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Loop-Star Decomposition of Basis Functions
In the Discretization of the EFIE

Giuseppe VecchiMember, IEEE

Abstract—A general and readily applicable scheme is pre- or to the introduction of the so-called “star” basis functions
sented for the determination of the basis functions that allow [3], [6].
the decomposition of the surface current into a solenoidal part While the present issue is of recognized importance in the

and a nonsolenoidal remainder. The proposed approach brings text of low-f vsis. it b ted that “I
into correspondence these two parts with two scalar functions context or low-frequency analysis, It can be note at “low-

and generates the known loop and star basis functions. The frequency” is equivalent to near-field behavior and the latter is
completeness of the loop-star basis is discussed, employing thehe main responsible of the the growth of the condition number

presented scheme; the issue of the irrotational property of the for increasing number of unknowns when studying complex

nonsolenoidal functions is addressed. structures like planar antennas and circuits [7] at their normal
Index Terms—EFIE, loops, planar circuits, printed antennas, frequency of operation. This need has also expanded to the
scattering, stars. issue of correctly representing the singular part of the EFIE

that is crucial in obtaining a proper solution [7]-[9].
This loop-star decomposition has also been the subject of

o ] . a more recent work [10] in which the functions of the “star”
I N the electric-field integral equation (EFIE) for conducting,«is of [4] are instead termed “patch” functions.

bodies, the choice of suitable basis functions to represeniag g this remainder nonsolenoidal subspace, contrary to in-
the approximate solution is obwously_ an important point. 'ﬂjition, the word “irrotational” is improper and to some extent
the general case of a surface of arbitrary shape, in additiQfisjeading, as detailed in Sections Il and IV: therefore, this
to specific constraints on individual vector basis functions [1I]abeling of the nonsolenoidal subspace will not be employed
the necessity for a correct representation of the solenoidal pgry,e following.
of the solutipn (sgrface current) has emerged from dif'ferentApp”&,ﬂﬁon of the loop-star basis has been described in
works and viewpoints. A very good survey of recent advanc@§nnection to metal scatterers [2], [3] and in connection
in this Sense can _b? foynd in two S|m|I§1r Papers ,[2]’ 381, thgith the analysis of planar printed antennas [8]-[11] and the
also credit the (_)rlgmatmg works. The issue 0r|g|Pated frorﬁ'roperties of the EFIE in this basis have been discussed in [7]
the need to avoid the “low-frequency catastrophe” associatggy [g]: this paper will not be concerned with the use of this
with the extreme bad conditioning that the numerical problegygis in specific problems, but rather on trenerationand
assumes when approaching static or quasi-static conditionqugperties of the loop-star ,representation itself.
a large and geometrically complex structure; this occurrencerpe procedures described in this paper afford a systematic
can be avoided by separating the solenoidal part of the currgpLy, of generating these dual bases and assess the completeness
A historical perspective of the earlier works is found in [3]of the representation with respect to the usual discretization
which will be taken as reference in the following; an earlyt yne solution. To the best of the author's knowledge this
contribution on the subject is also found in [4], while partigitormation is missing in the available literature.
application .to printed antennas appeared n [5]- . In this paper, a conductor of arbitrary shape will be con-

The solution of an EFIE problem has to div-conforming sidered (with surfac&) onto which the solution to the EFIE
[1], i.e., able to represent a zero-divergence current fieldiqpiem is represented hiy vector basis functions defined
equivalently, a set of basis functions has to be found thgfer 5 triangular or rectangular mesh with. cells denoted
completely represents the solenoidal part of the solution. TrH' ., a = 1 : N,. The position on the surfacs will be
is usually done by recognizing that solenoidal currents foernot’éd byp and the surface current b¥(p); the unknown
closed paths, which has led to the introductionl@ip-type 7 \yi|| pe represented by the simplest meaningful vector basis
basis functions [3]. Identification of the solenoidal part bringg,ctions [12], precisely termed “zeroth order Nedelec” in [1],

to attention the dual, equally important issue of finding 2,4 here dubbed by their widespread name of “rooftops” and
basis that spans the remaining nonsolenoidal part of the initigl e byR

space spanned by the chosen (vector) basis functions. In the
literature, this has led either to the tree and co-tree strategies,

