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Loop-Star Decomposition of Basis Functions
in the Discretization of the EFIE

Giuseppe Vecchi,Member, IEEE

Abstract—A general and readily applicable scheme is pre-
sented for the determination of the basis functions that allow
the decomposition of the surface current into a solenoidal part
and a nonsolenoidal remainder. The proposed approach brings
into correspondence these two parts with two scalar functions
and generates the known loop and star basis functions. The
completeness of the loop-star basis is discussed, employing the
presented scheme; the issue of the irrotational property of the
nonsolenoidal functions is addressed.

Index Terms—EFIE, loops, planar circuits, printed antennas,
scattering, stars.

I. INTRODUCTION

I N the electric-field integral equation (EFIE) for conducting
bodies, the choice of suitable basis functions to represent

the approximate solution is obviously an important point. In
the general case of a surface of arbitrary shape, in addition
to specific constraints on individual vector basis functions [1],
the necessity for a correct representation of the solenoidal part
of the solution (surface current) has emerged from different
works and viewpoints. A very good survey of recent advances
in this sense can be found in two similar papers [2], [3], that
also credit the originating works. The issue originated from
the need to avoid the “low-frequency catastrophe” associated
with the extreme bad conditioning that the numerical problem
assumes when approaching static or quasi-static conditions on
a large and geometrically complex structure; this occurrence
can be avoided by separating the solenoidal part of the current.
A historical perspective of the earlier works is found in [3],
which will be taken as reference in the following; an early
contribution on the subject is also found in [4], while partial
application to printed antennas appeared in [5].

The solution of an EFIE problem has to bediv-conforming
[1], i.e., able to represent a zero-divergence current field;
equivalently, a set of basis functions has to be found that
completely represents the solenoidal part of the solution. This
is usually done by recognizing that solenoidal currents form
closed paths, which has led to the introduction ofloop-type
basis functions [3]. Identification of the solenoidal part brings
to attention the dual, equally important issue of finding a
basis that spans the remaining nonsolenoidal part of the initial
space spanned by the chosen (vector) basis functions. In the
literature, this has led either to the tree and co-tree strategies,
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or to the introduction of the so-called “star” basis functions
[3], [6].

While the present issue is of recognized importance in the
context of low-frequency analysis, it can be noted that “low-
frequency” is equivalent to near-field behavior and the latter is
the main responsible of the the growth of the condition number
for increasing number of unknowns when studying complex
structures like planar antennas and circuits [7] at their normal
frequency of operation. This need has also expanded to the
issue of correctly representing the singular part of the EFIE
that is crucial in obtaining a proper solution [7]–[9].

This loop-star decomposition has also been the subject of
a more recent work [10] in which the functions of the “star”
basis of [4] are instead termed “patch” functions.

As to this remainder nonsolenoidal subspace, contrary to in-
tuition, the word “irrotational” is improper and to some extent
misleading, as detailed in Sections III and IV; therefore, this
labeling of the nonsolenoidal subspace will not be employed
in the following.

Application of the loop-star basis has been described in
connection to metal scatterers [2], [3] and in connection
with the analysis of planar printed antennas [8]–[11] and the
properties of the EFIE in this basis have been discussed in [7]
and [8]; this paper will not be concerned with the use of this
basis in specific problems, but rather on thegenerationand
properties of the loop-star representation itself.

The procedures described in this paper afford a systematic
way of generating these dual bases and assess the completeness
of the representation with respect to the usual discretization
of the solution. To the best of the author’s knowledge this
information is missing in the available literature.

