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Superdirective Radiation from Finite Gratings
of Rectangular Grooves

Diana Carina Skigin, Vladimir V. Veremey,Member, IEEE, and Raj Mittra,Life Fellow, IEEE

Abstract—In this paper, the superdirective property of arrays
comprising a finite number of rectangular grooves is studied
by using the modal approach, which is a simple but powerful
technique for analyzing these gratings. Numerical results show
that when a specific characteristic mode of the structure referred
to as the � mode is excited, the intensity of the field scattered
in the specular direction exhibits a maximum, which becomes
sharper and narrower as the number of grooves is increased.
The far-field patterns exhibit superdirectivity at these resonant
frequencies as evidenced by their beamwidths that are narrower
than those expected from apertures of comparable size. The
model-based parameter estimation (MBPE) technique has been
employed to help locate extremely narrow resonances that are
characteristic of superdirective arrays and its usefulness has been
demonstrated.

Index Terms—Gratings, superdirectivity.

I. INTRODUCTION

I T is well known that antenna arrays formed by a finite
number of active elements can exhibit superdirective prop-

erties [1]. The phenomenon of superdirectivity has attracted the
attention of many authors [2] since it appears to be promis-
ing for possible applications in high-gain antenna design.
However, despite a considerable amount of effort invested
in the investigation of these systems, they have been found
to be difficult to realize in practice, since they are extremely
sensitive to small changes in both the phase and amplitude
distributions of the sources and this sensitivity increases with
the increase in the directivity. As a consequence, a highly
precise control of these quantities is needed and this is
technically very difficult to achieve.

The use of passive elements in antenna arrays enables us
to circumvent the difficulties associated with the excitation.
Passive superdirective antennas are characterized by a very
high level of stored electromagnetic energy in the vicinity of
the antenna elements [3], [4]. The enhancement of the fields
in the near region is associated with the excitation of high
resonances in the system [5].

In early works, the modal method has been widely applied
to the problem of diffraction by infinite periodic gratings
formed by cavities with rectangular [6], triangular [7], and
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semicircular [8] shapes. Recently, it has been extended by Li
[9] to handle infinite gratings with arbitrarily shaped grooves.
However, until quite recently, the application of the modal
approach to finite gratings had been limited only to rectangular
cavities [10], and the extension to the problem of finite gratings
with cavities of arbitrary cross section was carried out only
very recently [11].

In an earlier paper, the authors have demonstrated [12] that
the scattered field of a structure formed by a finite number
of slotted cylinders exhibits superdirective characteristics at
the resonant frequencies of the system. The occurrence of
superdirectivity can be attributed to the excitation of modes
that induce a phase reversal in the adjacent scatterers. It has
also been shown that the nature of field distribution in the
interior of the cavities plays an important role in the generation
of superdirectivity, since this phenomenon is highly sensitive
to the variations in the field amplitude. In this paper, we
investigate a structure formed by a finite array of rectangular
grooves in an attempt to address the question whether this
property is a common attribute of systems formed by coupled
resonant elements. This geometry has a distinct advantage over
the slotted cylinder array, because the spacing between the
adjacent grooves can be made small arbitrarily. This, in turn,
enables us to increase the coupling between adjacent cavities,
and thereby improve the superdirectivity of the system.

In Section II, we outline the modal approach used for
the calculation of the scattered field from a surface with
a finite number of rectangular grooves of arbitrary widths
and depths. Numerical examples for finite arrays with 3, 5,
7, and 15 grooves are shown in Section III. The frequency
responses of the above structures are presented together with
the distribution of the fields in the interior regions of the
cavities, as well as the far-field patterns at the resonant
frequencies of the system. In Section IV, we illustrate the use
of the model-based parameter estimation (MBPE) technique
to search for the resonant frequencies. We show that this
algorithm is very useful for locating extremely narrow peaks
that are otherwise likely to be skipped if the frequency scan
were carried out in a conventional manner. Finally, some
concluding remarks that summarize the findings of this work
are presented in Section V.

II. THE MODAL METHOD

We consider the problem of scattering by a perfectly con-
ducting surface with a finite number of arbitrarily spaced
grooves of rectangular shape, as shown in Fig. 1. The structure
as well field variables are invariant in thedirection, and the
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Fig. 1. Cross section of groove arrays with rectangular cavities.

problem reduces to a two-dimensional one. The groove widths
and heights are and , respectively, and their spacing is

. This is a generalized version of the geometry investigated
earlier by the authors [10], where all the grooves had identical
depths.