I. INTRODUCTION

N
J(p)=> IL.R,(p) (1)
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and for the nonsolenoidal remaindéf of the space spanned — —
by the rooftops] = J' + J”. A procedure is adopted that e
has the advantage of easily generating these functions on any B
mesh; this will allow to obtain the usual “loop” and “star” ' |
groupings of rooftops, but at the same time establishing a more '
general frame that seems well suited for finding more efficient L

bases and, notably, for the multilevel/multiresolution analysis. LLoITIIll
Preliminary work in this sense is described in [13]; generation AN
of multiresolution bases is, however, outside the scope of this o /\/\/\\/\/\/ y
paper and will be addressed elsewhere. NN
The basis functions for the solenoidal and nonsolenoidal R

subspaces will be linear combinations of the initial shape- | ::::: Co
conforming rooftopgiz,, subject to the condition that the mesh | ! !
be able to close all loops. At any (regular) point on the metal | ! ! N N N
surface:, the normal direction is denoted by and+; and R T EEE R R AT
7, are the two orthogonal directions tangent to the surface | , . o - ' .
71 X T = 7. In the following, the subscript will refer to b
surface coordinates (“tangential”) and the surface divergence] | !
and curl of the surface current are expressed through they @ :: DR
surface grad operatdv, = V — #(3/9n).
Summarizing the strategy, the goal is to find a new badi. 1. Loop-star grouping of rooftop-basis functions for the case of a
that: 1) explicitly contains the solenoidal functions and 2) fgctangular mesh. A 100 (p) composed of four rooftops is shown in the
equivalent to the original rooftop basis. Therefore, one fir?,ti?,legtthtﬁeo tﬁﬁﬂsnjgifta' funetiof(p), and show the deformation of stars
needs an “algorithm” to specify the loop (solenoidal) basis and
then another “algorithm” to specify a basis for the remainin
nonsolenoidal part of the space in such a way that the t
bases are globally equivalent to the rooftop basis, i.e., a
to represent all functiong that are linear combinations of

-----

roperties of the triangulation; the scalar functigns will be
epee-like tents” over the polygonal region surrounding each
Gde .. The curl operation in (2)

rooftops. L, (p) = Vi x iha(p) 3)
will generate basis functions representing closed current loops
[l. SOLENOIDAL PART on the polygonal region, circulating around node These
loop-basis functions will be denoted typ) in the following,
A. Generation via Scalar Functions ie.,
Since the chosen basis fdrhas to be div-conforming, the J"(p) = ZI&/La(P)- (4)
solenoidal conditiorV; - .J” = 0 holds everywhere, which, in - = -

turn, implies that For the sake of illustration, the case of loops in a rectangular

J"(p) =V, x aM(p), V,-J' =0, VYpe¥ (2 mesh is shown i|_1 Fig. 1; loops and stars on a triangular
- - - mesh are shown in [2] and [3]. Note that for a flat surface,

