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Perturbation Formulas for
Microstrip Patch Arrays and Elements

Marat Davidovitz,Senior Member, IEEE

Abstract—One-term perturbation formulas are derived to char-
acterize periodic microstrip arrays with nonuniform planar dis-
tributions of dielectric and magnetic materials. Analogous results
are also obtained for single-patch elements. The formulas are
generally applicable to other types of antennas.

Index Terms—Antennas, microstrip arrays, perturbation meth-
ods.

I. INTRODUCTION

A N increasing number of phased-array designs utilize
microstrip patch elements on finite dielectric supports in

contrast with the more conventional configurations in which
the entire patch array is fabricated on a single uniform slab.
The nonuniform planar architecture affords more flexibility
in mechanical design and can alleviate surface-wave-related
scan-blindness effects [1]. In attempting to design arrays of
such elements the engineer is constrained due to a lack of
well-established alternatives to using either relatively efficient
simulation tools that permit only uniform substrates (the so-
called 2.5-D codes) or the more general but computationally
more intensive finite-element packages. In many practically
useful cases, the gap between the two methods of analysis
can be bridged with simple perturbation methods. Specifically,
substrate nonuniformities can be viewed as perturbations of the
original laterally uniform layers. Provided the perturbations
are sufficiently small, such characteristics of the modified
configurations as the input impedance can be obtained from
the uniform-substrate solutions by means of relatively simple
and easily implementable formulas. Derivation of such formu-
las for periodic arrangements of, as well as single-element,
microstrip patches is the primary purpose of this work.

Perturbation formulas to approximate eigenfrequencies of
cavities and waveguides with deformed boundaries or small
material inclusions, or to calculate reflection coefficients of
small scatterers in waveguides are well established, most
notably in [2]–[5]. The ideas developed in the cited references
are modified here to encompass configurations of interest.
Applications to specific practically significant examples are
considered.

In Section II, structures with periodic (Floquet) boundary
conditions are considered. Transpose operators for this prob-
lem are introduced and are subsequently used to write down
the relevant “reciprocity” relations and perturbation results. In
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Fig. 1. A unit cell of a periodic antenna array.

Section III analogous formulas are stated for finite aperiodic
configurations of patch elements. Numerical examples are
presented in Section IV.

II. PERIODIC STRUCTURES

Consider the unit cell of a periodic structure depicted in
Fig. 1. Let the periodic lattice be defined by the vector

, where , are integers and the cell vectors, are
shown in the same figure. All subsequent derivations involve
two boundary-value problems, namely the unperturbed and the
perturbed. The permittivity and permeability distributions will
be allowed to differ for these two cases. Descriptions of the
two boundary-value problems, distinguished by the subscript

follow.1

• Maxwell Equations

(1)

(2)

where thematerial tensors are complex and symmetric.
• Boundary Conditions: ( outward unit normal)

1) Conductors , .
2) Floquet Periodicity

(3)

1A glossary of symbols is available in Appendix A.
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3) Input/Output Ports2

(4)

(5)

where it is assumed that the port surfaces are at suf-
ficient distances alongand of such dimensions that
only a single mode on and propagating modes
on have nonzero amplitudes. The subscript “”
denotes transverse-to-components.

In order to deduce the appropriate perturbation formulas,
knowledge is required of the adjoint or transpose operator
to that defined in (1)–(5). In the course of the analysis it is
found that the operator transpose to (1)–(5) satisfies the same
equations with one exception. For the transpose problem the
conditions stated (3) differ in the sign of the exponent in the
phase term, i.e.,

(6)

where a “tilde” over a quantity indicates its association with
the transpose problem. Physically, under the stated conditions,
the transpose problem is identical with the original in every
respect except for the 180change in the scan-angle .

Application of well-known operations [6] to the Maxwell
equations (1) and (2) governing the quantities, and

, leads to the following formula:

(7)

Before proceeding a choice is made to associate quantities
indexed by with the perturbed problem. Integration of (7)
over the domain volume and application of the divergence
theorem yield

(8)

The surface integral can be explicitly evaluated with the
aid of the boundary conditions (3)–(5). It is convenient to
consider it as a sum of four distinct terms, which are briefly

2It is assumed that the perturbations are finite and do not extend to the port
surfacesSpw, Sf .

discussed next: 1) the term involving integration over the
portions of the surface on which the tangential

components ofboth , vanish is identically zero; 2) in
view of the radiation condition (4) the integral over does
not contribute; 3) although not immediately apparent, the total
contribution from the lateral unit cell walls is proven to be zero
in Appendix B; and 4) substitution of the field expressions (5)
into the surface integral leads to the following result:

(9)
As a result of operations described above, (8) is transformed

as follows:3

(10)

This expression, combined with appropriate approximations
for the fields, is the basis for a one-term perturbation formula
for the input reflection coefficient—described briefly in the fol-
lowing paragraphs. However, before proceeding, an interesting
consequence of (10) is noted. If the problems corresponding to

are taken to be the same, the right-hand side of (10)
vanishes and the following general property of the reflection
coefficient is revealed:

(11)

or in more meaningful notation
. This fact was proven in [7] using a Fourier

expansion of and the Lorentz reciprocity theorem.
Given the unperturbed solution , , , evaluation

of the reflection coefficient requires knowledge, even
if only approximate, of the perturbed fields , . If the
perturbation is an electrically small canonical shape, a quasi-
static approximation can be derived. Otherwise, the “Born”
substitution , is made. If valid, the
quasi-static approach is typically more accurate.