Let an -polarized (magnetic field parallel to thedirec-
tion) plane wave be incident at an angle from the axis.
Assuming an time dependence, we can derive the
following wave equation satisfied by :

(1)

where is the free-space wavenumber. The field in the
free-space region must satisfy (1) together with the radiation
condition at infinity and the boundary conditions on the surface
of the conductor. Next, we subdivide the domain of analysis
into two: region-I , i.e., the upper half-space and
region-II , i.e., interior of cavities. The field
in region-I is expressible as a sum of three terms as follows:

(2)

where represents the incident plane wave

(3)

is the plane wave reflected
specularly by a flat surface and represents the
field scattered by the indentations of the surface. Our interest
in this work is to investigate the last term (see [10]).

The scattered field admits a spectral domain representation

(4)

where the complex function is the unknown Rayleigh
function; and and

are the and components of the incident wave vector,
respectively.

Next, the fields inside the cavities are expanded in terms
of the waveguide modes associated with each groove. For
instance, inside theth groove we can write the field as

(5)

where

and are the unknown modal coefficients. It is evident
that the modal functions satisfy the boundary conditions at the
walls of the grooves, viz.,

on the perfectly conducting surface(6)

where is the normal to the surface of the grooves.
The next step is to match the tangential magnetic fields in

regions I and II at the interface . This leads to the

(7)

Similarly, the companion equation is derived by matching the
tangential electric field at the interface and enforcing
the boundary condition on the perfectly conducting surfaces.
It reads

(8)

where is the rectangle function defined as

for
otherwise.

(9)

By projecting (7) and (8) on convenient bases, we can derive
an infinite system of equations for the unknown Rayleigh
function . Toward this end, we project (7) on the modal
eigenfunctions basis of theth groove, viz.,
and this enables us to relate the modal amplitudesin terms
of as follows

(10)

where

(11)

and

for
for

(12)

Finally, (8) is projected on the basis functions , that
are orthogonal in the interval . The result is

(13)

Substitution of (10) in (13) yields a Fredholm equation of the
second kind for the unknown amplitude distribution function
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. This integral equation is discretized and truncated to
transform the system into a matrix equation of the form

(14)

where . The solution of the above equation is
derived by using standard matrix inversion schemes.

The intensity of the scattered field in the direction deter-
mined by is defined as

(15)

III. N UMERICAL RESULTS

We begin this section by interjecting a comment on the
numerical implementation of the system of (10) through (13).
To transform the original system into (14), the infinite inte-
gration interval in the variable is reduced to the interval

where guarantees the
convergence of the results. Once this interval is determined,
the integral is discretized. The number of subdivisions is
closely connected to the total width of the structure, i.e., to
the number of grooves in the surface. However, for the cases
illustrated here, it was sufficient to consider 260 subintervals.
On the other hand, just 26 modal terms for the representation
of the fields inside each cavity was sufficient to ensure the
accuracy of the results. As a test of the computations, we
also calculated the Poynting flow through a closed-surface
enclosing the corrugations and verified that this flow was less
than 10 for all the calculations performed. This guaranteed
the fulfillment of the energy balance condition.

In the following examples, we analyze the fields scattered
by structures formed by 3, 5, 7, and 15 equally spaced
grooves, illuminated by a normally incident plane wave,
and plot the intensity of the field scattered in the specular
direction [see (15)] as a function of the normalized frequency

. The first case considered is a surface with
three identical grooves whose geometrical parameters are

and . Fig. 2 displays the behavior of
scattered field intensity versus for this case. Owing to
the symmetry of the normally incident field, the structure
admits only two characteristic modes. The first of these
exhibits a phase behavior that is uniform across the interface,
whereas the second has an alternating phase variation, one in
which the phase shifts by between the adjacent grooves.
In the region near (i.e., ), both of the
eigenmodes of the structure are excited and, consequently,
the response curve has two maxima. The maximum with
the lower is located at and corresponds to the
in-phase mode, whereas the sharp peak is associated with
the excitation of the mode. This mode also has certain
interesting properties, as will be evident from the results
presented below.