Therefore, this part of the current is represented by a scaléy x WM (p) = 2 x V, M.
function M and the solenoidal basis functions are naturally The connection between the solenoidal current and a “po-
derived from those chosen fav/. Apart for a constant) tential” function M, which is a scalar, allows one to determine
is the normal magnetic current [7]; because of its meaning ine number of basis functions necessary to repregénfor
(2), hereM will be referred to as “solenoidal potential.” Thethe chosen discretization. Since the current has to be zero
regularity condition for the rooftops [1] directly translates intoutside the surface, the scalar functidh has to be constant
the requirement fo/ to be piecewise linear. As a result, theoutside the considered surfakeas well as over the regions
natural representation for the scalar functighis based on the representing holes il (if it is not simply connected) and has
nodesof the mesh; the basic and simplest choice is to empléy attain the same constant value at all nodes bordering the
the scalar linear Lagrange (or nodal interpolating) basis, i.egntourl’ = 9% of X. This contour is the union of the outer
the piecewise linear functions,,(p) with support on the cells boundaryl’, and the contours; bordering theV; inner holes
that have a vertex at theth node of the mesh, attaining a unit(if any), T =T, U{Uﬁ\gL ~;} and the above considerations are
value at nodey, and linearly going to zero on all neighboringequivalent to stating that there is one extra current loop around
nodes. In a rectangular mesh, each rooftop extends over tihe outer boundary’, and Ny extra loops circling the inner
rectangular cells of the mesh and the Lagrange basis functidides. It remains to ascertain whether they are necessary or
are “pyramids” over a rectangle formed by four adjacent cellsot to represent the solenoidal current. Beginning with the
In a triangular mesh, the rooftops still extend over pairs @imply connected case (no holg€y = 0), one can observe
cells with one common edge, but in an unstructured me#iat the outermost loop along the external boundayycan
the number of cells around each node depends on the loeal represented by the inner loop functions in the following
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manner. One sums up all the inner loops that touch the external I1l. N ONSOLENOIDAL COMPLEMENT
boundaryl’,, obtaining the outermost loop and an adjacent, o5 stated in the Introduction, having found a basis for

counterlooping _current path; since this latter _does not tou&li'b solenoidal part, one now needs to find a complementary
the contourl’,, it can be represented by the inner 100ps (f5sjs that taken together with the loop basis constitutes a
is represented by a potential that vanishes at the bound@@fnplete basis for the solutio; that is, one must specify
I';) and, therefore, by subtracting this linear combination ¢fo ;v = v _ N, basis functionsY _ for the nonsolenoidal
inner loop functions one obtains the outermost boundary 10ggmainder.’. The intuitive guidelines arise from the duality
As a result, thls latter is not a linearly mdependen.t f“,nCt'O\With respect to the loop basis and specifically that: 1) the
of the solenoidal space, the constant outer potential is NOlgergence of the sought-for functions is never identically zero
degree of freedom and it can be set to any constant valygy o) these functions should operate as the discretized version
(zero, for simplicity). Therefore, on a simply connected surfacg ihe div operator (since loops act as a discretized curl). These
(N = 0), the numbetV, of necessary basis functions for theny,itive guidelines will be implemented into a systematic
solenoidal part is equal to the number of internal nodes of tRehame and the first step in the procedure for finding this

mesh; that is, the number of nodes necessary to specify thfnnlementary basis is the definition of the properties of such
scalar functionM via the linear interpolatory basis functions, p5gis.

A. If there is a holg§ Ny = 1), when the outermost boundary
loop is represented by mner.loops, g_counterflowmg Ioo/g' Definition of Requirements
appears around the hole. In this case, it is therefore necessary
to add a function that represents either one of the two boundaryVhile the property dual to div free is curl free, the dis-
loops (which makes the other representable by inner loopgfetizing basis (rooftops) for the representation of the EFIE
for simplicity, one can choose to add the boundary loop aroufiilution must be div conforming and this makes it impossible
the hole, requiring the constant potential over the hole to bd@{ the basis to be also curl conforming [1] (this is detailed
degree of freedom. Similarly, for a general multiply connectdyrther in Section I1I-D). Therefore, in constructing a new
surfaceX (Ny > 1), one needsVy extra basis functions, basis that explicitly contains the solenoidal (loop) functions,
representing |00ps bounding the holes or, equiva|ent|y, tH’éﬁ requirement for the remainder of the Space cannot be that
generating “ﬂat-top” linear scalar potentiai functions havin-g should be irrotational, i.e., one cannot resort to Helmholtz
constant value on the nodes around the hole and goingd@composition theorem.
zero on neighboring inner nodes. The same prescription was' his is not necessary, however, because the nonsolenoidal
obtained in [4] on the basis of topological considerations. Pasis functions are defined by the requirement that taken
Note that the loopsL, defined above are the smallestogether with the loops, they form a complete basis for the
loops that one can define; any set of functiahg(p) = solution space. Stated formally, since the solenoidal gart