In this paper, a conductor of arbitrary shape will be con-
sidered (with surface ) onto which the solution to the EFIE
problem is represented by vector basis functions defined
over a triangular or rectangular mesh with cells denoted
by , . The position on the surface will be
denoted by and the surface current by ; the unknown

will be represented by the simplest meaningful vector basis
functions [12], precisely termed “zeroth order Nedelec” in [1],
and here dubbed by their widespread name of “rooftops” and
denoted by

(1)

where the number of rooftop functions equals the number
of inner edges of the mesh [1]. This work addresses the issue
of generating the basis functions for the solenoidal part
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and for the nonsolenoidal remainder of the space spanned
by the rooftops . A procedure is adopted that
has the advantage of easily generating these functions on any
mesh; this will allow to obtain the usual “loop” and “star”
groupings of rooftops, but at the same time establishing a more
general frame that seems well suited for finding more efficient
bases and, notably, for the multilevel/multiresolution analysis.
Preliminary work in this sense is described in [13]; generation
of multiresolution bases is, however, outside the scope of this
paper and will be addressed elsewhere.

The basis functions for the solenoidal and nonsolenoidal
subspaces will be linear combinations of the initial shape-
conforming rooftops subject to the condition that the mesh
be able to close all loops. At any (regular) point on the metal
surface , the normal direction is denoted by and and

are the two orthogonal directions tangent to the surface
. In the following, the subscript will refer to

surface coordinates (“tangential”) and the surface divergence
and curl of the surface current are expressed through the
surface grad operator .

Summarizing the strategy, the goal is to find a new basis
that: 1) explicitly contains the solenoidal functions and 2) is
equivalent to the original rooftop basis. Therefore, one first
needs an “algorithm” to specify the loop (solenoidal) basis and
then another “algorithm” to specify a basis for the remaining
nonsolenoidal part of the space in such a way that the two
bases are globally equivalent to the rooftop basis, i.e., able
to represent all functions that are linear combinations of
rooftops.

II. SOLENOIDAL PART

A. Generation via Scalar Functions

Since the chosen basis forhas to be div-conforming, the
solenoidal condition holds everywhere, which, in
turn, implies that

(2)

Therefore, this part of the current is represented by a scalar
function and the solenoidal basis functions are naturally
derived from those chosen for . Apart for a constant,
is the normal magnetic current [7]; because of its meaning in
(2), here will be referred to as “solenoidal potential.” The
regularity condition for the rooftops [1] directly translates into
the requirement for to be piecewise linear. As a result, the
natural representation for the scalar functionis based on the
nodesof the mesh; the basic and simplest choice is to employ
the scalar linear Lagrange (or nodal interpolating) basis, i.e.,
the piecewise linear functions with support on the cells
that have a vertex at theth node of the mesh, attaining a unit
value at node , and linearly going to zero on all neighboring
nodes. In a rectangular mesh, each rooftop extends over two
rectangular cells of the mesh and the Lagrange basis functions
are “pyramids” over a rectangle formed by four adjacent cells.
In a triangular mesh, the rooftops still extend over pairs of
cells with one common edge, but in an unstructured mesh
the number of cells around each node depends on the local

Fig. 1. Loop-star grouping of rooftop-basis functions for the case of a
rectangular mesh. A loopL(�) composed of four rooftops is shown in the
middle; the others are star functionsX(�), and show the deformation of stars
when at the boundary.

properties of the triangulation; the scalar functionswill be
“teepee-like tents” over the polygonal region surrounding each
node . The curl operation in (2)

(3)

will generate basis functions representing closed current loops
on the polygonal region, circulating around node. These
loop-basis functions will be denoted by in the following,
i.e.,

(4)

For the sake of illustration, the case of loops in a rectangular
mesh is shown in Fig. 1; loops and stars on a triangular
mesh are shown in [2] and [3]. Note that for a flat surface,

.
The connection between the solenoidal current and a “po-

tential” function , which is a scalar, allows one to determine
the number of basis functions necessary to representfor
the chosen discretization. Since the current has to be zero
outside the surface, the scalar function has to be constant
outside the considered surfaceas well as over the regions
representing holes in (if it is not simply connected) and has
to attain the same constant value at all nodes bordering the
contour of . This contour is the union of the outer
boundary and the contours bordering the inner holes
(if any), and the above considerations are
equivalent to stating that there is one extra current loop around
the outer boundary and extra loops circling the inner
holes. It remains to ascertain whether they are necessary or
not to represent the solenoidal current. Beginning with the
simply connected case (no holes, ), one can observe
that the outermost loop along the external boundarycan
be represented by the inner loop functions in the following
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manner. One sums up all the inner loops that touch the external
boundary , obtaining the outermost loop and an adjacent,
counterlooping current path; since this latter does not touch
the contour , it can be represented by the inner loops (it
is represented by a potential that vanishes at the boundary

