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Genetic Algorithms in the Design and
Optimization of Antenna Array Patterns
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Emilio Villanueva-Lopez, and S. R. Rengarajan,Fellow, IEEE

Abstract—This paper demonstrates the application of genetic
algorithms (GA’s) in array pattern synthesis. GA’s have the
ability to escape from local minima and maxima and are ideally
suited for problems where the number of variables is very
high. We present three examples: two for linear arrays and one
involving linear and planar arrays.

Index Terms—Antenna arrays, genetic algorithms.

I. INTRODUCTION

I N this paper we apply genetic algorithms (GA’s) [1]
for solving three important problems dealing with the

synthesis of antenna array patterns. First, we establish the
fast convergence of this method in searching for the optimal
solution from a very large solution space for a uniformly
null-filled linear array. Then an extension of this procedure
is introduced to search for the optimal null-filling topography
for the radiation pattern of a linear array. Finally, a hybrid
method is presented for array thinning by combining GA’s
and simulated annealing (SA) [2], which solves the problem
of removing unnecessary elements from a planar array.

To get optimal results with the GA, it was found necessary
to use (in all the examples studied) a population that was
twice the number of variables involved, except for the case
of 100 variables. In such a case, the population was 100. The
number of chromosomes was a constant in the process and a
ranked replacement took place in each iteration if there was an
improvement from parents to offspring. One point crossover
was always applied and mutation happened every iteration,
affecting one gene on every chromosome. The GA package
used provided C-source code, which was included in our own
source program. It supplied a graphical interface, which was
used to fine tune parameters such as population, kind, and
condition of replacement, mutation, crossover, and so on. The
optimizations themselves were implemented in background
mode, i.e., without interaction. The solutions obtained from
the best runs are shown in the results.

II. UNIFORMLY NULL-FILLED LINEAR ARRAY

In this first example, we started with an element
equispaced ( ) linear array. By the substitution ,
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the array factor is written as a polynomial of degree

(1)

where .
As is well known, to obtain null filling in the pattern

requires that the roots be complex, i.e.,
. By utilizing Orchard’s method [3], it is possible

to calculate the complex roots that will yield a
pattern with properly filled nulls while maintaining controlled
sidelobe levels (SLL’s). Reversal of the sign of anyleaves
the shape of the power pattern unchanged but moves the
corresponding root to a reciprocal radial location of the same
angle in the complex plane. Thus, if there are complex
roots, there are 2 different sets of roots and, hence, that
many sets of excitations . Out of these numerous sets of
excitations some may be easier to realize physically than the
conventional excitation for the pattern without null filling.
In the prior literature [4], [5], the problem of searching the
optimal pattern has been solved by an exhaustive checking
of all the 2 possible solutions. However, this method is not
practical for moderate to large arrays since the computer time
required becomes prohibitive as increases.

An alternative and much faster method using GA’s is
proposed in this paper. The problem of searching the optimal
set of roots may be described in terms of discrete parameters
by the process of binary encoding. One bit represents the sign
of in each root as “plus” or “minus” . For an
equispaced linear array of elements, we can define an
array of parameter values or bits to be optimized. Thus,
we have to solve an -dimensional optimization problem of
finding the optimal array of parameters that
minimizes a cost function that represents, for example, a
measurement of the variation or ripple in the excitation of
the neighboring elements. It is possible to use other cost
functions such as dynamic range or even a combination
of several performance parameters with different assigned
weights depending on their relative importance in the design
requirements. The problem of finding this optimal array of bits
that minimizes the cost function is solved by GA’s [6].

The method has been applied to optimize the
in sum patterns with a uniform null filling to a level of 5 dB
below each sidelobe peak. The initial set of roots
was obtained by means of the Orchard’s method [3]. We
present results for 20, 40, 60, and 100 element arrays. Table I
shows the optimal value obtained (value inside parentheses

0018–926X/99$10.00 1999 IEEE



ARES-PENAet al.: GENETIC ALGORITHMS IN DESIGN AND OPTIMIZATION OF ANTENNA ARRAY PATTERNS 507

TABLE I
RESULTS FROM OPTIMIZING jIn=In�1jmax IN SUM

PATTERNS BY UNIFORM NULL FILLING OF THE SIDELOBES

Fig. 1. Comparison between central processing unit (CPU) time for GA and
the estimated time for the exhaustive checking of all possible solutions.

is the percentage of improvement from the unfilled pattern)
and the CPU time in a Hewtlett-Packard workstation HP
712/80. The directivity of the designed pattern (value inside
parentheses is the percentage of loss after null filling) and the
SLL are also shown. It is seen from the table that the optimal
solution is obtained very rapidly, since only a small fraction
of the entire solution space is checked by the GA.