Ei\;‘i JiaAa(p) Obtained by independent linear combination? thtebnultlhspace olf the ?ivfcii)](.aratolrl, the nonsolenoidal basis
of the elementary scalar functiodscan be employed, gener-Must be the compiement o this null Space.

ating, in turns, current loopg” (o) via (2), having shapes that I_n order to fln(_j an explicit expression for _the ab(_)ve re-
can better fit the solution of specific problems. qguirement, one first notes that the new basis functions are

combinations of rooftopg, (p), i.e.,

B. Differential Properties of Loops X, (0) = wnaR(p): Lo(p) =D lnaR,(p) (6)

It can be observed that testing the (purely normal) curl
V. x .J of any function over a set of weight functiaf), and so that the solenoidal and nonsolenoidal bases are defined by
integrating by parts (i.e., applying Green’s lemma) the innéne rectangular coefficient matricgs] = [,.,] (N x V,;) and
product, one obtains [L] = [£na] (N x N;) that specify the passage from the rooftop
basis to thel and X bases. Otherwise stated, the passage from
the rooftop representatiqifi/]) to the representation in the new
(Pr, - Ve X J) = (¢, , J), ¥, = Vi xngy. (5 basis is specified by the/ x N matrix [1]
(7] = [[x], 4] ()
Hence, '.t IS apparent that te_stln_g ( measuring ) the curl Of.thfehe requirement for the new basis is equivalent to the request
current is equivalent to projecting it onto a set of solenmdi;il1 .
i : . . at [7'] should not be singular.
functions+,. The first observation that follows is that on a ; )
o . . Having defined all the necessary background, one can now
perfectly electrical conducting (PEC) surface, testing the EFIE o . : .
. . . ; roceed to explicitly determine the basis for the nonsolenoidal
on the loop functions is equivalent to enforcing the boundaPart
condition via the normal magnetic field component; this was™
already observed in [7] and [8]. The second observation is ,
that the loop functionsL,(p) = V; x nAx(p) act as a © The Current-Charge Mapping
discretized version of the curl operator, yielding (upon testing) Since the solenoidal part is div free while the divergence
the averaged value of the curl of a function over the loopf J', o(p) = V, - J', is not identically vanishing, it is clear

domain. that o will play a key role in defining the basis faf’. In
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the following, ¢ is called “(surface) charge (distribution)” andor

denoted byo(p) [q][L] = [0]. (14)

N
o(p)=Vi-d=V,-J =) 1,V R,. (8) The above results show that:

n=1 1) the matrix [¢] is the discretized version of the div
operator for currents represented by rooftops and charges

The correspondence betweefi and o will be employed
represented by pulses;

to find a way of specifying the coefficientz,,]. To do > >t )
this, one needs to investigate first how the properties of the?) €duation (14) specmesTthe complete orthogonality be-
rooftop representation translate into thosesofFor currents tween the columns ofy]” and those ofL].

represented by rooftops, the charge distributicis piecewise This suggests the use of the charge mdyjxo construct the
constant (a®, - R,,) and this is the regularity required for thenonsolenoidal basis.

basis functions employed to represent the charge; therefore, the

most natural choice for these functions are the pulse functioBs The Star Basis

pa(p), Which are vanishing on all but one cell Addressing finally the determination of the nonsolenoidal

basis, it can be observed that the choice
7(p) =Y Capalp)- ©)

[X] = [a" (15)
To find the relationship between the discretized representations . _
of J' ando, (6) and (9) are now substituted into (8) and (8) id'akes the complete transformation matf#] in (7) surely
tested onto the charge space, i.e., it is projected onto the pui@gsingular since
functionsp, (p); by doing so, from (1) and (8) one obtains 1) rank([L]) = N¢, rank([.X]) = rank([g]) = N — N, (see

- Appendix);

