242 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 2, FEBRUARY 1999

A Spectral Lanczos Decomposition Method for
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Abstract—A very efficient three-dimensional (3-D) solver for tremely time consuming for multiple frequency simulations.
the diffusion of the electromagnetic fields in an inhomogeneous Recently, Druskin and Knizhnerman [9] have introduced a new
medium is described. The proposed method employs either the ochpique called the spectral Lanczos decomposition method

node-based or the edge-based finite-element method (FEM) to _ . \ .
discretize Maxwell's equations. The resultant matrix equation is (SLDM), which is capable of solving Maxwell's equations for

solved by the spectral Lanczos decomposition method (SLDM), many frequencies in a negligible amount of extra computing
which is based on the Krylov subspace (Lanczos) approximation time. The method has been applied to solve for electromagnetic

of the solution in frequency domain. By analyzing some practical fields discretized by the finite-difference method (FDM). It was

gegp?ychal pmb'eﬂ‘s’ ilt is shown thf?‘“fhel dSLDM Is eX]Ereme'y fast recently employed for solving axisymmetric low-frequency
and, furthermore, the electromagnetic fields at many frequencies electromagnetic diffusion by the FEM [10]

can be evaluated by performing the SLDM iteration only at the . . : .
lowest frequency. When Maxwell's equations are discretized by either the

finite-element or FDM, the resulting equation may be cast
into a matrix equation

Az + jwpCx = b 1)

Index Terms—Electromagnetic diffusion, fast solvers, finite-
element methods.

. INTRODUCTION where A and C' are typically real-square matrices, is the

HE dual laterlog operating over a wide range of frednknown vector, and is the excitation vector. This matrix
T guencies has been used traditionally to investigate tRguation can be modified as
resistivity profile of formations. These resistivities are used
to estimate the amount of hydrocarbon in rocks [1]. In simple
layered media, the tool response can be obtained by using speleere / is the identity matrix. The SLDM solves (2) using
tral fast Fourier transform (FFT) techniques [2], [3]. Howevegpproximations in a global Krylov subspace to the product of
when the geometry includes multiple beds, a borehole, aadnatrix and a vector using the Lanczos method.
invaded beds, the problem can be solved only by semi-analytidn this work, the FEM is employed to discretize Maxwell’s
or finite-element techniques [4], [5]. The finite-element methagfuations in a low-frequency regime for three-dimensional (3-
(FEM) has been used as the most popular technique to simul2)groblems. The SLDM is then applied to the resulting matrix
well logging problems. It has been applied by Zhang [6] tequation to solve for the electromagnetic fields for multiple
model laterlog tools, by Anderson and Chang [7] to synthesifequencies. The problems treated here are assumed to involve
the induction tool responses, and by Li and Shen [8] tdielectrics only and, hence, the magnetic field formulation is
simulate spherically focused logs. A thorough study of themployed.
FEM application in well logging simulation is given by Lovell
[1]. Il. FINITE-ELEMENT FORMULATION

| AIthOll“'Ighhthe FEM has been appdlied i? well logging grqbf When electromagnetic problems are analyzed by the FEM,
ems, all the techniques presented so far suggest o t"’“r(‘jkngwell's equations can be discretized by either node-based

solutions independently for every frequency over a wi Sements or edge-based elements. In this section, both dis-
spectrum of frequencies. This, however, proves to be &fetization methods are discussed '

Az +jopls =V 2
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Fig. 1. Magnitude of ther component of the magnetic field at = 1.5 m. @)y = 2.25 m. (b) y = 2.0 m (- - - analytical; FEM with
tetrahedral nodal elements; FDM).
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Fig. 2. Magnitude of ther component of the magnetic field at = 1.5 m. (@ y = 2.25 m. (b)y = 2.0 m (- - - analytical; FEM with

brick nodal elementsp FEM with edge elements).

tensor which accounts for the anisotropy of the electricAl small volume elements such as tetrahedral or rectangular

conductivity. If (3) is solved for théd-field, we obtain elements. The magnetic field can then be expanded as
Vx (' VxH)+jwpH=M (4) N
— . .. H(xa Y, Z) = Z Ni(xa Y, Z)(‘%Hm +?)Hyi + ész)
whereM = V x (7! - J). For simplicity, we choose the =
outer boundaries sufficiently far from the source so that the — (N (G{H,} +§{H) + 2{H.}) @)
field satisfies the boundary condition o el -
AxH=o0. 5) where N denotes the total number of nodes, aNdx, v, 2)

denotes the expansion function associated with Aeae H ,.;,
In accordance with the variational principle, the solution to (4y:, and H.; are the magnetic field components at ndde

and (5) is obtained [11] by extremizing the functional Next, substituting (7) into (6) and applying the Rayleigh-Ritz
procedure, one obtains
FH :l/// 71V xH) (VxH)+s(V-H)?
4 . _ . Kyl‘ Kyy KyZ Hy
+ jopH -H}V / / M -HdV (6) K Ky k| A
wheres is a penalty factor and its associated term is called the ) Liw O 0 H, bs
penalty term, which is included to suppress spurious modes in +wn 8 Téy TO ij = 25; )

the solution. To discretize (6), we subdivide the voluméeto
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Fig. 3. Magnitude of ther component of magnetic field at = 1.75 m
andz = 2.0 m.

