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Abstract—A very efficient three-dimensional (3-D) solver for
the diffusion of the electromagnetic fields in an inhomogeneous
medium is described. The proposed method employs either the
node-based or the edge-based finite-element method (FEM) to
discretize Maxwell’s equations. The resultant matrix equation is
solved by the spectral Lanczos decomposition method (SLDM),
which is based on the Krylov subspace (Lanczos) approximation
of the solution in frequency domain. By analyzing some practical
geophysical problems, it is shown that the SLDM is extremely fast
and, furthermore, the electromagnetic fields at many frequencies
can be evaluated by performing the SLDM iteration only at the
lowest frequency.

Index Terms—Electromagnetic diffusion, fast solvers, finite-
element methods.

I. INTRODUCTION

T HE dual laterlog operating over a wide range of fre-
quencies has been used traditionally to investigate the

resistivity profile of formations. These resistivities are used
to estimate the amount of hydrocarbon in rocks [1]. In simple
layered media, the tool response can be obtained by using spec-
tral fast Fourier transform (FFT) techniques [2], [3]. However,
when the geometry includes multiple beds, a borehole, and
invaded beds, the problem can be solved only by semi-analytic
or finite-element techniques [4], [5]. The finite-element method
(FEM) has been used as the most popular technique to simulate
well logging problems. It has been applied by Zhang [6] to
model laterlog tools, by Anderson and Chang [7] to synthesize
the induction tool responses, and by Li and Shen [8] to
simulate spherically focused logs. A thorough study of the
FEM application in well logging simulation is given by Lovell
[1].

Although the FEM has been applied in well logging prob-
lems, all the techniques presented so far suggest obtaining
solutions independently for every frequency over a wide
spectrum of frequencies. This, however, proves to be ex-
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tremely time consuming for multiple frequency simulations.
Recently, Druskin and Knizhnerman [9] have introduced a new
technique called the spectral Lanczos decomposition method
(SLDM), which is capable of solving Maxwell’s equations for
many frequencies in a negligible amount of extra computing
time. The method has been applied to solve for electromagnetic
fields discretized by the finite-difference method (FDM). It was
recently employed for solving axisymmetric low-frequency
electromagnetic diffusion by the FEM [10].

When Maxwell’s equations are discretized by either the
finite-element or FDM, the resulting equation may be cast
into a matrix equation

(1)

where and are typically real-square matrices, is the
unknown vector, and is the excitation vector. This matrix
equation can be modified as

(2)

where is the identity matrix. The SLDM solves (2) using
approximations in a global Krylov subspace to the product of
a matrix and a vector using the Lanczos method.

In this work, the FEM is employed to discretize Maxwell’s
equations in a low-frequency regime for three-dimensional (3-
D) problems. The SLDM is then applied to the resulting matrix
equation to solve for the electromagnetic fields for multiple
frequencies. The problems treated here are assumed to involve
dielectrics only and, hence, the magnetic field formulation is
employed.

II. FINITE-ELEMENT FORMULATION

When electromagnetic problems are analyzed by the FEM,
Maxwell’s equations can be discretized by either node-based
elements or edge-based elements. In this section, both dis-
cretization methods are discussed.

A. Node-Based Elements

In a low-frequency regime where the effect of displacement
currents can be neglected, Maxwell’s equations are given by

(3)

which can be solved for either the electric field intensityor
the magnetic field intensity . Here, denotes a diagonal
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(a) (b)

Fig. 1. Magnitude of thex component of the magnetic field atz = 1:5 m. (a) y = 2:25 m. (b) y = 2:0 m (- - - analytical; FEM with
tetrahedral nodal elements;� FDM).

(a) (b)

Fig. 2. Magnitude of thex component of the magnetic field atz = 1:5 m. (a) y = 2:25 m. (b) y = 2:0 m (- - - analytical; FEM with
brick nodal elements;� FEM with edge elements).

tensor which accounts for the anisotropy of the electrical
conductivity. If (3) is solved for the -field, we obtain

(4)

where . For simplicity, we choose the
outer boundaries sufficiently far from the source so that the
field satisfies the boundary condition

(5)

In accordance with the variational principle, the solution to (4)
and (5) is obtained [11] by extremizing the functional

(6)

where is a penalty factor and its associated term is called the
penalty term, which is included to suppress spurious modes in
the solution. To discretize (6), we subdivide the volumeinto

small volume elements such as tetrahedral or rectangular
elements. The magnetic field can then be expanded as

(7)

where denotes the total number of nodes, and
denotes the expansion function associated with nodeand ,

, and are the magnetic field components at node.
Next, substituting (7) into (6) and applying the Rayleigh–Ritz
procedure, one obtains

(8)



244 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 2, FEBRUARY 1999

Fig. 3. Magnitude of thex component of magnetic field aty = 1:75 m
and z = 2:0 m.

where

(9)

For simplicity, (8) can be written in a compact form as

(10)

where and are called thestiffnessand massmatrices,
respectively. This matrix equation can be solved by the SLDM
which is discussed in detail in Section III.

