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Perturbation Formulas for
Microstrip Patch Arrays and Elements

Marat Davidovitz, Senior Member, IEEE

Abstract—One-term perturbation formulas are derived to char-
acterize periodic microstrip arrays with nonuniform planar dis-
tributions of dielectric and magnetic materials. Analogous results
are also obtained for single-patch elements. The formulas are
generally applicable to other types of antennas.

Index Terms—Antennas, microstrip arrays, perturbation meth-
ods.

Unit cell

cross section

I. INTRODUCTION

N increasing number of phased-array designs utilize

microstrip patch elements on finite dielectric supports in
contrast with the more conventional configurations in which
the entire patch array is fabricated on a single uniform slab.
The nonuniform planar architecture affords more flexibility
in mechanical design and can alleviate surface-wave-related
scan-blindness effects [1]. In attempting to design arrays @f 1 A unit cell of a periodic antenna array.
such elements the engineer is constrained due to a lack of

well-established alternatives to using either relatively efficient | - .
simulation tools that permit only uniform substrates (the seection lll analogous formulas are stated for finite aperiodic

called 2.5-D codes) or the more general but computationaﬁ?nf'gurat'ons of patch elements. Numerical examples are

more intensive finite-element packages. In many practicaffyesented in Section IV.

useful cases, the gap between the two methods of analysis

can be bridged with simple perturbation methods. Specifically, IIl. PERIODIC STRUCTURES

substrate nonuniformities can be viewed as perturbations of theConsider the unit cell of a periodic structure depicted in

original laterally uniform layers. Provided the perturbationig. 1. Let the periodic lattice be defined by the veatgy, =

are sufficiently small, such characteristics of the modifieghka-+nb, wherem, n are integers and the cell vectersb are

configurations as the input impedance can be obtained frafown in the same figure. All subsequent derivations involve

the uniform-substrate solutions by means of relatively simpigo boundary-value problems, namely the unperturbed and the

and easily implementable formulas. Derivation of such formperturbed. The permittivity and permeability distributions will

las for periodic arrangements of, as well as single-elemebt allowed to differ for these two cases. Descriptions of the

microstrip patches is the primary purpose of this work.  two boundary-value problems, distinguished by the subscript
Perturbation formulas to approximate eigenfrequencies pf= 1,2 follow.!

cavities and waveguides with deformed boundaries or small. \axwell Equations

material inclusions, or to calculate reflection coefficients of

small scatterers in waveguides are well established, most V x E; = — jop; - H; 1)

notably in [2]-[5]. The ideas developed in the cited references V x H; = jwe; - E; (2)

are modified here to encompass configurations of interest.

Applications to specific practically significant examples are

at zzzp

where thematerial tensors are complex and symmetric
e Boundary Conditions:i{ = outward unit normal)

considered.
In Section I, structures with periodic (Floquet) boundary 1) CondUCtOFSH' ><E7 =0,r € Sprc.
conditions are considered. Transpose operators for this prob- 2) Floquet Periodicity
lem are mtro“duc.ed andn are s_ubsequently used_ to write down Ei(p+ Con, 2) =Ei(p, 2) exp[—jKto  Con]
the relevant “reciprocity” relations and perturbation results. In .
HZ(p + Cimn,y Z) :HZ(p7 Z) exp[_jkto . Crnn]
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3) Input/Output Porfs discussed next: 1) the term involving integration over the
X Spec portions of the surfacé&(V)) on which the tangential
E,; :Zakie—j,akzpépk components oboth E;, E, vanish is identically zero; 2) in
P view of the radiation condition (4) the integral ov&y,, does

I ) r € Spw  not contribute; 3) although not immediately apparent, the total
H, = Z ki Yph o—IB 5 5 &t _contrlbutlo_n from the lateral gm'; cell walls is proven to pe zero
in Appendix B; and 4) substitution of the field expressions (5)

(4) into the surface integral leads to the following result:

Eti — (e—j,ﬁfozf + ROiej,ﬁfOZf)éfO res // (El X ]:h—’]:2 — EQ X H1> -ndS = 2yf0 (ROQ — ROI)-
H, = (efj,(‘}jozj _ ROiej,BJOZJ)nyQ X €0 !