In Fig. 2(b), we plot the far-field pattern corresponding to
the high resonance. It is evident that the pattern exhibits
a superdirective character since the total width of the
structure is small compared to the wavelength . To

(a)

(b)

Fig. 2. (a) Frequency scan of the field intensity scattered in the normal
direction by an array of three identical grooves with equal spacing. The
parameters are:c = 0:2h, � = 0:1h, and �0 = 0�. (b) Far-field pattern
of the structure in Fig. 2(a) for the� mode(kh = 1:56936).

gain a better understanding of this phenomenon, we examine
the behavior of the fields inside the cavities. Fig. 3(a) and (b)
shows the amplitude and phase distributions of the resonant
field within the interior of the grooves. In these figures, the
vertical axis represents the depth of the grooves and the
horizontal axis spans the total width of the structure. Fig. 3(b)
clearly demonstrates that the relative phase associated with this
mode alternates betweenand radians along the interface.
We also note that the excitation of this mode is accompanied
by an enhancement of the field inside the grooves, as shown
in Fig. 3(a).

The next example we consider is formed by five grooves
whose geometrical parameters are the same as those for the
three-groove case, resulting in a total width of for
the structure. The intensity versus frequency plot is presented
in Fig. 4(a) on an extended scale, in order to enable us to
capture the fine features of the frequency behavior that are
associated with this five-groove structure. We observe that the
high resonance is now split into two, each of which has a
very high . Furthermore, the low resonance is shifted in
frequency relative to that of the three-groove structure. The
appearance of a new resonance may be explained by the fact
that an increase in the number of grooves is accompanied
by an increase in the number of eigenmodes of the system.
The mode , which now has a higher
than it did previously for the three-groove case, also produces
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(a)

(b)

Fig. 3. Magnetic field distribution inside the cavities of the resonant structure
described in Fig. 2 for the highQ resonance frequency(kh = 1:56936). (a)
Amplitude. (b) Phase.

a narrower far field pattern [see Fig. 4(b)]. This demonstrates
that the superdirective property of the structure is enhanced by
an increase in the number of grooves, at least for themode.

Finally, we increase the number of grooves yet again to
seven with , which implies a total width

. The results for this case, shown in Figs. 5
and 6, again show a trend similar to that we found when
the number of grooves was increased from three to five. We
observe, once again, that the highresonance is split into two
very narrow peaks while the lower resonance shifts and its
quality factor decreases [see Fig. 5(a)]. The far-field pattern
corresponding to the mode is found to be even narrower now
than it was in the previous two examples [see Fig. 5(b)]. The
distribution of the field inside the grooves is shown in Fig. 6
for the high resonance associated with .
Its phase distribution, shown in Fig. 6(b), clearly indicates
that it corresponds to the mode. We also see that for this
mode the enhancement of the field inside the cavities [see
Fig. 6(a)] is considerably larger than in the previous cases
with smaller number of grooves and that the same is true
for other resonances of this structure. In Fig. 7 we show the
far-field pattern associated with different resonant frequencies
and, once again, we notice a continuation of the trend that we
saw earlier when the number of grooves was increased from
three to five.

(a)

(b)

Fig. 4. (a) Frequency scan of the field intensity scattered in the normal
direction by an array of five identical grooves with equal spacing. The
parameters are:c = 0:2h, � = 0:1h, and �0 = 0�; (b) Far-field pattern
of the structure in Fig. 4(a) for the� mode(kh = 1:570788).

Next, we address an important question regarding the stabil-
ity of the superdirective resonances. We inquire, for instance,
about the sensitivity of these resonances to the tolerance with
which the structure is fabricated and ask to what extent we can
vary the depths and widths of the grooves and still maintain the
superdirectivity characteristics. This is an important question
that we attempt to address by carrying out the numerical
experiment described below.

