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Design of Unequally Spaced Arrays
for Performance Improvement
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Abstract—Classical antenna array synthesis techniques such
as Fourier, Dolph–Chebyshev and Taylor synthesis efficiently
obtain array current distributions for equally spaced arrays
that generate a desired far-field radiation pattern function or
keep important parameters like beamwidth and sidelobe level
within prescribed performance bounds. However, the concept of
optimization of the field pattern (e.g., by decreasing sidelobes
or beamwidth) of an given equally spaced array realization
by altering its element spacingsstill represents a challenging
problem having considerable practical advantages. These include
reduction in size, weight, and number of elements of the array.
This paper describes a new approach to synthesis of unequally
spaced arrays utilizing a simple inversion algorithm to obtain
the element spacings from prescribed far-zone electric field and
current distribution, or current distributions from prescribed
far-zone electric field and element spacings.

Index Terms—Antenna arrays.

I. INTRODUCTION

OVER the past 60 years, the theory of uniformly spaced
antenna arrays has been studied in depth and is certainly

well documented. For example, given a desired radiation pat-
tern (e.g., pencil-beam, sectoral, cosecetc.) and the number
of elements, it is possible to employ such traditional synthesis
procedures as Dolph–Chebyshev, Taylor, Fourier inversion or
numerical optimization to obtain the required array current
distribution for a uniformly spaced array.

The analysis of unequally spaced antenna arrays originated
with the work of Unz [1], who developed a matrix formulation
to obtain the current distribution necessary to generate a pre-
scribed radiation pattern from an unequally spaced linear array
(with prespecified geometry). Subsequent to the initial concept
of Unz, recent design techniques focus on two categories of
nonuniform arrays:arrays with randomly spaced elements and
thinned arrays, which are derived by selectively zeroing some
elements of an initial equally spaced array.

In the first category, Harrington [2] developed a method
to reduce sidelobe levels of uniformly excited-element
linear arrays by employing nonuniform spacing. Furthermore,
he demonstrated that the close-in sidelobes can be reduced
in height to approximately times the main-lobe field
intensity level. Andreasan [3] exploited the use of emerging
digital computation techniques to develop empirical results on
unequally spaced arrays. Two important conclusions resulted
from his work: 1) the 3-dB beamwidth of the mainlobe
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Fig. 1. Geometry of nonuniformly spaced linear symmetric array.

depends primarily on the length of the array and 2) the sidelobe
level depends primarily on the number of elements in the array
and to a minimal extent on the average spacing of the array
when the latter exceeds about two wavelengths. Utilizing the
Poisson sum expansion of the basic array factor, Ishimaru’s
classical analysis [4] of unequally spaced arrays addressed
the following aspects: 1) sidelobe reduction in comparison
with a linear array with uniform excitation; 2) secondary
beam suppression of the linear array by use of the Anger
function; and 3) azimuthal frequency scanning by means of an
unequally spaced circular array. A purely analytical technique
for unequally spaced linear array synthesis was developed
by Miller and Goodman [5], who applied Prony’s method
to estimate the parameters (array current distribution and
element spacing) of a sum of exponentials. The advantages
of the method are its simplicity (the computations required
are the solution of two sets of linear equations and the roots
of one polynomial) and its noniterative nature. The method
does require high-accuracy computer routines for obtaining
the polynomial roots, however, and the linear equations must
be well conditioned.

Another appealing design method for large unequally spaced
arrays (array lengths of or greater) employs a purely
statistical approach utilizing probability distributions to decide
the optimal space taper of an array with a prescribed current
distribution. Lo and Lee [6] studied the probabilistic proper-
ties of a planar antenna array when its elements are placed
randomly over an aperture.

The thinned array class of design methods is typified
by the application of dynamic programming employed by
Skolnik [7]. This approach stresses the power of computer-
aided optimization tools to design unequally spaced arrays
by treating the goal of sidelobe reduction as an objective
function and the limits in the placement of adjacent elements
as optimization constraints. In this approach, the density of
elements located within a given aperture is made proportional
to the amplitude distribution of the conventional equally
spaced array. The latter method was extended by Mailloux
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(a)

(b)

Fig. 2. (a) Sidelobe level of pencil-beam pattern with abrupt skirt. (b) Beamwidth of pencil beam pattern with abrupt skirt.

and Cohen [8], who utilized statistical thinning of arrays with
quantized element weights to improve sidelobe performance in
large circular arrays. Their results demonstrated the possibility
of obtaining considerable sidelobe reduction by a combination
of probabilistic thinning and discrete amplitude quantization.
Another recent approach to thinned linear and planar array
design is the application of genetic algorithms to design
optimal spacings [9].

