a time. We observe that the MBPE method yields a gotite solid curve in Fig. 12 and immediately hinted the existence
approximation to the exact curve, even with only a total aff a missing resonant frequency. When the accuracy of the
ten samples. It is particularly worth noting that the MBPEomputation was enhanced by using a smaller interval and
curve fitting is not just a mere interpolation since it is abléner discretization with twenty samples in that interval, we
to reproduce a resonance peak even without the use of aipained the curve in Fig. 13 in which both the resonance
samples within the interval in which it occurs. Althoughpeaks were clearly detected. This leads us to conclude that the
the MBPE-generated curve deviates slightly from the trddBPE algorithm is a very useful tool for initial computation
response in the vicinity of the resonance peak (out of tlué the resonant frequencies of the system with good accuracy
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that can be further refined via finely sampled computation jg
the vicinity of these frequencies.

V. CONCLUSION

The scattering characteristics of structures formed by
finite array of rectangular cavities was investigated in th
paper by using the modal approach, which was found )
be a simple yet useful tool for modeling these structureS s ==«
It was shown that arrays comprising a finite number
cavities (passive elements) present interesting characteris
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