We consider the simple case of a three-groove array and
modify the original structure in two different ways, viz.: 1)
by changing the depth of the leftmost cavity, i.e., letting

and 2) by varying the width of the same
groove . Fig. 8(a) presents a set of curves
corresponding to different values of and an expanded
version of the above is plotted in Fig. 8(b) to better display the
results in the resonance region where the frequency responses
vary very rapidly. The three curves presented in the above
figures correspond to depth variations of 1%, 3%, and 5%
of the left groove. It is evident that although the resonance
peak is still noticeable when the depth deviation is 5%, its
amplitude is reduced considerably. Furthermore, Fig. 9 shows
that the superdirective characteristic of the far-field pattern
totally disappears. This behavior is not entirely unexpected,
however, since the resonant excitation of an eigenmode of the
multigroove structure is strongly determined by the depths of
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(a)

(b)

Fig. 5. (a) Frequency scan of the field intensity scattered in the normal
direction by an array ofseven identical grooves with equal spacing. The
parameters are:c = 0:2h, � = 0:2h, and �0 = 0�. (b) Far-field pattern
of the structure in Fig. 5(a) for the� mode(kh = 1:570795).

its corrugations. However, in contrast to the depth variation,
changes in the width of the left groove by 10%, 50%, or even
100%, alters the frequency characteristic as well as the far-
field pattern only very slightly, as may be seen from Fig. 10(a)
and (b), which may be compared with Fig. 2(a) and (b). We
recall that we are investigating the resonance, which is
determined by the depth of the grooves. Their width, on the
other hand, does not play an important role in the production
of such a resonant behavior.

As mentioned earlier, an increase in the number of cavities
produces a split in the resonance characteristic of the structure,
accompanied by an increase in the factors of the peaks.
Thus, when the number of grooves is large, it is possible to
have a set of very high resonances for which the far-field
pattern is superdirective. However, although the multigroove
structures admit many eigenmode solutions, not all of these
are found in the intensity versus frequency curve, since their
eigenfrequencies are very similar, which causes their peaks
to overlap. For instance, for the case of an array comprising
five groups of three cavities (total number of grooves ,

, for , and ; for
, and ; ), we obtain the curve shown in

Fig. 11(a), where the frequency interval has been reduced even
further to facilitate the visualization of the different maxima.

(a)

(b)

Fig. 6. Magnetic field distribution inside the cavities of the resonant structure
described in Fig. 5 for the highQ resonance frequency(kh = 1:570795).
(a) Amplitude. (b) Phase.

Fig. 7. Far-field patterns radiated by the structure formed by seven grooves
shown in Fig. 5 for three different resonant frequencies.

Although two extremely narrow peaks appear in this figure,
none of the maxima correspond to themode. Nonetheless,
the radiation patterns associated with the main peaks still
exhibit superdirectivity, as may be seen from Fig. 11(b).

IV. MBPE TECHNIQUE

The examples given in the last section have demonstrated
that structures formed by an array of open rectangular cavities
exhibit superdirective properties when a high resonance
mode is excited by the incident plane wave. Furthermore, these
resonant frequencies are characterized by a noticeable increase
in the energy of the field scattered in the specular direction
and are accompanied by an enhancement of the fields excited
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(a)

(b)

Fig. 8. (a) Frequency scan of the field intensity scattered in the normal
direction by an array of three grooves with equal spacing, equal width
(c = 0:2h;� = 0:1h), but different depths(h1 6= h2 = h3 = h), �0 = 0�,
for different values ofh1. (b) Enlargement of the marked region of Fig. 8(a).

Fig. 9. Far-field pattern radiated by the structure formed by three grooves
shown in Fig. 8 forh1 = 1:05h.

inside the cavities. However, the peaks become extremely
narrow with an increase in the number of grooves, making
it rather difficult to track them. Thus, it becomes necessary
to choose an extremely small step while calculating the
frequency response of the structure. For instance, we choose

for the seven-groove case to insure that none of

(a)

(b)

Fig. 10. (a) Frequency scan of the field intensity scattered in the normal
direction by an array of three grooves with equal spacing, equal depth but
different widths(c1 6= c2 = c3 = c), � = 0:1h, �0 = 0� for different
values ofc1:; (b) Far-field pattern radiated by the structure formed by three
grooves shown in Fig. 10(a) forc1 = 2c.

the resonant frequencies are skipped. This, in turn, increases
the computation time very substantially and prompts us to
explore the possibility of using alternate numerical schemes
to search for the resonant frequencies.

One such approach is the MBPE technique [13]–[14], which
is a numerical algorithm useful for generating the frequency
response over a wide-frequency range from a sparse set of
sample points, by using a curve-fitting model based on the
physics of the problem. A ratio of two polynomials is used
as a fitting function and their coefficients are the unknowns
to be found using the sample points. The degrees of the
polynomials in the numerator and denominator are determined
by the number of samples and, typically, four in the numerator
and three in the denominator are found to be adequate.
Consequently, we only need seven samples to generate the
frequency response curve even though it may contain sharp
resonances. We should mentioned that sometimes, depending
on the structure and the choice of parameters, the matrix for
determining the coefficients becomes ill-conditioned, if larger
number of samples are used.