) and, therefore, by subtracting this linear combination of
inner loop functions one obtains the outermost boundary loop.
As a result, this latter is not a linearly independent function
of the solenoidal space, the constant outer potential is not a
degree of freedom and it can be set to any constant value
(zero, for simplicity). Therefore, on a simply connected surface

, the number of necessary basis functions for the
solenoidal part is equal to the number of internal nodes of the
mesh; that is, the number of nodes necessary to specify the
scalar function via the linear interpolatory basis functions

. If there is a hole , when the outermost boundary
loop is represented by inner loops, a counterflowing loop
appears around the hole. In this case, it is therefore necessary
to add a function that represents either one of the two boundary
loops (which makes the other representable by inner loops);
for simplicity, one can choose to add the boundary loop around
the hole, requiring the constant potential over the hole to be a
degree of freedom. Similarly, for a general multiply connected
surface , one needs extra basis functions,
representing loops bounding the holes or, equivalently, the
generating “flat-top” linear scalar potential functions having
constant value on the nodes around the hole and going to
zero on neighboring inner nodes. The same prescription was
obtained in [4] on the basis of topological considerations.

Note that the loops defined above are the smallest
loops that one can define; any set of functions

obtained by independent linear combinations
of the elementary scalar functionscan be employed, gener-
ating, in turns, current loops via (2), having shapes that
can better fit the solution of specific problems.

B. Differential Properties of Loops

It can be observed that testing the (purely normal) curl
of any function over a set of weight function and

integrating by parts (i.e., applying Green’s lemma) the inner
product, one obtains

(5)

Hence, it is apparent that testing (“measuring”) the curl of the
current is equivalent to projecting it onto a set of solenoidal
functions . The first observation that follows is that on a
perfectly electrical conducting (PEC) surface, testing the EFIE
on the loop functions is equivalent to enforcing the boundary
condition via the normal magnetic field component; this was
already observed in [7] and [8]. The second observation is
that the loop functions act as a
discretized version of the curl operator, yielding (upon testing)
the averaged value of the curl of a function over the loop
domain.

III. N ONSOLENOIDAL COMPLEMENT

As stated in the Introduction, having found a basis for
the solenoidal part, one now needs to find a complementary
basis that taken together with the loop basis constitutes a
complete basis for the solution; that is, one must specify
the basis functions for the nonsolenoidal
remainder . The intuitive guidelines arise from the duality
with respect to the loop basis and specifically that: 1) the
divergence of the sought-for functions is never identically zero
and 2) these functions should operate as the discretized version
of the div operator (since loops act as a discretized curl). These
intuitive guidelines will be implemented into a systematic
scheme and the first step in the procedure for finding this
complementary basis is the definition of the properties of such
a basis.

A. Definition of Requirements

While the property dual to div free is curl free, the dis-
cretizing basis (rooftops) for the representation of the EFIE
solution must be div conforming and this makes it impossible
for the basis to be also curl conforming [1] (this is detailed
further in Section III-D). Therefore, in constructing a new
basis that explicitly contains the solenoidal (loop) functions,
the requirement for the remainder of the space cannot be that
it should be irrotational, i.e., one cannot resort to Helmholtz
decomposition theorem.

This is not necessary, however, because the nonsolenoidal
basis functions are defined by the requirement that taken
together with the loops, they form a complete basis for the
solution space. Stated formally, since the solenoidal part
is the null space of the div operator, the nonsolenoidal basis
must be the complement of this null space.