Substitution of the field approximations into (10) yields the
desired perturbation formula. To emphasize the physical inter-
pretation of the results, the notation distinguishing the original
and transposed problems by the associated scan direction is
adopted in the statement of the final result, which can be
written as follows:

(12)

where , are approximations of the solutions to the per-
turbed problem, derived in one of the ways already mentioned

3It is assumed that the feed-line fields are normalized according to the
formula stated in Appendix A. This constraint can be removed by changing
the normalization constant in the reflection coefficient expressions.
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from their unperturbed counterparts , . It is apparent
that calculation of the perturbed reflection coefficient
at a particular scan angle requires two generally
distinct unperturbed solutions at scan angles and

. If the structure, symmetries, scan angle,
and frequency are such that a waveguide simulator can be
constructed, the operator can be made symmetric [7] and the
original and transpose solutions will be equal.4

III. FINITE ANTENNAS

The perturbation formula for nonperiodic structures can be
derived along the lines described above. The operators become
symmetric. Appropriate radiation conditions replace (3) and
(4) in the statement of the problem, e.g., Sommerfeld-type
conditions for antennas occupying finite volumes. A more
careful treatment is needed for structures having features
extending to infinity. In addition to the standard continuous
spectrum of plane waves, microstrip antennas on infinite
substrates excite surface waves. Specific requirements must
be imposed in addition to the standard Sommerfeld condition
to ensure that only outgoing surface waves exist at infinity.
This issue does not impact the perturbation formulas so long
as the perturbed region is finite. Thus, the perturbation formula
for the input reflection coefficient can be stated as follows:

(13)

It should be mentioned that in addition to the input char-
acteristics, the modification of the antenna structure affects
the radiation pattern. It is not difficult to write down a
formal expression for the perturbed radiation field for a given
direction in terms of the unperturbed quantities. However,
this would involve the solution of an auxiliary problem in
which a plane wave is incident upon the antenna along the
same direction. In a more practical approach, the original
problem may be solved again with the perturbation terms

, treated
as sources of the radiation pattern perturbation. Of course, the
same approach may be applied to derive formulas equivalent
to (12) and (13).

IV. NUMERICAL EXAMPLES

Several examples are now offered to illustrate and ver-
ify, to the extent possible, the formulas presented in the
preceding sections. The solutions of the unperturbed and
perturbed problems, as well as the field integrations required
to determine the difference between them, were obtained
using a commercial, finite-element-based Maxwell equations
solver [9]. This approach circumvents the questions of con-
vergence and precision that would have arisen had different
methods been used to solve the various problems. Moreover,

4Another important situation occurs when the material tensors are Hermi-
tian. The Hermitian adjoint of the original operator can then be used instead
of its transpose.

Fig. 2. Unperturbed and perturbed unit cell parameters for an array of two
identical square stacked patches with balanced feeds.

questions regarding adequacy of operator representation and
mesh construction were avoided by using the same mesh
for the unperturbed and perturbed configurations, predeter-
mined by adaptive refinement at the highest frequency of
interest.

An application of (12) to calculate the effect of finite dielec-
tric support for an array of square stacked-patch elements with
balanced probe feeds is considered first. Direct verification for
all scan angles was not possible because the solver did not
allow for Floquet periodicity. Thus, only the portion of the
scan-frequency space for which a waveguide simulator can be
constructed was accessible. In the unperturbed configuration
shown in Fig. 2, the substrate layers uniformly span the entire
unit cell. A rectangular outer ring of substrate material is
removed in both layers of the perturbed element (Fig. 2),
leaving the patches in the periodic array on finite dielectric
“islands,” separated by free-space. In Fig. 3 input-reflection-
coefficient results for an -plane scan are presented for a
specific set of unit cell dimensions and parameters.-plane
scan data are shown in Fig. 4 for the same patch element
placed in a somewhat larger unit cell. In both instances
( and plane) the Born approximation is
applied.

Examination of Figs. 3 and 4 leads to several observations:

• The agreement between perturbation-derived and directly
computed reflection-coefficient data is quite good in both
cases despite the fact that almost 25% and 50%, respec-
tively, of substrate materials is replaced by free-space.