Finally, a comparison between the CPU time for a GA,
and the estimated time for the exhaustive checking is shown
in Fig. 1. The estimated time for exhaustive checking in-
creases exponentially with the number of elements. Clearly,
the required time for the exhaustive checking of all possi-
ble solutions even for a 100-element linear array becomes
prohibitive!

III. SEARCHING FOR THE OPTIMAL

NULL-FILLING TOPOGRAPHY

In the previous section, we synthesized patterns with uni-
form null filling where each sidelobe minimum was fixed to a
certain initial value. We then obtained the optimum pattern
from a large solution space generated by considering two
possible values corresponding to the real part of each root.
This type of optimization allows us to minimize the value of

or by examining different sets of
excitations. We now consider the process of controlling the
filling level of each sidelobe null independently. It is possible
to design an optimal null-filling topography in the synthesis of
array patterns to obtain further improvement in performance.

TABLE II
RESULTS FROMSEARCHING THE OPTIMAL NULL-FILLING TOPOGRAPHY

Let denote the roots of the initial pattern obtained
by the Orchard’s method [3] as before. Besides changing the
real part of roots to get null filling, small perturbations of the
imaginary parts were found also to be necessary in order to
maintain the sidelobes under strict control. In this case, the
chromosome for the GA is given by a binary encoding of the

and using a floating point representation of 16 bits for
each of them. By minimizing a given objective function, small
perturbations of the initial roots and are calculated
in each iteration of the algorithm. The cost function depends
on the position of each root, its radial displacement and the
design specifications. This function is built by adding three
terms. The first term is the summation of the squares of the
differences between the obtained and the required SLL’s that
are controlled individually. The second term is the square of
the difference between the obtained directivity and the required
one. The last term takes into account the element-to-element
magnitude variation or the dynamic range and it is the square
of the difference between the obtained and the required value
of the desired one. Each term is weighted by a coefficient, thus
emphasizing relative importance of each term. The general
form of the cost function is given by

Dir Dir (2)

where the subscripts and denote obtained and desired
values, respectively, , , and are the weight factors
of each term, Dir is the directivity of the pattern, and
is the variability of the excitations which can be given by

or , depending on the design spec-
ifications. A normalized cost function was also used but no
improvements were obtained.

In this example, we started with a 16-element equispaced
linear array, fixing the value of to 1.40, 1.50,
1.75, 2.00, and 2.50, and constraining the percentage of loss in
directivity to 5%. We fixed the SLL to 20 dB except for the
six inner lobes, which are depressed to40 dB. Results are
shown in Table II. Fig. 2 shows the obtained power pattern
corresponding to the first example in Table II as well as the
initial pattern with deep nulls.

This technique is also applicable to shaped-beam patterns
just by adding a new term to the cost function to control the
ripples. We studied an example consisting of a 50-element
equispaced linear array with a ripple of0.25 dB and con-
sisting of asymmetrical sidelobes, as shown in the dashed line
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Fig. 2. Power pattern corresponding to the first example in Table II (the
optimal null-filling topography) and the initial pattern without filling nulls.

Fig. 3. Power pattern corresponding to a 50-element linear array (the optimal
null-filling topography) and the initial pattern.

of Fig. 3. This pattern was obtained by the Orchard–Elliott
method [3] as before. By filling the nulls with the use of a
GA, the value of was decreased from 2.5 to
1.3, thus yielding an improvement of 48%. The final pattern
is also shown in the figure.

Recently, Buckley [7] has proposed a method that produces
null filling in the sidelobe region in order to constrain exci-
tation coefficients in the synthesis of shaped-beam patterns.
Although the element-to-element variation is significantly re-
duced, his method does not have a strict control over the SLL’s
or the ripple levels in the shaped region. Orchard’s method is
better suited for a problem like this since it is possible to have
a direct control on the ripple level in the shaped region as well
as control on the SLL and null-filling topography.

IV. DESIGN OF THINNED ARRAYS

This last example presents a method to design an optimum
aperture distribution of a planar array by minimizing the num-
ber of excited elements and the dynamic range of excitation
at a minor cost to pattern degradation.