In order to find an explicit expression for the above re-
quirement, one first notes that the new basis functions are
combinations of rooftops , i.e.,

(6)

so that the solenoidal and nonsolenoidal bases are defined by
the rectangular coefficient matrices and

that specify the passage from the rooftop
basis to the and bases. Otherwise stated, the passage from
the rooftop representation to the representation in the new
basis is specified by the matrix

(7)

The requirement for the new basis is equivalent to the request
that should not be singular.

Having defined all the necessary background, one can now
proceed to explicitly determine the basis for the nonsolenoidal
part.

B. The Current-Charge Mapping

Since the solenoidal part is div free while the divergence
of , , is not identically vanishing, it is clear
that will play a key role in defining the basis for . In
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the following, is called “(surface) charge (distribution)” and
denoted by

(8)

The correspondence between and will be employed
to find a way of specifying the coefficients . To do
this, one needs to investigate first how the properties of the
rooftop representation translate into those of. For currents
represented by rooftops, the charge distributionis piecewise
constant (as ) and this is the regularity required for the
basis functions employed to represent the charge; therefore, the
most natural choice for these functions are the pulse functions

, which are vanishing on all but one cell

(9)

To find the relationship between the discretized representations
of and , (6) and (9) are now substituted into (8) and (8) is
tested onto the charge space, i.e., it is projected onto the pulse
functions ; by doing so, from (1) and (8) one obtains

(10)

where and are the column vectors of the homonymous
coefficients.

Finally, it must also be considered explicitly that any
solution to the EFIE, like each of the rooftops, has zero
total surface charge

(11)

so that by inserting the representation (9) in (11)

(12)

it is clear that with the chosen discretization there are only
degrees of freedom for the charge distribution, i.e.,

there are only independent charge coefficients .
Therefore, one needs to consider a charge vectorconsisting
of any elements of or of linear combinations of
these elements. Otherwise said, instead of, one considers
an matrix obtained by deleting any row
or linear combination of rows from . As detailed in the
Appendix, it can be shown that both and have rank

and, therefore, the matrix specifies
a full-rank mapping between the -dimensional space of the
rooftop current coefficients and the -dimensional
space of the charge coefficients. As shown in the Appendix,
the rank of equals the dimensionality of the
nonsolenoidal subspace.

It can be further noted that the nullspace of the mapping
described by is the space of the coefficients representing
solenoidal functions, i.e., (see Appendix)

(13)

or

(14)

The above results show that:

1) the matrix is the discretized version of the div
operator for currents represented by rooftops and charges
represented by pulses;

2) equation (14) specifies the complete orthogonality be-
tween the columns of and those of .

This suggests the use of the charge matrixto construct the
nonsolenoidal basis.

C. The Star Basis

Addressing finally the determination of the nonsolenoidal
basis, it can be observed that the choice

(15)

makes the complete transformation matrix in (7) surely
nonsingular since

1) (see
Appendix);

2) and are orthogonal.

As is nonzero only for rooftops extending into
the cell , each function is composed of these same
rooftops, with a geometrical support that suggests for these
basis functions the name of “stars” [4]. An example is shown
in Fig. 1 for a rectangular mesh on a rectangular plate; note
that because central cells are accessed by four rooftops while
border cells only by three or less, the stars “loose their
arms” when approaching the edges of. Examples of stars
in triangular meshes are shown in [2] and [3] and will not be
repeated here.

D. Differential Properties of Stars

1) Irrotational Property: The irrotational property for the
surface current has to be understood in a weak sense
(almost everywhere) since, as already stated, div-conforming
subdomain basis functions cannot be curl conforming [1]. In
the present case, the rooftop basis functions have continuous
or vanishing normal current across all edges, which makes
the divergence (derivative along the current) regular, but the
current component parallel to edges does not vanish at the
edges and the curl (derivative across the current direction)
will exhibit line deltas there. Therefore, contrary to usual
statements [3], [10], the star (or “patch”) basis functions are
not irrotational (curl free). It can be further observed that on
an open surface (like in patch antennas), even using infinitely
continuous functions (as possible with entire-domain functions
on separable simple domains) the solution to EFIE cannot be
irrotational in a strong sense since it must be defined over
the entire plane; however, generally, vanishing outside the
conductors [14] and the current component parallel to edges
cannot vanish.

