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Anomalous Edge Effects in Finite Arrays
R. C. Hansen,Life Fellow, IEEE

Abstract—The regular oscillations in scan impedance (normal-
ized by the infinite array values) that occur across a finite array
are uniquely altered in two special cases based on computer simu-
lations of finite-by-infinite arrays. First, dipoles with groundplane
at broadside in the EEE-plane, exhibit a slow modulation of the
usual oscillations; the period of the modulation varies with dipole
radius. For all other cases, the results are insensitive to radius.
Second, for a dipole array and lattice spacing andHHH-plane scan
angle that allow a grating lobe to appear at�90� the oscillations
disappear, except at the rear edge. These phenomena give some
indications of the behavior of the pseudotraveling waves in scan
impedance.

Index Terms—Antenna arrays, edge effects, electronic scan.

I. INTRODUCTION

EDGE effects in finite arrays have been studied through
the medium of a finite-by-infinite array [1], [2], where the

beam is scanned across the finite dimension of the array. Use
of colinear or parallel dipoles in the infinite linear arrays allows

-plane or -plane scan [2]. For a sketch of the geometry see
[3]. Since most of the characteristic and essential features of
mutual coupling are experienced by scanning an array of thin
wire dipoles at or near resonance, more sophisticated elements
and moment method analyses are not necessary. Thus, finite-
by-infinite arrays of thin wire dipoles with or without ground
plane have been used; each dipole has an assumed sinusoidal
current distribution.

The vital parameter for a scanned array is scan impedance;
the obsolete term “active impedance” is deprecated. The scan
impedances of a row of elements across the finite dimension of
the array allow all important array parameters to be calculated:
directivity, patterns, scan-element pattern, element mismatch.
These scan impedances are found from the element voltages
divided by the applied element currents; the latter may include
an amplitude taper for sidelobe control. The voltage and
current vectors are related by an impedance matrix. Each term
of the impedance matrix is the sum of mutual impedances
from one dipole in one infinite linear array to all the dipoles
in another infinite linear array. These mutual impedance sums
were calculated in both the spatial and spectral domains [3].
The spatial-domain calculation used Carter mutual impedances
[4] with Levin summation acceleration. For the spectral-
domain summation for -plane scan, the sum involved a
generalized pattern function and a Hankel function.-plane
scan required a numerical integration, as the integral of the
pattern function times the Hankel function cannot be separated
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[5]. Plots of scan impedance across the array calculated by
spatial and spectral methods agreed within a line width, thus
validating these array simulators. Details of the calculations
are given in [2] and [3].

The finite-by-infinite array simulations showed several inter-
esting and somewhat unexpected results. The scan impedance
values oscillated from element to element about the infinite
array values with oscillation amplitude increasing from the
center toward the array edges. These oscillations occur even
at broadside (no scan). The period of the oscillations is regular
and increases with scan angle and an excellent fit is provided
by sin [6], [7]. There were two situations that
showed unusual behavior and these anomalies are discussed
in this paper.

II. M ODULATED OSCILLATIONS

Computer simulations of -plane scan of dipoles and of
dipoles/ground plane and of -plane scan of dipoles gave
results insensitive to dipole radius [6], [7]. However, broad-
side results for -plane scan impedance of dipoles/ground
plane showed an unexpected behavior: the oscillations were
modulated and the modulation period varied with the dipole
radius [8]. For each radius, the dipole length was adjusted
to give a resonant broadside embedded impedance. Figs. 1–4
show scan impedance for half of a 201-element array with
values normalized by the infinite array scan impedances.
Ground plane spacing was . Although all the oscillations
have a wavelength period (half-wave element spacing), the
modulation period increases with radius/wavelength as seen.

Assuming a heterodyne process, with the “difference fre-
quency” operating, the period is simply

where is the basic scan impedance period of one
wavelength (zero scan) and is modified by a factor:

. Fig. 5 shows the parameter for the five
radii cases simulated. There is some uncertainty in determining
period due to attenuation near the array center. This log-
linear relationship is due to the change in mutual impedances
with change in radius all reflected through the impedance
matrix inverse. Why this appears only for-plane dipoles
with ground plane is not known. A reviewer suggests that
a virtual space wave heterodynes with a virtual wave guided
between the dipole plane and the ground plane; the logarithmic
variation of dipole reactance with dipole radius might produce
the results of Fig. 5.