[C1=[QI], Qan = (pa,V: R,) (10)  2) [Z] and[X] are orthogonal.
where([C] and[] are the column vectors of the homonymoug]se xgg” a, qggclhs ]{:J?]rgiiinmi}; fggr:]%%f;z%s ;Xttﬁggggs‘;:%
coefﬂmentg . - rooftops, with a geometrical support that suggests for these

Fln_ally, it must_also _be considered explicitly that aMYasis functions the name of “stars” [4]. An example is shown

solution J 1o the EFIE, like each of the rooftops, has 28, Fig. 1 for a rectangular mesh on a rectangular plate; note

total surface charge that because central cells are accessed by four rooftops while

border cells only by three or less, the stars “loose their
/st o(p) =0 (1) arms” when approaching the edges>f Examples of stars
in triangular meshes are shown in [2] and [3] and will not be
so that by inserting the representation (9) in (11) repeated here.
Ne
ZCaKa =0, K, :/ dS pa(p) (12) D. Differential Properties of Stars
ol =, -

1) Irrotational Property: The irrotational property for the

it is clear that with the chosen discretization there are onfiyrface current/ has to be understood in a weak sense
N, — 1 degrees of freedom for the charge distribution, i.e(@lmost everywhere) since, as already stated, div-conforming
there are onlyN, — 1 independent charge coefficieneg,. Subdomain basis functions cannot be curl conforming [1]. In
Therefore, one needs to consider a charge vécleonsisting the present case, the rooftop basis functions have continuous
of any N. — 1 elements of/C] or of linear combinations of OF vanishing normal current across all edges, which makes
these elements. Otherwise said, instead@jf one considers the divergence (derivative along the current) regular, but the
an (N, — 1) x N matrix [¢] obtained by deleting any row Current component parallel to edges does not vanish at the
or linear combination of rows froniQ]. As detailed in the edges and the curl (derivative across the current direction)
Appendix, it can be shown that bofty] and [¢] have rank will exhibit line deltas there. Therefore, contrary to usual
N, — 1 and, therefore, théN, — 1) x N matrix [¢] specifies Statéments [3], [10], the star (or “patch”) basis functions are
a full-rank mapping between th&¥-dimensional space of the Not irrotational (curl free). It can be further observed that on
rooftop current coefficientl] and the(NV, — 1)-dimensional @n open surface (like in patch antennas), even using infinitely
space of the charge coefficients. As shown in the Appendf@ntinuous functions (as possible with entire-domain functions
the rank of[q] equals the dimensionality/, = N — N, of the ON separable simple domains) the solution to EFIE cannot be
nonsolenoidal subspace. ' irrotational in a strong sense since it must be defined over
It can be further noted that the nullspace of the mappiige entire plane; however, generally, vanishing outside the

described by[q] is the space of the coefficients representingPnductors [14] and the current component parallel to edges

solenoidal functions, i.e., (see Appendix) cannot vanish. _ o
The weak irrotationality of the star-basis functions is now

null([¢g]) = span([L;],j =1 : Ny) (13) investigated, applying the results in (5) with = X, and
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considering the usual testing schemes. This means to inves- IV. PROPERTIES OF THELOOP-STAR BASIS
tigate on whether there is a class of weighting functigns

(or of solenoidal functionsﬁk) for which the stars are weakly A. Isotropic Scalarity

irrotational, i.e., for which the inner product in (5) vanishes

for all ¢, and X;. The first natural choice is taking IInear(solenoidal and nonsolenoidal) are brought into correspon-

interpolating weight functions, i.e¢; = A so that via (3) ith | iy he charqg h
one hasy, = L, and the product in (5) is the Ioop-stardence with two scalar quantities, the chargén (8) and the

action L. X3 this choi lear] ds to th scalar functionM in (2). It is important to note that these
projection <—’?’—i>’ IS choice clearly corresponds 1o wo scalar functions have a specified regularity and that this
Galerkin testing scheme for the moment of method (MoM)