The weak irrotationality of the star-basis functions is now
investigated, applying the results in (5) with and
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considering the usual testing schemes. This means to inves-
tigate on whether there is a class of weighting functions
(or of solenoidal functions ) for which the stars are weakly
irrotational, i.e., for which the inner product in (5) vanishes
for all and . The first natural choice is taking linear
interpolating weight functions, i.e., so that via (3)
one has and the product in (5) is the loop-star
projection ; this choice clearly corresponds to the
Galerkin testing scheme for the moment of method (MoM).
In this case, it can be remarked that the orthogonality of the
loop and star coefficients (14), (15) do not imply orthogonality
of these two classes of functions; indeed, denoting by the
th column of and by

(16)

the projection matrix of the rooftops, one has

(17)

because the rooftops are not an orthogonal basis
. Relaxing the regularity class of the weighting functions

, the first step is having piecewise-constant (“pulse”) func-
tions that, in turn, correspond to razor-blade testing for the
solenoidal weighting ; consistently with the
rooftop representation, one takes this razor blades along the
usual center lines of the rooftops [12] that correspond to
transforming the surface integral in (5) into a line integral over
a closed path passing through the midpoints of all inner edges
in a loop function (see [2]). Also in this case the projections
between the rooftops and their associated razor blades do not
yield a diagonal matrix and, in general, there is no weak
irrotationality with respect to this testing. Finally, employing
razor-blade functions for , one gets point-matching for

at the midpoint of the loop inner edges. In this case,
one obtains a diagonal projection matrix and if the mesh is
uniform (equilateral triangles or square cells), it is the identity
matrix. With this testing and on these regular meshes, the star
basis is weakly irrotational.

An alternative, less obvious choice is addressed in
Section IV-C below.

2) Testing and Divergence:Dually to the loop basis, one
would expect that testing a current onto a star yields
information of the divergence of over the domain of the
star function. To investigate on this, one can form the inner
product and apply (6), (15), (10), and (16), obtaining

(18)

where is the th row of . In (18), is the average
div (charge) of the current over the charge cell ,
arising from the rooftops extending into cell, i.e., from the
domain of the star centered at. In turn, since the entries of
the th row of the matrix are nonzero for all rooftops
overlapping rooftop , the th rooftop of current arises
from contributions of current on neighboring rooftops; as
a result, in (18) is a discretized version of the div operator,
but with an averaging over a wider region than would result
from normal application to the rooftop basis. This “spreading”
property reduces as the testing implied in (18) becomes razor
blade or point matching.

IV. PROPERTIES OF THELOOP-STAR BASIS

A. Isotropic Scalarity

In the presented scheme, the two components of the current
(solenoidal and nonsolenoidal) are brought into correspon-
dence with two scalar quantities, the chargein (8) and the
scalar function in (2). It is important to note that these
two scalar functions have a specified regularity and that this
is “isotropic,” i.e., independent of the spatial direction. On
the contrary, if one employs the- and -current components
(or any other choice of components of the vector function

), this property does not hold; for example, for rooftops on
a rectangular mesh, the current alonghas to be piecewise
linear along and piecewise constant along. The isotropy of
the scalar functions employed here allows one to define basis
functions exactly as in a scalar problem.

B. Numerical Properties

The effect of the loop-star decomposition on the numerical
solution of the EFIE is now discussed.

The MoM impedance matrix obtained using the loop-
star basis can be obtained from the corresponding matrix in
the rooftop basis , via the (sparse) transformation