• A likely reason for the quality of the perturbation ap-
proach is the fact that the fields are concentrated predom-
inately under the patch elements and are relatively weaker
in the interelement spaces. In other words, the measure
of the “size” of the perturbation is provided not only by
the change in the dielectric constant, but as significantly
by the amount of stored energy in the perturbed volume.
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(a)

(b)

Fig. 3. H-plane input reflection coefficient:Ru—unperturbed structure;
Rp—perturbed structure-direct calculation;Rb—perturbed structure-Born ap-
proximation. Unit cell dimensions as defined in Fig. 2 (in centimeters):
a = 2:378, b = 2:215, c = d = 2:0, p = 1:8, t1 = t2 = 0:159,
R = 0:155, r = 0:045. (a) Real part (<) of the reflection coefficient. (b)
Imaginary part (=) of the reflection coefficient. The scan angle�0 is measured
from broadside.

Although the derivations were based on coaxially fed radi-
ators, the same formulas can be applied to other transmission
line feeds. The simplest way to rationalize the formulas is
by conceptualizing lossless perfectly matched transitions from
coax to other line types. The example of a single circular
patch edge-fed by a microstrip line is used to validate the
use of the formulas in more general contexts. The patch in
Fig. 5(a) is initially analyzed in free-space. The effect of
dielectric support rods is then calculated using the perturbation
approach. The comparison of the various data sets is presented
in Fig. 5(b) and (c). The dominant electric field component is
parallel to the perturbation boundaries and, therefore, the Born
and quasi-static approximations coincide. The perturbation
formula works well in this situation, even for large values
of permittivity.

(a)

(b)

Fig. 4. E-plane input reflection coefficient:Ru—unperturbed structure;
Rp—perturbed structure-direct calculation;Rb—perturbed structure-Born ap-
proximation. Unit cell dimensions as defined in Fig. 2 (in cm):a = 3:0,
b = 3:125, c = d = 2:2, p = 1:8, t1 = t2 = 0:159, R = 0:069, r = 0:02.
(a) Real part (<) of the reflection coefficient. (b) Imaginary part (=) of the
reflection coefficient. The scan angle�0 is measured from broadside.

V. CONCLUSIONS

One-term perturbation formulas for the input reflection
coefficient were derived for periodic and finite arrangements
of antennas. Although intended for microstrip applications, the
formulas are general and as such applicable to other antenna
types, and can be extended to multiport, open circuit structures.
Perturbation formulas for complex resonant frequencies of
antennas can also be done. Numerical tests have confirmed
that the formulas can be used to predict the effects of substrate
perturbations for practical configurations to a good degree of
accuracy, despite the use of first-order field approximations.
Moreover, the equations can be incorporated into widely
used 2.5-D microstrip solvers with only minor additional
postprocessing.

Although of great utility, all perturbation approaches of
this kind are deficient because it is difficult to gauge the



540 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 3, MARCH 1999

(a)

(b)

(c)

Fig. 5. (a) Edge-fed circular patch antenna supported by dielectric pins
above a ground plane (all dimensions in centimeters). (b) Input reflection
coefficient: Ru—unperturbed structure-patch in free-space,Rp—perturbed
structure patch on pin supports (�r = 2:2), Rb—perturbed structure-Born ap-
proximation. (c) Input reflection coefficient:Ru—unperturbed structure-patch
in free-space,Rp—perturbed structure-patch on pin supports (�r = 5:0),
Rb—perturbed structure-Born approximation.

accuracy of the results. A more self-consistent approach is
desirable. Toward that goal, multiterm perturbation expansions
are currently under investigation.

APPENDIX A

( Scan direction.

Perimeter of the fundamental
unit cell .
Feed-mode and the associ-
ated characteristic admittance;

.
Floquet mode and the associ-
ated characteristic admittance;

.
Input reflection coefficient.

APPENDIX B

The steps taken to reduce (8)–(10) included integration over
the unit cell lateral walls. It is the purpose of this Appendix
to show that the said-surface integral vanishes.

The field quantities are subject to the Floquet conditions (3)
and as such, may be written as follows:

(14)

where the fields marked by superscript satisfy periodic
boundary conditions

(15)

Let ,
the last expression reflecting (6) and (14). Moreover, in view
of (15) satisfies periodicity, i.e., ,

. The surface integral over the lateral walls can
be written as follows:

(16)

where marks transverse-to-components and ( is the
interval of integration along the axis. The last form of the
preceding equation is obtained using the divergence theorem.
The integral over vanishes; this can be shown with the
aid of the scalar periodic Green’s theorem outlined in [8].
Periodicity of implies that the integral

, is independent of ,
i.e., the integral does not depend on the choice of the unit cell
origin. Therefore, differentiation of this integral with respect
to the primed coordinates yields zero, and after the derivatives
are moved under the integral sign and applied to the unprimed
variables, the aforementioned result is verified.
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