B. Edge-Based Elements

As discussed above, the existence of spurious modes can
be suppressed by introducing a penalty factor in the FEM

Fig. 4. Cross-sectional view of the problem geometry for the magnetic field
computation of an inhomogeneous medium.

formulations when node-based elements are used. Another
approach for achieving the same objective is to use vector
basis functions or vector elements in place of nodal elements
[11]. The solution of (4) and (5) is obtained by seeking the
stationary point of the functional given by

(11)

where denotes the volume of interest. This functional can
be discretized by first subdividing the volume into small
elements and expanding the magnetic field as

(12)

where denotes the expansion function associated with
edges and denotes the associated tangential magnetic field.
Substituting (12) into (11) and applying the Rayleigh–Ritz
procedure, we obtain the matrix equation

(13)

where and

(14)

Note that (13) has a similar form to (10), which can be solved
by the SLDM.
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(a) (b)

Fig. 5. Magnitude of thex component of the magnetic field atz = 1:75 m. (a) y = 1:75 m. (b) y = 1:5 m (- - - FEM with nodal elements;
FEM with edge elements;� FDM).

TABLE I
CPU TIME AND THE NUMBER OF ITERATIONS FOR THESLDM WITH 21 660 UNKNOWNS FOR THEMx EXCITATION

III. SPECTRAL LANCZOS DECOMPOSITIONMETHOD

In order to solve either (10) or (13) for the magnetic field
by the SLDM [9], this equation must be first cast to a form

(15)

with being the identity matrix. Therefore, we convert the
matrix of (10) or (13) to a diagonal matrix by the row-sum
lumping procedure to obtain

(16)

where . For the sake of convenience, the brackets
are omitted for the notation of matrices and vectors in this
section. Equation (16) can be further written as

(17)

or

(18)

with . The solution of (18) can be expressed as

(19)

We approximate the unknown vector in the above equation
in the SLDM by replacing the matrix with its
eigenvalues and corresponding eigenvectors which are ob-
tained from a symmetric tridiagonal matrix referred to as
the Ritz approximation of . is generated from via an
orthogonal transformation, or more specifically, the Lanczos
process and is related to as

(20)

where is an orthogonal matrix. We
generate the bases by the Gram–Schmidt
orthogonalization process of vectors in
the Krylov subspace

span (21)

If we define the elements of the Ritz matrix as

(22)

then (20) can be written as

(23)

where . The orthonormality of implies that

(24)

If we define the vector as

(25)

then can be expressed as

(26)

where . The Lanczos process is defined by
(22)–(26) and it is used to construct the tridiagonal matrix

and the orthogonal matrix . We further define and
to be the eigenvalues and their corresponding eigenvectors of
matrix , respectively, and

(27)
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Fig. 6. Number of SLDM iterations for calculatingHx andHz at each
frequency.

TABLE II
CPU TIME REQUIRED FOR ASSEMBLING THE MATRICES

A vector is chosen as

(28)

where is the first unit vector. The
unknown in (19) is then approximated by

(29)

which is a valid approximation of the unknown vectorsince
the spectrum of is contained in the spectral segment of
matrix .

It is apparent that the main arithmetic work in the SLDM
concerns the construction of matrices and . However,
the dimension of the Krylov subspace,, necessary to reach
convergence is typically much smaller than the dimension of
matrix , [9]. To compute the eigenvalues and eigenvectors
of , we implement the PWK [12] and inverse-iteration
algorithms, respectively. With the above algorithms, only

operation are required to generate the eigenpairs.
It must be also noted that the matrices and are not
recomputed for multiple frequency analysis. As such, only
the matrix functional of (29) is computed for at each
single frequency. This is the most attractive feature of the
SLDM. Therefore, the SLDM allows for obtaining solution
for multiple frequency simulations by generating matrices
and only once while recomputing the matrix functional

at each frequency. We verify this fact in
Section IV.

(a)

(b)

Fig. 7. (a) The problem geometry of a borehole penetrating layered beds at
an angle of 45�. The electrical conductivity of each layer from top to bottom is
0.35, 0.5, 0.25, 0.4, 0.6, 0.6, 0.2, 0.05, 0.1, and 0.15 and that of the borehole
is 1.0. (b) The finite-element mesh.

IV. RESULTS

To verify the formulation presented in this work, some
practical geophysical problems are analyzed. The geometry
considered first is a homogeneous cubic region of length
5 m and a unit electrical conductivity. For simplicity, only
an component of the magnetic current density is used to
excite the region. The region is subdivided into 20 segments
in each direction resulting in a total of 20 577 unknowns.
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TABLE III
CPU TIME FOR THE SLDM AND THE NUMBER OF ITERATIONS