S “isotropic,” i.e., independent of the spatial direction. On

In this case, it can be remarked that the orthogonality of ttﬁ(? -
- ) _thre contrary, if one employs the andy-current components
loop and star coefficients (14), (15) do not imply orthogonalit y pioy Y P

fth | £ ons- indeed. d . h ?or any other choice of components of the vector function
9 these two classes of functions; indeed, denoting’by the J), this property does not hold; for example, for rooftops on
¢th column of [X] and by

a rectangular mesh, the current alondhas to be piecewise
[HR] = [Hffm] =[(R,., R,)] (16) linear alongz and piecewise constant alopgThe isotropy of

the scalar functions employed here allows one to define basis
functions exactly as in a scalar problem.

In the presented scheme, the two components of the current

the projection matrix of the rooftops, one has

(Ly, X;) = [La] )X # [La) 1) 17

. B. Numerical Properties
because the rooftops are not an orthogonal bgsjs, R,,) # P

5mn. Relaxing the regularity class of the weighting functions The effect of the loop-star decomposition on the numerical
¢, the first step is having piecewise-constant (“pulse”) fun&olution of the EFIE is now discussed.

tions that, in turn, correspond to razor-blade testing for the The MoM impedance matriiZ]ys obtained using the loop-
solenoidal weightingy, = V; x f¢; consistently with the star basis can _be obtamed from the correspondmg matrix in
rooftop representation, one takes this razor blades along thg rooftop basigZ],, via the (sparse) transformation

usual ceqter lines of th'e rooftqps [;2] thaf[ cqrrespond to [Zlis = [117 2], (1] (19)
transforming the surface integral in (5) into a line integral over

a closed path passing through the midpoints of all inner edgekere, as discussed in Section I[f] in (7) is block-wise

in a loop function (see [2]). Also in this case the projectionsrthogonal. However, the transformation is not globally or-
between the rooftops and their associated razor blades do thoigonal and, therefore, the condition number of the two
yield a diagonal matrix and, in general, there is no wedkpedance matrices in the rooftop and loop-star bases will not
irrotationality with respect to this testing. Finally, employinge the same. As a general remark, loops and stars tend to be
razor-blade functions forp,, one gets point-matching forindependent as the frequency approaches zero [2], [3] and at
V. x ¢ at the midpoint of the loop inner edges. In this caséinite frequencies they retain some degree of independence. As
one obtains a diagonal projection matrix and if the mesh dsresult, in general, diagonal matrix entries for loops and stars
uniform (equilateral triangles or square cells), it is the identitiffer significantly in magnitude, and a preliminary balancing
matrix. With this testing and on these regular meshes, the starecommendable. The influence on conditioning is discussed

basis is weakly irrotational. in detail in [2] and [3], and the diagonal-dominance (DD)
An alternative, less obvious choice is addressed froperties are discussed in [2] (and references therein). Here,
Section IV-C below. planar microstrip patch antennas on dielectric substrates have

2) Testing and DivergencebDually to the loop basis, one been considered as an example (as in [10]) with a rectangular
would expect that testing a currept onto a star yields mesh and employing Galerkin testing. Two cases have been
information of the divergence of over the domain of the considered: a square electromagnetically coupled patch and
star function. To investigate on this, one can form the inner rectangular patch with monolithic recessed feeding. The
product(X;,.J} and apply (6), (15), (10), and (16), obtainingdetails of the physical structure and of the discretization are