k=1

St
(5) _ . 9
As a result of operations described above, (8) is transformed
where it is assumed that the port surfaces are at sas follows?
ficient distances alongand of such dimensions that . ) .
only a single mode o5 ; and K propagating modes 2¥s0(Foz — Fo1) = — jow /// [Hl “(py — ) Ho+Eq
on S,,, have nonzero amplitudes. The subscrifjt “ v
denotes transverse-toeomponents. (e — 1) E2:| dv. (10)
In order to deduce the appropriate perturbation formulas,
knowledge is required of the adjoint or transpose operatbhis expression, combined with appropriate approximations
to that defined in (1)—(5). In the course of the analysis it for the fields, is the basis for a one-term perturbation formula
found that the operator transpose to (1)—(5) satisfies the sd@rethe input reflection coefficient—described briefly in the fol-
equations with one exception. For the transpose problem {Rwing paragraphs. However, before proceeding, an interesting
conditions stated (3) differ in the sign of the exponent in theonsequence of (10) is noted. If the problems corresponding to

phase term, i.e., ¢+ = 1,2 are taken to be the same, the right-hand side of (10)
. . ) vanishes and the following general property of the reflection
Ei(p + cmn. z) =Ei(p, 2) exp[+ikio - €] } coefficient is revealed:
Hi(p+ Conn, 2) =Hi(p, 2) exp[+ikio - Coun] Ro = Ro (11)
P> Cmn € Ppw (6)

or in more meaningful notationRq(6y, ¢ + 180°) =

where a “tilde” over a quantity indicates its association witl®,(6,, ¢). This fact was proven in [7] using a Fourier
the transpose problem. Physically, under the stated conditioggpansion ofR?, and the Lorentz reciprocity theorem.
the transpose problem is identical with the original in every Given the unperturbed solutioR,, Hy, Ry;, evaluation
respect except for the 18@hange in the scan-angi®). of the reflection coefficienty, requires knowledge, even

Application of well-known operations [6] to the Maxwellif only approximate, of the perturbed fields,, Hs. If the
equations (1) and (2) governing the quantitis, H; and perturbation is an electrically small canonical shape, a quasi-
E», H> leads to the following formula: static approximation can be derived. Otherwise, the “Born”
substitutionE, ~ E;, H, ~ H; is made. If valid, the
guasi-static approach is typically more accurate.
. - = Substitution of the field approximations into (10) yields the
B [Hl ) Ho+ B —a)- E2] 0 desired perturbation formula. To emphasize the physical inter-
Before proceeding a choice is made to associate quantitiggtation of the results, the notation distinguishing the original
indexed byi = 2 with the perturbed problem. Integration of (7)and transposed problems by the associated scan direction is
over the domain volum& and application of the divergence@dopted in the statement of the final result, which can be

V'(El)(I:IQ—EQXHl)

theorem vyield written as follows:

N g o
//(E1><H2—E2><H1>-ﬁd5 Ro2(00,60) = Ro1(60,¢0) 2070 /J/ E;(6o,¢0 + 180°)
sV

- (62 — 61) . Ela(907 ¢0)dv

)
= —Jw/L// |:H1 . (”1_11'2) . I:IQ +E;. (62 - 61) E2:| dv. _ 2:1;;0 /‘/ H1(90,¢0 + 1800)([1,1 _”'2) 'H1a,(90,</)0) dv

(8) (12)

The surface integral can be explicitly evaluated with th\?/hereEla, H,, are approximations of the solutions to the per-

aid of the boundary conditions (3)~(5). It is convenient {§, ey hroblem, derived in one of the ways already mentioned
consider it as a sum of four distinct terms, which are briefly _

It is assumed that the feed-line fields are normalized according to the
2It is assumed that the perturbations are finite and do not extend to the gortnula stated in Appendix A. This constraint can be removed by changing
surfacesS, w, Sy. the normalization constant in the reflection coefficient expressions.
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from their unperturbed counterparks;, H;. It is apparent

UNPERTURBED PERTURBED
that calculation of the perturbed reflection coefficigRigs UNIT UNIT
: . CELL CELL
at a particular scan angléy, ¢o) requires two generally
distinct unperturbed solutions at scan angiés, ¢,) and
(6o, o + 180°). If the structure, symmetries, scan angle, € €,
ide si o t, L t
and frequency are such that a waveguide simulator can b rta rte
constructed, the operator can be made symmetric [7] and t T tlT i T
original and transpose solutions will be eqfial.
€=1.5¢, \:=1.5eo
€=2.2€, I €=2.2€,
lll. FINITE ANTENNAS —22¢, —2.2€,
The perturbation formula for nonperiodic structures can be
derived along the lines described above. The operators become
— g

(4) in the statement of the problem, e.g., Sommerfeld-type
conditions for antennas occupying finite volumes. A more
careful treatment is needed for structures having feature
extending to infinity. In addition to the standard continuous
spectrum of plane waves, microstrip antennas on infinit
substrates excite surface waves. Specific requirements must
be imposed in addition to the standard Sommerfeld conditibfg- 2. Unperturbed and perturbed unit cell parameters for an array of two
. . . ....Identical square stacked patches with balanced feeds.
to ensure that only outgoing surface waves exist at infinity.