This paper presents a new method for unequally spaced ar-
ray synthesis, which yields appropriate element spacing values
for a prescribed array factor in a simple, recursive manner.
This technique starts with a prescribed array pattern and
synthesizes unequally spaced arrays under the constraint that
adjacent element spacings are limited by thespace broadening
factor . The inversion algorithm necessary in this approach

has been employed earlier by the authors in far-field analysis of
spherical [10] and nonuniformily spaced linear arrays [11–14].

II. SYNTHESIS TECHNIQUE AND APPLICATIONS

A general representation of a element linear array is
illustrated in Fig. 1 where the and represent the respective
element spacings and currents. A fundamental question for
antenna pattern synthesis concerns the potential of achieving
radiation pattern improvement (e.g., lower peak sidelobe lev-
els) utilizing nonunifom element spacings in comparison with
a uniformly spaced array (e.g., ). Basic constraints in this
consideration would be that the number of elements and the
current distributions would be the same for both uniform and
nonuniform arrays and that the nonuniform element spacings
would lie between 0.5 and 1.0 .
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(a)

(b)

Fig. 3. (a) Sidelobe level of pencil-beam pattern with linear skirt. (b) Beamwith of pencil-beam pattern with linear skirt.

An affirmative answer to the above assertion is based on the
fact that since different sets of nonuniform element spacings
generate different radiation patterns, one such pattern could
provide improvement on the equally spaced array pattern (e.g.,
by providing lower peak sidelobe level (PSLL), narrower
beamwidth or closer mean-squared fit to the prescribed pattern
response).Although this possibility exists, general nonuniform
spaced array design is more challenging than uniformly spaced
design based on several considerations.

1) Since the element spacings occur as exponential or
trigonometric functions, element spacing synthesis is a
nonlinear problem whereas the array current synthesis
is a linear problem.

2) Constraints have to be placed on the solutions for the
element spacings; viz., theycannot be complex numbers
and the adjacent element positions should be0.5 to
reduce the array element count.

These considerations suggest that any synthesis technique
for unequally spaced arrays should contain several aspects:

1) a nonlinear inversion algorithm to obtain the element
spacings by the solution of a nonlinear set of equations;

2) a mechanism to placea priori constraints on the element
spacings such as—they must be real and positive and
greater than 0.5 to reduce the array element count.

In order to delineate the synthesis algorithm, the desired
array pattern is specified as over the interval
, where radians. Since the array factor

is symmetric, i.e., , the synthesis problem is
addressed only over the interval or
radians.

The new technique is presented below in terms of four
fundamental steps. Step 1 formulates the synthesis problem
where the prescribed array factor is sampled atuniformly
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(a)

(b)

Fig. 4. (a) Comparison of pencil-beam patterns (desired pattern with abrupt skirt)N = 9. (b) Comparison of pencil-beam patterns (desired pattern
with abrupt skirt) N = 19.

spaced points over the observation range. The second step
contains the key development in the synthesis technique, viz.,
the Legendre transformation of the array factor. In Step 3, the
limiting property of the Legendre polynomials is effected and
this leads to the generation of a triangular system of equations.
The actual design equations for element spacing values are
presented in Step 4. The following paragraphs present these
steps in detail.

Step I. Definition of the Synthesis Problem

The actual array pattern of a elementnonpe-
riodic symmetric array of point sources (Fig. 1) is given by
[15]

(1)

where and the sampling interval
.

The objective is to obtain feasible solutions for the array
currents and/or element positions by matching the
desired and actual array patterns at points in the interval

such that

(2)

where .

Step II. Legendre Transformation of the
Desired Array Pattern

The following steps define the procedure for transforming
the array function into its Legendre transform .
To proceed we form the expression

(3)
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(c)

(d)

Fig. 4. (Continued.) (c) Comparison of pencil-beam patterns (desired pattern with linear skirt)N = 9. (d) Comparison of pencil-beam patterns (desired
pattern with linear skirt)N = 19.

where ; and is the
Legendre function of half integer order. The range and values
of will be selected in accordance with
the element positions as will be described shortly. Substituting
(1) and (2) for into (3) yields the final transformed
equation

(4)

Step III. Generation of the Recursive Equations

The Legendre transformation of the desired array pattern
is motivated by consideration of the following limiting

relation for the Legendre polynomial of fractional order [16]:

(5)

Applying the property in (5) to (4) permits the transformed
array function to be expressed as

(6)

where

(7)

From (2) and (7), it follows that

(8)

where and the sampling interval
since is large. Equation (8) yields the limiting condition
on

(9)
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(a)(i)

(a)(ii)

Fig. 5. (a)(i) Peak sidelobe level of flat-top beam with abrupt skirt. (a)(ii) First sidelobe level of flat-top beam with abrupt skirt.

As an illustration, if the adjacent element spacings of the array
are limited to then and (9) reduces to

(10)

However, in the actual implementation of the synthesis algo-
rithm as described in Section III, higher number of sampling
points were necessary for the convergence of the algorithm.