(19)

where, as discussed in Section III, in (7) is block-wise
orthogonal. However, the transformation is not globally or-
thogonal and, therefore, the condition number of the two
impedance matrices in the rooftop and loop-star bases will not
be the same. As a general remark, loops and stars tend to be
independent as the frequency approaches zero [2], [3] and at
finite frequencies they retain some degree of independence. As
a result, in general, diagonal matrix entries for loops and stars
differ significantly in magnitude, and a preliminary balancing
is recommendable. The influence on conditioning is discussed
in detail in [2] and [3], and the diagonal-dominance (DD)
properties are discussed in [2] (and references therein). Here,
planar microstrip patch antennas on dielectric substrates have
been considered as an example (as in [10]) with a rectangular
mesh and employing Galerkin testing. Two cases have been
considered: a square electromagnetically coupled patch and
a rectangular patch with monolithic recessed feeding. The
details of the physical structure and of the discretization are
given in [9] and [15]; both cases have been validated against
measurement (of the input impedance) or independent solu-
tions, as reported in the references above. The results obtained
with the loop-star grouping have been compared to those
obtained with the usual rooftop basis; in both reported cases
the relative difference between the computed currents is less
than 10 over the entire frequency sweep about the resonance
frequency of the considered devices. This is not surprising
since problems with the usual rooftops are to be expected in
connection with low frequencies, that is, in structures with
many basis functions on irregular structures with detail scales
significantly smaller than the wavelength. In these cases, the
loop-star decomposition fixes the problem. Large differences
have instead been reported in [10] for structures of comparable
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(resonant) size, but unfortunately, in [10], no indication is
given about which solution is to be considered most accurate
and no comparison with measurement or literature is presented
to resolve the doubt.

As to the conditioning and DD, the results found in the
present examples are in agreement with those in [2] and
[3]; at these near-resonance frequencies, the loop-star basis
is not expected to improve the conditioning and, indeed, in
agreement with the results in [2] and [3] the condition number
is better in the rooftop basis. However, the loop-star basis
introduces a remarkable improvement in terms of DD. The
diagonal-dominance ratio (DDR)

DDR (20)

controls the convergence of iterative solvers; strict DD, i.e.,
DDR , guarantees convergence of Jacobi iterations
[2], [16, ch. 10], and the larger the DDR, the faster the con-
vergence. Here, taking as reference a square patch, the DDR
in the rooftop basis is always less than one DDR

, while in the loop-star basis (after balancing), it grows
significantly with DDR and DDR .

C. Extension to Irrotational Testing

From the discussion on irrotationality in Section III-D, one
also gains insight on whether this property can be achieved
by choosing the basis functions. The equivalence of weak
irrotationality to orthogonality between the two dual sets of
basis functions (loop, star) points at the role of the rooftop
projection matrix in (17) and by incorporating it into the
definition of basis functions the discussed orthogonality can
be obtained. Indeed, two “adjoint” dual sets can
be defined with coefficients given by

(21)

for which it is apparent that ; that
is, star functions are irrotational if tested upon the “adjoint”
solenoidal functions and the “adjoint” star functions
are irrotational if tested upon the loop functions. Dually, by
inserting (1) and (21) into (18), one shows that

, i.e., the charge of th cell.
These adjoint sets can be employed for testing the EFIE,

thus obtaining a complete solenoidal-irrotational decompo-
sition of the basis functions. Note that this corresponds to
“left-multiplying” the original times ; that is, to
test the EFIE onto an adjoint set of functions that are bi-
orthogonal with respect to the rooftop-basis functions.

An example of the adjoint star and loop functions is given
in Fig. 2; the figure refers to functions located at the center
of the mesh in Fig. 1; since the difference between these
functions and their star and loop counterparts is difficult to
see on an vector plot, Fig. 2 reports the composition of an
adjoint loop and an adjoint star in terms of (usual) star and
loop functions. From the computational point of view, the
matrix is highly sparse, symmetric, and positive-definite,
so that its inversion is not a problem. However, the feasibility
of this testing option depends on whether the coefficient

Fig. 2. Representation of adjoint loop and star functionsL?
n

andX?
n

in
terms of usual loop(L

n
) and star(X

n
) functions. The graphs report the

coefficients of the loopand star representation of adjoint functions located at
the center ofthe mesh of Fig. 1.

matrices and are sparse or not. This is the case for
rectangular meshes, but no guarantee exists of this property
on a triangular unstructured mesh.