This issue does not impact the perturbation formulas so long

as the perturbed region is fiqitg. Thus, the perturbation formL&ﬁestions regarding adequacy of operator representation and
for the input reflection coefficient can be stated as follows: mesh construction were avoided by using the same mesh

symmetric. Appropriate radiation conditions replace (3) andT

el

|
|

R %R jw E E 4V for the unperturbed and perturbed configurations, predeter-
0 1 (e2—a) B mined by adaptive refinement at the highest frequency of
) v interest.
_Jw // Hy- (s —p,)-Hidv. (13) Anapplication of (12) to calculate the effect of finite dielec-
2y50 / tric support for an array of square stacked-patch elements with

balanced probe feeds is considered first. Direct verification for
It should be mentioned that in addition to the input chaall scan angles was not possible because the solver did not
acteristics, the modification of the antenna structure affec{iow for Floquet periodicity. Thus, only the portion of the
the radiation pattern. It is not difficult to write down ascan-frequency space for which a waveguide simulator can be
formal expression for the perturbed radiation field for a givegonstructed was accessible. In the unperturbed configuration
direction in terms of the unperturbed quantities. Howeveshown in Fig. 2, the substrate layers uniformly span the entire
this would involve the solution of an auxiliary problem inunit cell. A rectangular outer ring of substrate material is
which a plane wave is incident upon the antenna along theémoved in both layers of the perturbed element (Fig. 2),
same direction. In a more practical approach, the originglaving the patches in the periodic array on finite dielectric
problem may be solved again with the perturbation termgjands,” separated by free-space. In Fig. 3 input-reflection-
Jp = jwlea —e1) - E1o, My, = —jw(py — py) - Hy, treated coefficient results for anH-plane scan are presented for a
as sources of the radiation pattern perturbation. Of course, #jfcific set of unit cell dimensions and parametétsplane
same approach may be applied to derive formulas equivalgshn data are shown in Fig. 4 for the same patch element
to (12) and (13). placed in a somewhat larger unit cell. In both instances
(E and H plane) the Born approximatio®, ~ E; is
applied.
Examination of Figs. 3 and 4 leads to several observations:

IV. NUMERICAL EXAMPLES
Several examples are now offered to illustrate and ver-

ify, to the extent possible, the formulas presented in the*
preceding sections. The solutions of the unperturbed and
perturbed problems, as well as the field integrations required
to determine the difference between them, were obtained
using a commercial, finite-element-based Maxwell equations®
solver [9]. This approach circumvents the questions of con-
vergence and precision that would have arisen had different
methods been used to solve the various problems. Moreover,

4 Another important situation occurs when the material tensors are Hermi-

tian. The Hermitian adjoint of the original operator can then be used instead
of its transpose.

The agreement between perturbation-derived and directly
computed reflection-coefficient data is quite good in both
cases despite the fact that almost 25% and 50%, respec-
tively, of substrate materials is replaced by free-space.

A likely reason for the quality of the perturbation ap-
proach is the fact that the fields are concentrated predom-
inately under the patch elements and are relatively weaker
in the interelement spaces. In other words, the measure
of the “size” of the perturbation is provided not only by
the change in the dielectric constant, but as significantly
by the amount of stored energy in the perturbed volume.
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Fig. 3. H-plane input reflection coefficientiz,—unperturbed structure; Fig. 4. E-plane input reflection coefficientR,—unperturbed structure;
R,—perturbed structure-direct calculatial;—perturbed structure-Born ap- R,—perturbed structure-direct calculatioRl,—perturbed structure-Born ap-
proximation. Unit cell dimensions as defined in Fig. 2 (in centimetersproximation. Unit cell dimensions as defined in Fig. 2 (in cr)= 3.0,
a = 2378, b = 2215, ¢ =d = 2.0,p = 1.8, ¢t = to = 0.159, b=3.125,c=d=22,p=138,t; =t, =0.159, R =0.069, r = 0.02.
R = 0.155, r = 0.045. (a) Real part®) of the reflection coefficient. (b) (a) Real part &) of the reflection coefficient. (b) Imaginary pa) of the
Imaginary part{) of the reflection coefficient. The scan angleis measured reflection coefficient. The scan anglg is measured from broadside.

from broadside.