Typically, the numerical efficiency of this technique is sev-
eral orders of magnitude better than the brute force approach,
which requires approximately 30 s per frequency point on
a Dec Alpha workstation. In the conventional approach we
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(a)

(b)

Fig. 11. (a) Frequency scan of the field intensity scattered in the nor-
mal direction by an array of fifteen identical grooves distributed in five
groups of three grooves. The parameters are:c = 0:2h, �i = 0:2h for
i 6= 4; 7; 10;13 and�i = 0:7h for i = 4; 7; 10;13, �0 = 0�. (b) Far-field
pattern of the structure in Fig. 11(a), for the highQ resonance frequency
(kh = 1:57079628).

start with 100 points, guess the interval where the resonance
is located and proceed to use a finer discretization in this
interval. Even so, sometimes the resonance point associated
with a very high system can be missed even when 2000
points are computed in an already-identified interval that can
require 1000 min of computation. This difficulty can be
circumvented by using the MBPE technique, which accurately
generates the entire curve with only 10 or 20 sample points
in about 30 s, and detects the resonance with the needed
precision.

To illustrate the application of the MBPE method to the
present problem, we present two examples below. The curves
in Fig. 12, pertain to a three-groove array with the same
parameters as used to generate the results in Fig. 2. The MBPE
curve was generated by using four sets of seven samples
uniformly distributed, i.e., by working with seven unknowns
at a time. We observe that the MBPE method yields a good
approximation to the exact curve, even with only a total of
ten samples. It is particularly worth noting that the MBPE
curve fitting is not just a mere interpolation since it is able
to reproduce a resonance peak even without the use of any
samples within the interval in which it occurs. Although
the MBPE-generated curve deviates slightly from the true
response in the vicinity of the resonance peak (out of the

Fig. 12. Comparison of the MBPE (solid line) and the exact (dotted line)
results for the scattered field intensity in the normal direction by an array of
three grooves shown in Fig. 2.

Fig. 13. Comparison of MBPE results (expanded scale) for an array of 15
grooves with those presented in Fig. 11, inthe vicinity ofkh = 1:57.

resonance the difference between the MBPE and the exact
curves does not exceed 0.2%), it nonetheless provides us with a
useful tool for finding the location of the resonance frequency.
As mentioned earlier, the problem of finding the resonant fre-
quency peak becomes increasingly difficult, with the increase
in the number of cavities on the surface. The advantages of
using the MBPE algorithm become even more apparent in this
case because of substantial time saving realized in the process.
For instance, in Fig. 11 we see that there are two sharp and
extremely narrow peaks within a very small interval of.
In fact, during the first pass of the computation, the peak
at was missed even when a very small

was employed. However, the MBPE method yielded
the solid curve in Fig. 12 and immediately hinted the existence
of a missing resonant frequency. When the accuracy of the
computation was enhanced by using a smaller interval and
finer discretization with twenty samples in that interval, we
obtained the curve in Fig. 13 in which both the resonance
peaks were clearly detected. This leads us to conclude that the
MBPE algorithm is a very useful tool for initial computation
of the resonant frequencies of the system with good accuracy
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that can be further refined via finely sampled computation in
the vicinity of these frequencies.

V. CONCLUSION

The scattering characteristics of structures formed by a
finite array of rectangular cavities was investigated in this
paper by using the modal approach, which was found to
be a simple yet useful tool for modeling these structures.
It was shown that arrays comprising a finite number of
cavities (passive elements) present interesting characteristics,
e.g., superdirectivity in the far-field pattern at the resonant
frequencies of the system. These resonances are characterized
by a phase behavior in the mouths of these cavities that
alternates betweenand radians and are accompanied by a
significant enhancement of the fields inside the grooves. The
tolerance effects, viz., the influence of varying the dimensions
of the cavities on the resonances of the groove array, has been
investigated. It has been found that the resonances are highly
sensitive to the variations in the depths of the grooves but
not in their widths. The MBPE technique has been employed
for efficient computation of the frequency response containing
extremely sharp resonances and has been found to be a good
tool for locating these narrow resonances.
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