The obvious question is, “How does this phenomenon
change with scan angle?” Only limited simulations have been
done, but at a 30and greater scan, no modulation is apparent.
At 15 scan there is modulation present, but the pattern of it
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Fig. 1. Two hundred and one linear infinite arrays of dipoles/screen,E-plane scan, and� = 0�.

Fig. 2. Two hundred and one linear infinite arrays of dipoles/screen,E-plane scan, and� = 0�.

is not clear. Whether the zero scan results can be modeled by
empiricism based on electromagnetics is also unknown at this
time. This new phenomenon represents a challenge in array
modeling and understanding.

III. SCAN IMPEDANCE AT GRATING LOBE INCIDENCE

An infinite array of canonical elements such as half-wave
or resonant dipoles exhibits a blind angle at grating-lobe
incidence in the -plane as the scan resistance and scan
reactance both become infinite. But how does scan impedance

behave for a finite array? For the computer simulator, the
array lattice of half-wave spacing, resonant dipole length,
and dipole radius of 0.005 were scaled up to provide a
grating lobe appearing at90 for 45 scan. Fig. 6 shows the
magnitude of scan impedance, now normalized by the center
value, again for a 201 element array. The scan impedance
is approximately linear, increasing toward the rear of the
array. Damped oscillations occur at the rear. These oscillations
change as the array size changes. Phase is of also interest;
Fig. 7 shows the phase of scan impedance across the array.
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Fig. 3. Two hundred and one linear infinite arrays of resonant dipoles/screen andE-plane scan at 0�.

Fig. 4. Two hundred and one linear infinite arrays of resonant dipoles/screen,E-plane scan, and� = 0�.

Again, damped oscillations occur at the rear and a dropoff
toward zero phase occurs at the front, but over most of
the array the phase is approximately 45. Fig. 8 gives the
array center value versus number of elements minus one;
as expected, this value becomes large for large arrays. This
center value is approximately given by . There is
presently no physical explanation of why the variation is
instead of or log . When the dimensions are adjusted for
grating-lobe appearance at 60scan, the resulting amplitude
and phase plots are essentially the same, but the few damped

oscillations at the rear have a longer period as expected
[9]. Thus, the array (at grating-lobe angle) due to the near
absence of oscillations and approximately 45phase appears
approximately as a resistive sheet reminiscent of the current
sheet array concept of Wheeler [10]. A further adjustment of
dimensions to allow a grating lobe to appear at60 for a
60 scan gives scan impedances just like those for a half-
wave lattice—oscillations about the infinite array value. So
the single traveling wave concept is only feasible when the
grating lobe first appears at90 .



552 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 3, MARCH 1999

Fig. 5. Modulation factor� versus radius.

Fig. 6. Two hundred and one linear infinite arrays of dipoles andH-plane scan at 45�.

For -plane scan with the same grating-lobe spacing, the
scan impedance is again that for the half-wave lattice, but the
oscillations are smaller.

Because of this resistive sheet analogy, an attempt was
made to calculate the edge oscillation values using half-plane
diffraction coefficients for a resistive sheet. The Malihiuzhinets
function subroutine was generously provided by Volakis [11].
However, none of the combinations of resistive and reactive

sheet values tried gave the proper variation of edge value ver-
sus scan angle. These edge values would have complemented
the Gibbsian models that have been developed [2], [3].

IV. CONCLUSIONS

The standing wave of scan impedance across a finite array
can be decomposed into two pseudotraveling waves in op-
posite directions, as indicated by the constant period. These
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Fig. 7. Two hundred and one linear infinite arrays of dipoles,H-plane scan at 45�.

Fig. 8. Array impedance center value.

waves are not electromagnetic waves, of course, and they
are esoteric, having an attenuation across the array that is
more complicated than a simple exponential. At grating-lobe
incidence, one might surmise that only one traveling wave is
excited.

The heterodyning (or line splitting, which occurs for broad-
side -plane scan of dipoles/screen) may be due to the
generation of dual pseudotraveling waves by the mutual cou-
pling. The unique dependence of this case upon dipole radius
is still a mystery.
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The computer simulations and the apparent traveling waves
in scan impedance have engendered a primitive understanding
of edge effects in finite arrays, but several important and
interesting problems remain to be solved.
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