. . (5) (5)] — R given in [9] and [15]; both cases have been validated against
ta = (Xo. ) = [l [17], - [17] = [F]17] (18) measurement (of the input impedance) or independent solu-
where [g¢;] is the ith row of [g]. In (18), ¢, is the average tions, as reported in the references above. The results obtained
div (charge) of the currenfI®)] over the charge celh, with the loop-star grouping have been compared to those
arising from the rooftops extending into cel] i.e., from the obtained with the usual rooftop basis; in both reported cases
domain of the star centered at In turn, since the entries of the relative difference between the computed currents is less
the jth row of the matrix[I1¥] are nonzero for all rooftops than 10-7 over the entire frequency sweep about the resonance
overlapping rooftopj, the jth rooftop of current{7(*)] arises frequency of the considered devices. This is not surprising
from contributions of currenfl] on neighboring rooftops; as since problems with the usual rooftops are to be expected in
a result,z, in (18) is a discretized version of the div operatorgonnection with low frequencies, that is, in structures with
but with an averaging over a wider region than would resutbany basis functions on irregular structures with detail scales
from normal application to the rooftop basis. This “spreadinggignificantly smaller than the wavelength. In these cases, the
property reduces as the testing implied in (18) becomes ratoop-star decomposition fixes the problem. Large differences
blade or point matching. have instead been reported in [10] for structures of comparable
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(resonant) size, but unfortunately, in [10], no indication is 1 . . : ; . : - : .

given about which solution is to be considered most accurate composition of adjoint loop

and no comparison with measurement or literature is presentgd| |

to resolve the doubt.
As to the conditioning and DD, the results found in the 0o | oo

present examples are in agreement with those in [2] and u ot U

[3]; at these near-resonance frequencies, the loop-star basid

is not expected to improve the conditioning and, indeed, iif% 5 10 15 20 25 30 3 40 45 50
agreement with the results in [2] and [3] the condition number loop .
is better in the rooftop basis. However, the loop-star basist : : ; : : ;
introduces a remarkable improvement in terms of DD. The compositon of adjoint star
diagonal-dominance ratio (DDR) 05k i

DDR;([Z]) = _NZal (20) oln Ao o

Ej,i;éj |Zij| 1 U it

controls the convergence of iterative solvers; strict DD, i.e.g5 ; . . , ‘ :
DDR; > 1 Vi, guarantees convergence of Jacobi iterations ° 1 20 % e %0 60 70

[2], [16, ch. 10], and the larger the DDR, the faster the con-

; D@RZ' Representation of adjoint loop and star functi@;ﬁ and X~ in
vergence. Here, taking as reference a square patch, the terms of usual loofL,,) and star(X,,) functions. The graphs repnort the

in the rooftop basis is always less than qmeax(DDR;) = coefficients of the loopand star representation of adjoint functions located at
0.48), while in the loop-star basis (after balancing), it growthe center ofthe mesh of Fig. 1.

significantly withmin(DDR;) = 0.6 andmax(DDR;) = 2.3.

matrices[L] and[X ] are sparse or not. This is the case for

C. Extension to Irrotational Testing rectangular meshes, but no guarantee exists of this property
From the discussion on irrotationality in Section I1I-D, on@n @ triangular unstructured mesh.

also gains insight on whether this property can be achievedn any case, weak irrotationality does not appear to give any
by choosing the basis functions. The equivalence of wegRrfinite numerical advantage in the solution of the integral
irrotationality to orthogonality between the two dual sets quation. In the EFIE, the curl operation does not appear
basis functions (loop, star) points at the role of the rooftopxplicitly (as opposed to the div) and one can note that instead,
projection matrix{IT1%] in (17) and by incorporating it into the the curl always appears together with some smoothing kernel
definition of basis functions the discussed orthogonality cdhat filters out the irregularities associated to the curl operation
be obtained. Indeed, two “adjoint” dual sef&-, X} can on a correct div-conforming basis (see [7] for the planar case).

be defined with coefficients given by Therefore, while the solenoidal loop functions disappear from
N i1 N Ri_1 the singular term of the EFIE [7], [10], no such simplification
[L7] =177, [X] = [I17][X] (21) is granted to a weakly irrotational basis.