formulations when node-based elements are used. Another
approach for achieving the same objective is to use vector

where
basis functions or vector elements in place of nodal elements
T T
(K] = /// < 01N} 9N} + £ 01N} 0N} [11]. The solution of (4) and (5) is obtained by seeking the
v Ox o Oy Iy stationary point of the functional given by
1 8{N} 8{N}T>
av — )
"o i :%/// (7 'V x H) - (V x H) + jooyH - H|dV
= / // 1 a{N} AN} s A{N} 9{N}T v
Ky v \ o2 ox Ay Ay — // M -HdV (11)

1 N} 8{N}T av
% 92 Oz whereV denotes the volume of interest. This functional can

1 9{N} O{N)}T 1 9{N} 9{N)}T be discretized by first subdividing the volumé into small
o JI G2
v

o, Oz a7 o Oy oy elements and expanding the magnetic field as

{N} o{N}H
*“or oz )V H(z, y, 2) Zwa,« i (12)
B 8{N} N} 1 0{N} N av
[Kpa] = v dq o, Oq dp where N; denotes the expansion function associated with
DG T =3, Y, 2 TEDPFEq edges and?; denotes the associated tangential magnetic field.
- Substituting (12) into (11) and applying the Rayleigh—Ritz
ol = /// {NHNY AV p=ua,y, 2 procedure, we obtain the matrix equation
= [[[ oy p=ay. - © (€] + jonlI){H) = 5} a3)
v
For simplicity, (8) can be written in a compact form as ~ Where{H} = [Hi, H>, ---, Hy]" and
([C] + jwplTDH{H} = {b} (10) C = / / / F -V x Ny - (Vx Nj)dV
where C and 7" are called thestiffnessand massmatrices, v
respectively. This matrix equation can be solved by the SLDM 5= // N;-N;dV
v

which is discussed in detail in Section Ill.

b, = // N, -MdV. (14)
B. Edge-Based Elements Vv

As discussed above, the existence of spurious modes ®ote that (13) has a similar form to (10), which can be solved
be suppressed by introducing a penalty factor in the FEbM the SLDM.
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Fig. 5. Magnitude of ther component of the magnetic field at = 1.75 m. @)y = 1.7 m. (b) y = 1.5 m (- - - FEM with nodal elements;
_ FEM with edge elementsp FDM).

TABLE |
CPU TiME AND THE NUMBER OF ITERATIONS FOR THESLDM wiTH 21 660 LNKNOWNS FOR THE M, EXCITATION

Method CPU time (s) 1,000 KHz | CPU time (s) 1,000-2,500 KHz | [terations
assemble Lanczos assemble Lanczos

FDM 1.1 12.9 1.1 153 56

FEM-vector 3.6 16.8 3.6 18.8 45

FEM-nodal 3.3 20.0 8.3 21.3 29
[ll. SPECTRAL LANCZOS DECOMPOSITIONMETHOD where @ = [q1, g2, - -+, qm] IS an orthogonal matrix. We
In order to solve either (10) or (13) for the magnetic fiel@€nerate the basegi, g, ---, qu by /tt‘e Grarn\;?izr}mdt

by the SLDM [9], this equation must be first cast to a form Orthogonalization process of vectdfs A'Y, ---, A~ in

the Krylov subspace

A+ jwpl)e =u 15
( g ) ( ) R(Alv q1, M) = Spar{qlv Alqlv Ty Al]w*lql}- (21)

with I being the identity matrix. Therefore, we convert the i )
matrix 7 of (10) or (13) to a diagonal matrix by the row-sunif we define the elements of the Ritz matrk as
lumping procedure to obtain H; ;= i=1,2 -, M
(C+quD)(I>:b (16) Hi,i—l :Hi—l,i :/327 1= 17 27 Ty M-1 (22)

where® = {H}. For the sake of convenience, the bracketden (20) can be written as
are omitted for the notation of matrices and vectors in this

section. Equation (16) can be further written as A'g = fiagitaigi+Bigin,  i=1,--, M—1 (23)
(D—1/2 cp-1/2 +jwu—7)‘1>/ — D12 (17) where 3pqo = 0. The orthonormality ofy; implies that
or ai =g Agi. (24)
(A + jwpl)® =V (18) If we define the vector; as
with & = D'/2®. The solution of (18) can be expressed as ri = (A" —al)gi — i 1gi1 #0 (25)
O = (A + jwpl) V. (19) theng;i; can be expressed as