In any case, weak irrotationality does not appear to give any
definite numerical advantage in the solution of the integral
equation. In the EFIE, the curl operation does not appear
explicitly (as opposed to the div) and one can note that instead,
the curl always appears together with some smoothing kernel
that filters out the irregularities associated to the curl operation
on a correct div-conforming basis (see [7] for the planar case).
Therefore, while the solenoidal loop functions disappear from
the singular term of the EFIE [7], [10], no such simplification
is granted to a weakly irrotational basis.

Finally, using (5) with (17) and (21) along with the defini-
tion of , one has

(22)

where is the curl of averaged
over the loop domain, and the div of averaged over the
charge cell domain. Inversion of (22) above yields a discretized
form of the (surface) Helmholtz representation of, i.e., the
representation (in a weak sense) ofin terms of two scalar
functions related to the curl and div. One could think of using
such a representation directly into the EFIE (in which the div
operation arises explicitly); however, although the matrix on
the left-hand side (LHS) of (22) is highly sparse, its inverse is
not and this option so far has not been found to be numerically
efficient.

V. SUMMARY

A scheme has been proposed for the determination of the
basis functions for the solenoidal and nonsolenoidal parts
of the surface current, known as “loops” and “stars.” The
described approach leads to the two classes of basis functions
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with operations on “isotropic”scalar functions, related to the
charge and the normal magnetic current. The properties of
the basis functions have been discussed, also showing that
they act as div and curl operator when used for testing. The
issue of irrotationality of the star function has been addressed,
and dual bases have been introduced that render the stars
weakly irrotational. The proposed approach allows to show
the completeness of the loop-star basis, and the algorithm for
the generation of the basis functions isexplicit.

Although extension to different types of loop- and star-like
functions is beyond the scopes of this work, it is believed
that the correspondence between star and loop functions and
isotropic scalar quantities can be used as a guideline for
the generation of more efficient bases, especially of multi-
level/multiresolution type, since most literature in this sense is
for scalar problems. In addition, the separation of the solution
into solenoidal and nonsolenoidal functions is of importance to
address the issue of the MoM matrix condition number [7] and
a multilevel/multiresolution scheme in this framework shows
interesting features [13]. Work in this sense is in progress.

APPENDIX

In this Appendix, it is shown that the rank of the charge
matrices is equal to the number of independent charge
cells, .

Beginning with the most basic case in which is obtained
by deletion of any row of , say the th, one observes that
this operation can be written in matrix form via the matrix

whose columns are the unit vectors
with

(23)

since the columns of are orthogonal
.

In the first place, it is necessary to make sure that the above
equation correctly specifies the charge representation of any
current or, equivalently, that the reduced matrixhas indeed
rank . To do this, one can further note that the nullspace
of is constituted by the vectors representing solenoidal
functions; according to the results of Section II-A, one has

. In turn, is related to the number
of cells by the Euler–Poincaré theorem [4], stating that

is equal to the number of inner edges of the
mesh, i.e., the number of rooftop functions. The relation
between the dimension of the nullspace and the rank of a
matrix [16, ch. 1], along with yields
than that . Next, one needs to make sure
than this rank property carries over onto the reduced
matrix . This can be done by inserting (8) into the zero total
charge condition (11), noting that ( being
solenoidal) and that testing onto is equivalent to integrating
over . Thus, one finds and, since
this holds for any , i.e., for any , the above is equivalent to

or

(24)

that is, the sum of all rows of matrix has to be the
null row vector and the ones vector is in the
nullspace of . As to the dimension of this nullspace, one
notes that the rank of a matrix is invariant upon the transpose
operation so that and since is

, then ; therefore, this nullspace
is spanned by the ones vector only. By further observing
that the ones vector cannot be represented by
any linear combination of unit vectors , which are
the columns of , and that , one
concludes that .

The considerations above extend directly to the case in
which the matrix in (23) is substituted for a matrix

, where is any full-rank matrix. For
example, if the transformation replaces rows and with
their sum and difference, respectively, subsequent application
of (23) to will delete the sum of rows and .
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