The magnitude of the component of the magnetic field is
computed at a frequency of 1000 KHz and the results are
compared with the corresponding results obtained from the
FDM and the analytical solution. Comparisons of the results
are shown in Figs. 1 and 2. Since the magnetic current source
is positioned at the center of the region, results are given at
a few planes away from the source location. As can be seen
from these figures, both the analytical and the FDM results
are in good agreement with the corresponding results obtained
from the FEM technique. It is also worthwhile to note that the
penalty factor is set at 0.5 for this study, which proves to be
an optimum value. To investigate the accuracy of our multiple
frequency analysis of the field by the SLDM, the sameand

matrices generated at 1000 KHz are used to obtain results
in a frequency range of 1000–2500 KHz with an increment of
100 KHz. Fig. 3 shows a comparison with the corresponding
analytical and finite-element direct solutions. The tetrahedral
elements are used here for discretization purposes. As can be
seen from this figure, a very good agreement is obtained. Note
that the discrepancy between the results becomes larger as the
frequency increases. This is due to the fact that the analytical
solution is a full-wave solution.

Next, an inhomogeneous medium with the cross-section
shown in Fig. 4 is considered. The component of the
magnetic field is calculated by the FEM using both the
node-based and the edge-based elements at KHz
and the results are compared with the corresponding FDM
results. As can be seen in Fig. 5, a very good agreement is
obtained. Additionally, the component of the magnetic field
is computed due to a-directed magnetic current source and
the same accuracy as shown in Fig. 5 for the excitation
is achieved.

In order to illustrate the effectiveness of the SLDM, a
multiple frequency analysis of the magnetic field is performed
first, when the geometry of Fig. 4 is excited by both and

. A frequency range of 1000–2500 KHz is considered. The
results are obtained by the SLDM for KHz while
the same and matrices are used to evaluate the field at
the remaining frequencies (see Fig. 6). Results are given in
Table I for the excitation and those for the excitation
are similar. As can be seen from this table, only about two
seconds extra are needed to compute the magnetic field at
15 additional frequencies using either the FEM or the FDM.
To further justify the multiple-frequency results, the SLDM
is employed to compute the field at each single frequency
in the above frequency range and the number of SLDM
iterations is plotted in Fig. 7. Note that only the FEM with
the edge elements is used for this illustration. It is seen that

Fig. 8. Magnitude of the total magnetic field onxy plane andz = 2:5 m.

as the frequency increases, the number of iterations decreases
accordingly. Therefore, the same and matrices formed
at 1000 KHz can be used to evaluate the field at higher
frequencies. Furthermore, the total CPU time for obtaining
results at each single frequency is estimated to be 253.87
s compared to only 18.8 s required for multiple-frequency
analysis for excitation while the CPU times for the
excitation are 262.34 and 22.5 s, respectively. The saving in
the CPU time would be more significant if more frequency
points are considered.

Next, the geometrical size of Fig. 4 is extended from 5 m
5 m 5 m to 10 m 10 m 10 m with the number of

unknowns growing from 20 577 to 182 520. Table II presents
the CPU time required for assembling the matrices of either
(10) or (13). The CPU time required to solve the system of
equations and the number of SLDM iterations are shown in
Table III. It is seen that the CPU time reaches only 82.5, 104.1,
and 139.0 s using the FDM, the FEM with edge elements, and
the FEM with nodal elements, respectively. It is to be noted
that the number of nonzero entries of matrix is different
in the FEM with node-based and edge-based elements, and
the FDM. Therefore, although the number of SLDM iterations
may be the same for all three methods, the CPU time will be
different due to the difference in performing the matrix-vector
multiplication.

Finally, the effectiveness of the method is tested by consid-
ering a practical problem of a cylindrical borehole penetrating
layered beds with various electrical conductivities at an angle
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Fig. 9. Magnitude of the total magnetic field onyz plane andx = 2:5 m.

of 45 . The problem geometry and the finite-element mesh
generated using SDRC-IDEAS are seen in Fig. 8. The ge-
ometrical size of the problem is 5 m 5 m 5 m. The
mesh contains 55 798 tetrahedra, 10 693 nodes, and 24 807
unknowns. To simulate the current sources, three electric
dipoles of a finite length and separated by a distance of
0.5 m are positioned inside the borehole. The magnetic field
intensity is computed by the SLDM at KHz and the
magnitude of the total magnetic field is plotted on plane
at m and on plane at m. Results are
shown in Fig. 9, clearly indicating the inhomogeneity of the
solution domain. The total CPU time was approximately 210.0
s. The accuracy criterion (the relative difference between two
consecutive iterations) in above computations is 10and all
the computations are performed on a DEC Alpha Workstation
computer with an average throughput of 44 MFlops.

V. CONCLUSION

The spectral Lanczos decomposition method is applied to
the solution of the general 3-D Maxwell’s equations in a low-
frequency regime when the FEM with both the node-based
elements and the edge-based elements is employed to dis-
cretize Maxwell’s equations. The formulation presented here
is validated by comparing the results with the corresponding
analytical results obtained for homogeneous configurations
and the FDM results for more complicated geometries. The
problems considered are of a practical geophysical nature. It
is shown that the SLDM is not only computationally fast, but
also capable of obtaining solutions at many frequencies by
performing the SLDM iterations only for the lowest frequency
of interest.
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