V. CONCLUSIONS

Although the derivations were based on coaxially fed radi- One-term perturbation formulas for the input reflection
ators, the same formulas can be applied to other transmissiorfficient were derived for periodic and finite arrangements
line feeds. The simplest way to rationalize the formulas tf antennas. Although intended for microstrip applications, the
by conceptualizing lossless perfectly matched transitions frdgrmulas are general and as such applicable to other antenna
coax to other line types. The example of a single circulaypes, and can be extended to multiport, open circuit structures.
patch edge-fed by a microstrip line is used to validate thRerturbation formulas for complex resonant frequencies of
use of the formulas in more general contexts. The patch antennas can also be done. Numerical tests have confirmed
Fig. 5(a) is initially analyzed in free-space. The effect athat the formulas can be used to predict the effects of substrate
dielectric support rods is then calculated using the perturbatiparturbations for practical configurations to a good degree of
approach. The comparison of the various data sets is preserdecuracy, despite the use of first-order field approximations.
in Fig. 5(b) and (c). The dominant electric field component loreover, the equations can be incorporated into widely
parallel to the perturbation boundaries and, therefore, the Barsed 2.5-D microstrip solvers with only minor additional
and quasi-static approximations coincide. The perturbatipostprocessing.
formula works well in this situation, even for large values Although of great utility, all perturbation approaches of
of permittivity. this kind are deficient because it is difficult to gauge the
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accuracy of the results. A more self-consistent approach is

| ko1 X ; . .
0.1[ | desirable. Toward that goal, multiterm perturbation expansions
T are currently under investigation.
} APPENDIX A
0.32 | mpu
f (B0, P0) Scan direction.
p=aX+yy
ki, = ko(X sin 6y cos ¢g
+§7 + y sin 90 sin (/)0)
ko =2nf/c
A ot Py = 3(Spw) Perimeter of the fundamental
0.2 unit cell Sp,,.
T -- €50, Yfo Feed-mode and the associ-
ated characteristic admittance;
fsf &0 €50 = 1.

@ €pks Ypk Floquet mode and the associ-
ated characteristic admittance;
fspw €pk - (épk) =1

Ry; Input reflection coefficient.

APPENDIX B

The steps taken to reduce (8)—(10) included integration over
the unit cell lateral walls. It is the purpose of this Appendix
to show that the said-surface integral vanishes.

The field quantities are subject to the Floquet conditions (3)
and as such, may be written as follows:

El(pv Z) :E{)(pv Z) exp[_jkto P]
Hi(p, z) =H] (p, z) exp[—jki, - p]

where the fields marked by superscript satisfy periodic

(14)

2 9.4 9.6 9.8 10 10.2 boundary conditions
Frequency (GHz) P P
(b) A; (p + Cmn,y Z) = A, (p, Z), P Cmn € Ppw. (15)
LetF = E; x Hy — E, x H, = E” x H] — E x H’,
0.6 : ' ‘ ' 4 the last expression reflecting (6) and (14). Moreover, in view
— R, of (15) F satisfies periodicity, i.e¥(p + ¢, 2) = F(p, 2),
O 4F | e—x Rp ] P, Cmn € Ppy. The surface integral over the lateral walls can
o—=o R be written as follows:
0.2r 4
~ // F~ﬁdS:/ dz/ deF;-n
L:; ("17 ZZ) Py
N or «Imaginary Part S '//’4 Ppp@(z1, 22)
= /‘é./f - / dz / / dSVv, -F, (16)
~0.2 /,é'// b (#1,22) 5
3 Real part R 25"
0. % | wheret marks transverse-te-components andz(, =) is the
%Q&T%“ e % interval of integration along the axis. The last form of the
o ‘ "?S’J ‘ , preceding equation is obtained using the divergence theorem.
9.2 9.4 F9'6 (Z-HS) 10 10.2 The integral overS,,, vanishes; this can be shown with the
reaneney IEE aid of the scalar periodic Green's theorem outlined in [8].
(©) Periodicity of F, = F,x + I,y implies that the integral

Fig. 5. (a) Edge-fed circular patch antenna supported by dielectric pi£§

(o) = ffsw EF-(p+p)dS, T =z, y is independent of/,

above a ground plane (all dimensions in centimeters). (b) Input reflectib®-» the integral does not depend on the choice of the unit cell
coefficient: R,,—unperturbed structure-patch in free-spa&g,—perturbed origin. Therefore, differentiation of this integral with respect

structure patch on pin supports. (= 2.2), Ity —perturbed structure-Bom ap- 4 the primed coordinates yields zero, and after the derivatives

proximation. (c) Input reflection coefficienR,,—unperturbed structure-patch
in free-space,?,—perturbed structure-patch on pin supports & 5.0),
Ry—perturbed structure-Born approximation.

are moved under the integral sign and applied to the unprimed
variables, the aforementioned result is verified.
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