Some of the present techniques that obtain footprint patterns
from planar arrays are not efficient. Since the contour of the
array must be rectangular such methods utilize many more
elements than necessary [8]. The removal of these unnecessary
elements would reduce the dynamic range of excitations. This
may alleviate the severity of mutual coupling problem, thereby
making the design and implementation of the feed network
easier. Previous work [9] has attempted to reduce the number
of excited elements in the array with some limitations. In
that work the criterion employed to select the elements to
be removed is not the best possible, since it was based on
relative excitations and not on the degradation introduced
in the resulting pattern by aperture thinning. Furthermore,
the reconstruction of the initial pattern after removing the
elements was performed by means of gradient based methods,
generally yielding a local minimum. Recently, GA’s have been
successfully applied to the problem of thinning linear and
planar arrays in order to obtain the lowest possible SLL [10].
However, this technique has been applied only to synthesize
sum patterns. The problem is more difficult for distributions
that produce shaped beams since such distributions exhibit
greater dynamic range than those of sum and difference
patterns.

The technique proposed in this section uses a GA and SA
iteratively in order to solve the problem of array thinning. It
begins with an aperture distribution obtained by means of the
method described in [11]. After that, this initial distribution is
transformed iteratively by the two following steps:

1) Removal of Unnecessary Radiating Elements:A GA is
employed to remove some elements from the array.
The algorithm selects the elements to be removed by
comparing the initial pattern with one that results after
the elimination of the elements. In this step, a binary
coding of the elements of the array is performed. A value
of “1” denotes an unchanged element whereas a value of
“0” indicates that the element is removed from the array.
A group of such binary values would then constitute a
chromosome for the GA. A cost function depending on
the chromosome under test is built as follows: for each
5 cut the maximum differences between the desired
and obtained patterns are evaluated at the ripple and
sidelobe peaks, squared, and added together. A weight
coefficient is employed on the ripple term in order to
keep it under strict control. The dynamic range ratio is
also weighted and added to the result. This definition of
the cost function has been found to yield very accurate
results. The GA obtains those chromosomes that best
minimize the given cost function.

2) Optimization of the Aperture Distribution:The second
step consists of an optimization of the aperture distri-
bution by means of the simulated annealing technique
[2]. In this process the excitations of the remaining
elements are modified in order to reduce the degradation
of the resulting pattern as well as . The cost
function employed in the previous step is also used now.
To get optimal results, the SA algorithm began with a
starting temperature of 100 which was 20% reduced after
every iteration.
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Fig. 4. Flowchart of the array-thinning technique.

TABLE III
RESULTS OF A HYBRID (GA/SA) TECHNIQUE IN ARRAY THINNING

These two steps are iterated until maximum thinning is
achieved subject to the satisfaction of the given specification
for the pattern and the cost function. The flowchart of the
algorithm is shown in Fig. 4.

The technique was applied to an elliptic contour of ap-
proximately 12 24 (1 : 2). This beam is obtained with
an equispaced ( ) rectangular grid planar array of 34 12
elements. The initial aperture distribution obtained using [11]
yields a 0.5-dB ripple and a 20 dB SLL in all cuts. Some
of the initial nearly-null excitations were removed so a total
of 80 elements per quadrant were excited. The dynamic range
for the initial aperture distribution had a value of 1000.

The hybrid technique discussed above reduced the number
of excited elements per quadrant to 30 and the dynamic range
ratio to 18. This is, a reduction of 98.2% in the dynamic range
ratio and a 62.5% in the number of elements. Table III shows
the results obtained after each step. A total of six iterations
were needed. The pattern was unrecoverable if we applied
any further aperture thinning.

Fig. 5. Power pattern obtained using array-thinning technique.

A three-dimensional plot is shown in Fig. 5, where the
power pattern is plotted versus and

, where is the elevation angle and
the azimuth angle.

The prior work [9] yielded 46 elements and a dynamic range
ratio of 38 for the same problem. The present technique obtains
an improvement of about 35% on the number of excited
elements in the array and 53% reduction on the dynamic range
ratio with respect to [9].

The hybrid technique is valid for footprint patterns with an
arbitrary boundary as well as for sum and difference patterns
obtained with planar as well as with linear arrays. It is possible
to introduce substantial thinning with a small dynamic range
for separable distributions that contain a great number of
highly under-utilized elements.

V. CONCLUSIONS

GA’s have been found to be well suited to apply to
several problems of antenna array pattern synthesis. The GA
yielded an optimal solution very rapidly by searching a large
solution space in the first case. We further demonstrated
the utility of GA’s in searching for the optimal null-filling
topography in pattern synthesis problems. By using a hybrid
technique consisting of a GA and SA we have achieved a
substantial amount of array thinning with optimal performance
characteristics such as a small value of dynamic range.
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