We approximate the unknown vectéf in the above equation Gig1 = ;—Z (26)

in the SLDM by replacing the matrixd’ with its M(<N) ‘

eigenvalues and corresponding eigenvectors which are eolere 3; = ||r;||.. The Lanczos process is defined by

tained from a symmetric tridiagonal matrif referred to as (22)—-(26) and it is used to construct the tridiagonal matrix
the Ritz approximation ofd’. H is generated fromd’ via an H and the orthogonal matrix). We further defineA and V'
orthogonal transformation, or more specifically, the Lanczds be the eigenvalues and their corresponding eigenvectors of
process and is related td’ as matrix H, respectively, and

QTAQ=H (20) H=VAV", — A=diag[h, A2, -+, Ay]. (27)
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Fig. 6. Number of SLDM iterations for calculatin§f/.. and H. at each
frequency.

TABLE I
CPU TIME REQUIRED FOR ASSEMBLING THE MATRICES
Unknowns FDM FEM-vector FEM-nodal
CPU time (s) | CPU time (s) | CPU time (s)
21,660 1.1 3.6 8.3
38,088 2.1 6.4 16.1
75,690 4.7 134 32.9
111,078 6.6 20.6 49.8
182,520 10.9 39.5 90.9

A vector ¢; is chosen as

b/
g =Qer = — (28)
il
wheree; = (1,0, 0, ---, 0)¥ is the first unitM vector. The

unknown @’ in (19) is then approximated by

' & ||V QV(A + joud) Ve (29)

which is a valid approximation of the unknown vect@rsince
the spectrum ofH is contained in the spectral segment of
matrix A’.

It is apparent that the main arithmetic work in the SLDM
concerns the construction of matricés and H. However,
the dimension of the Krylov subspack/, necessary to reach
convergence is typically much smaller than the dimension of _
marix ',V [9], To compute the eigenvalues and eigenvectoff®, 7. (% 1 probem gsometsy o  boefje penctatng eyere ecs
of H, we implement the PWK [12] and inverse-iteration.ss, 0.5, 0.25, 0.4, 0.6, 0.6, 0.2, 0.05, 0.1, and 0.15 and that of the borehole
algorithms, respectively. With the above algorithms, onlg 1.0. (b) The finite-element mesh.

O(m?) operation are required to generate the eigenpairs.

It must be also noted that the matricés and H are not IV. RESULTS

recomputed for multiple frequency analysis. As such, only ] . ) ]

the matrix functionalf(H) of (29) is computed for at each To verify the formulation presented in this work, some
single frequency. This is the most attractive feature of tH¥actical geophysical problems are analyzed. The geometry
SLDM. Therefore, the SLDM allows for obtaining solutionconsidered first is a homogeneous cubic region of length
for multiple frequency simulations by generating matricgs 5 m and a unit electrical conductivity. For simplicity, only
and H only once while recomputing the matrix functionaln z component of the magnetic current density is used to
(A + jwpl)™! at each frequency. We verify this fact inexcite the region. The region is subdivided into 20 segments
Section IV. in each direction resulting in a total of 20577 unknowns.

(b)
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TABLE 11l
CPU TiME FOR THE SLDM AND THE NUMBER OF ITERATIONS
Unknowns I'DM FEM-vector FEM-nodal
CPU time (s) | iterations | CPU time (s) | iterations | CPU time (s) [ iterations
21,660 12.9 56 16.8 45 20.0 29
38,088 50.2 93 27.5 40 33.6 26
75,690 39.1 44 48.8 34 63.2 23
111,078 57.2 42 65.5 32 90.0 22
182,520 82.5 37 104.1 23 139.0 21
The magnitude of the: component of the magnetic field is 1.6E002

computed at a frequency of 1000 KHz and the results art
compared with the corresponding results obtained from the
FDM and the analytical solution. Comparisons of the results
are shown in Figs. 1 and 2. Since the magnetic current sourc
is positioned at the center of the region, results are given &
a few planes away from the source location. As can be see
from these figures, both the analytical and the FDM results
are in good agreement with the corresponding results obtaine
from the FEM technique. It is also worthwhile to note that the
penalty factors is set at 0.5 for this study, which proves to be
an optimum value. To investigate the accuracy of our multiple
frequency analysis of the field by the SLDM, the safhend