Finally, using (5) with (17) and (21) along with the defini-

; it 1 v\ L\ _ 0
for which it is apparent that; , X)) = 0, (L,,, X;") = 0; that tion of [g], one has

is, star functionsX are irrotational if tested upon the “adjoint
solenoidal functiond.™ and the “adjoint” star functions{ [q] 1] = [d] 22)
are irrotational if tested upon the loop functiahsDually, by (L] [

: : : n >

inserting (1) and (21) into (18), one shows tH&; ,J) = where ji = (Ax.ii - Vi x J) is the curl of J averaged

Trm .
[Qk;l]'h[e—rle_ag]?(’)ilr%f.’set?se (f;r?rgee gfghlgega for testing the EFlﬁqer the loop domain, ang the div of J averaged over the
Ad) ployed . 9 cHarge cell domain. Inversion of (22) above yields a discretized
thus obtaining a complete solenoidal-irrotational decomp rm of the (surface) Helmholtz representation.hfi.e.. the
sition of the basis functions. Note that this corresponds {presentation (in a weak sense).bin terms of_twc.) ;calar

“left-multiplying” the original [Z],. times [I1%¥]~!; that is, to : : ) :
test the EFIE onto an adjoint set of functions that are bfil_mctlons related to the curl and div. One could think of using

. . . such a representation directly into the EFIE (in which the div
orthogonal with respect to the rooftop-basis functions. ) . S .
o . .. _operation arises explicitly); however, although the matrix on
An example of the adjoint star and loop functions is give

in Fig. 2; the figure refers to functions located at the cent € left-hand side (LHS) of (22) is highly sparse, its inverse is

of the mesh in Fig. 1 since the difference between thel ;[C?g:tthls option so far has not been found to be numerically

functions and their star and loop counterparts is difficult %
see on an vector plot, Fig. 2 reports the composition of an
adjoint loop and an adjoint star in terms of (usual) star and
loop functions. From the computational point of view, the A scheme has been proposed for the determination of the
matrix [I17] is highly sparse, symmetric, and positive-definitedgasis functions for the solenoidal and nonsolenoidal parts
so that its inversion is not a problem. However, the feasibilityf the surface current, known as “loops” and “stars.” The

of this testing option depends on whether the coefficiedescribed approach leads to the two classes of basis functions

V. SUMMARY
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with operations on “isotropic’calar functions, related to the that is, the sum of allV, rows of matrix[Q)] has to be the
charge and the normal magnetic current. The properties rafll row vector and theN. x 1 ones vector1y. ] is in the
the basis functions have been discussed, also showing thalfspace offQ]*". As to the dimension of this nullspace, one
they act as div and curl operator when used for testing. Thetes that the rank of a matrix is invariant upon the transpose
issue of irrotationality of the star function has been addressegperation so thatank([Q]?) = N. — 1 and since[Q]? is
and dual bases have been introduced that render the stdrs N., thendim(null([Q]?)) = 1; therefore, this nullspace
weakly irrotational. The proposed approach allows to shaw spanned by the ones vecfag;_] only. By further observing
the completeness of the loop-star basis, and the algorithm foat the N. x 1 ones vector1y_ ] cannot be represented by
the generation of the basis functionseigplicit any linear combination o, — 1 unit vectorsie, ], which are
Although extension to different types of loop- and star-likéhe columns of £*)], and thatrank([E*)]) = N, — 1, one
functions is beyond the scopes of this work, it is believecbncludes thatank([¢]) = rank([Q]) = N. — 1 = N,.
that the correspondence between star and loop functions and@he considerations above extend directly to the case in
isotropic scalar quantities can be used as a guideline fehich the matrix [Q] in (23) is substituted for a matrix
the generation of more efficient bases, especially of mulfiQ] = [F][Q], where[F] is any full-rankN. x N, matrix. For
level/multiresolution type, since most literature in this sense éxample, if the transformatioj#’] replaces rows: and¢ with
for scalar problems. In addition, the separation of the solutidheir sum and difference, respectively, subsequent application
into solenoidal and nonsolenoidal functions is of importance @ (23) to [Q] will delete the sum of rows and /.
address the issue of the MoM matrix condition number [7] and
a multilevel/multiresolution scheme in this framework shows
interesting features [13]. Work in this sense is in progress. ACKNOWLEDGMENT
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by deletion of any row of@], say thekth, one observes that
this operation can be written in matrix form via the matrix
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