H matrices generated at 1000 KHz are used to obtain resuli
in a frequency range of 1000-2500 KHz with an increment of
100 KHz. Fig. 3 shows a comparison with the corresponding
analytical and finite-element direct solutions. The tetrahedra

elements are used here for discretization purposes. As can | e

seen from this ﬁgure' avery gOOd agreement is obtained. NQ‘&. 8. Magnitude of the total magnetic field oy plane andz = 2.5 m.
that the discrepancy between the results becomes larger as the

frequency increases. This is due to the fact that the analyligal e frequency increases, the number of iterations decreases
solution is a full-wave solution. _ -accordingly. Therefore, the santg and H matrices formed

Next, an inhomogeneous medium with the cross-sectigh 1909 KHz can be used to evaluate the field at higher
shown in Fig. 4 is considered. The component of the fequencies. Furthermore, the total CPU time for obtaining
magnetic field is calculated by the FEM using both thg,g s at each single frequency is estimated to be 253.87
node-based and the edge-based elemenfs &t 1000 KHz ¢ compared to only 18.8 s required for multiple-frequency
and the results are compare_d with the corresponding FD:Malysis forM,, excitation while the CPU times for tha/,
results. As can be seen in Fig. 5, a very good agreementigitation are 262.34 and 22.5 s, respectively. The saving in
obtained. Additionally, thez component of the magnetic fieldihe cPU time would be more significant if more frequency
is computed due to a-directed magnetic current source a”‘E)oints are considered.
the same accuracy as shown in Fig. 5 for flg excitation  Next, the geometrical size of Fig. 4 is extended from 5 m
is achieved. x 5mx 5mto 10 mx 10 m x 10 m with the number of

In order to illustrate the effectiveness of the SLDM, gnknowns growing from 20577 to 182520. Table Il presents
multiple frequency analysis of the magnetic field is performegle CPU time required for assembling the matrices of either
first, when the geometry of Fig. 4 is excited by bdth. and  (10) or (13). The CPU time required to solve the system of
M.. A frequency range of 1000-2500 KHz is considered. Th&yuations and the number of SLDM iterations are shown in
results are obtained by the SLDM fgr = 1000 KHz while  Table IlI. Itis seen that the CPU time reaches only 82.5, 104.1,
the samel) and H matrices are used to evaluate the field &nd 139.0 s using the FDM, the FEM with edge elements, and
the remaining frequencies (see Fig. 6). Results are giventiie FEM with nodal elements, respectively. It is to be noted
Table | for theM,. excitation and those for th&/. excitation that the number of nonzero entries of matrixis different
are similar. As can be seen from this table, only about twa the FEM with node-based and edge-based elements, and
seconds extra are needed to compute the magnetic fieldtat FDM. Therefore, although the number of SLDM iterations
15 additional frequencies using either the FEM or the FDMnay be the same for all three methods, the CPU time will be
To further justify the multiple-frequency results, the SLDMilifferent due to the difference in performing the matrix-vector
is employed to compute the field at each single frequenoyultiplication.
in the above frequency range and the number of SLDM Finally, the effectiveness of the method is tested by consid-
iterations is plotted in Fig. 7. Note that only the FEM withering a practical problem of a cylindrical borehole penetrating
the edge elements is used for this illustration. It is seen tHayered beds with various electrical conductivities at an angle
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of 45°. The problem geometry and the finite-element mesh
generated using SDRC-IDEAS are seen in Fig. 8. The ge-
ometrical size of the problem is 5 m 5 m x 5 m. The
mesh contains 55798 tetrahedra, 10693 nodes, and 24
unknowns. To simulate the current sources, three elect
dipoles of a finite length and separated by a distance
0.5 m are positioned inside the borehole. The magnetic fie
intensity is computed by the SLDM gt = 1000 KHz and the _ _ earch _
magnitude of the total magnetic field is plotted on plane in the Department of Electrical Engineering, Uni-

— 95 d on lane atz — 2.5 m. Results are : versity of M|SS|s§|pp|. From 1992 to 1996 h_e was
atz = 2.5 man yz plane atr = 2.0 M. ! ). a Research Assistant and a Teaching Assistant in
shown in Fig. 9, clearly indicating the inhomogeneity of th £ the Department of Electrical and Computer Engi-
solution domain. The total CPU time was approximately 210n@gering, Mississippi State University. Since September 1996 he has been a

Th - h lative diff b Postdoctoral Research Fellow at the Center for Computational Electromagnet-
S. e aqcur_a'cy C_”terlo_n (the relative di e_renc_e etween , University of lllinois, Urbana-Champaign. His research interest include
consecutive iterations) in above computations is®1@nd all  the areas of computational electromagnetics, antennas, and electromagnetic
the computations are performed on a DEC Alpha Workstati§ampatibility.
computer with an average throughput of 44 MFlops.
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the solution of the general 3-D Maxwell's equations in a low-

frequency regime when the FEM with both the node-based
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