The selection of the grid is the important constituent in the
reconstruction of the array currents and positions in recursive
form. This grid is defined by the following relation:

(11)

where the constant is limited by the condition that the
and values intersperse one another as follows:

Now, utilizing (6) and (7) we obtain the followingtriangular
system of equations:

(12)

This system is invertible as follows:

(13)

Step IV. Application of Inversion Algorithm in Step III
to Synthesize Currents and Positions

The algorithm described in (1)–(13) is utilized to yield the
synthesized array spacings in the following manner.



KUMAR AND BRANNER: DESIGN OF UNEQUALLY SPACED ARRAYS FOR PERFORMANCE IMPROVEMENT 517

(b)

Fig. 5. (Continued.) (b) Beamwidth of flat-top beam with abrupt skirt.

TABLE I
FLOW CHART OF SYNTHESIS ALGORITHM

1) The first array element is positioned at or .
2) The spacing between adjacent elements of the array

is constrained between the limits

where the space broadening
factor is maintained less than 0.5.

In this way, it is ensured that thelower limit of adjacent
element spacing is at least 0.5in order to reduce mutual
coupling effectsand in the upper limit, the adjacent element
spacing is less than, in order to prevent grating lobes. Hence,
the values of are selected as follows:

The normalized value of the central current is obtained
from (13) as

(14)

Equation (14) is the first design equation of the array. In
order to synthesize the second-element current/position,
is selected as

and from (13)

(15)

Equation (15) is the second design equation of the arraysince
the left-hand side of the equation contains both the array
current and the element position term .
Proceeding in this manner, the successive values ofare
selected as

and the th design equation of the arrayis obtained as

(16)
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(a)(i)

(a)(ii)

Fig. 6. (a)(i) Peak sidelobe level of flat-top beam with linear skirt. (a)(ii) First sidelobe level of flat-top beam with linear skirt.

The proposed synthesis technique can be represented by
the flowchart form as shown in Table I. The organization
of the flowchart follows the analysis given above as a
four-step process originating with the desired array field
pattern and culminating with the generation of array
element positions.

The above development [(14)–(16)] provides a means to
solve the following distinct synthesis problems.

1) Synthesis of Array Currents of a Nonuniformly Spaced
Array with Prescribed Element Positions:This problem is
formulated as follows. Given a prescribed symmetrical pattern

over the interval and prespecified
nonuniform element positions of a element sym-
metric array, obtain the appropriate set of currents

. The element currents can be obtained utilizing (14)

and (16)

(17)

2) Synthesis of Array Element Positions Only with a Pre-
specified Array Current Distribution:This problem is the one
of more interest. Given a desired symmetrical pattern
expressed in the interval and a prespecified
array current distribution for a element array, obtain
the appropriate nonuniform set of element positions

. The th design formula for the array is given from
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(b)

Fig. 6. (Continued.) (b) Beamwidth of flat-top beam with linear skirt.

(16) as

(18)

and from (5) and (18), we obtain

(19)

and .
To exclude infeasible solutions, the following conditions are

placed on these values of and :

1) if the value of the argument within the large bracket in
(19) is greater than one, then is taken
as default value;

2) if , then is taken as default
value;

3) if , then is taken
as default value.

The value of is again calculated using the default spacing
value and the algorithm is continued.

III. A PPLICATIONS OF THESYNTHESIS TECHNIQUE

The efficacy of the above technique for pattern synthesis and
improved array performance is illustrated below by synthesis
of specific pattern shapes with prescribed current distributions.
These are, respectively, a pencil-beam pattern with uniform
current distribution and a flat-top beam pattern with a pre-
scribed current distribution. In all these cases, the desired
pattern is sampled uniformly at points for .

The desired array pattern function can generally be ex-
pressed as

(20)

where the boundary delineates the mainlobe and sidelobe
regions.

1) Synthesis of Pencil-Beam Pattern Utilizing Uniform Cur-
rent Distribution:As alluded to above, in this first application
the array current distribution is uniform and the initial array
geometry consists of point sources. Based on
previous computations, the selection of the prescribed pat-
tern [(20)] is understood to significantly affect the solutions
obtained for the element spacings. Two cases are presented
below for illustrative purposes:

a) Prescribed pattern with abrupt skirt:

(21)

b) Prescribed pattern with linear skirt:

(22)

In both cases, the values for and are ,
, the dividing boundary is assumed as the

position of the first null (at ) of the initial
equally spaced array.

The synthesis algorithm (Section II) has been applied in
both cases a) and b) to obtain the appropriate adjacent element
spacings. For case a) Fig. 2(a) describes the results obtained
for the variation offirst sidelobe level(FSLL) and peak side-
lobe level (PSLL) as a function of the space broadening factor

for different values of the array number (
and ). The 3-dB beamwidth [Fig. 2(b)] of the nonuniform
array remains unchanged for case (a) as a function of the space
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(a)

(b)

Fig. 7. (a) Comparison of flat-top beam patterns (desired pattern with abrupt skirt)N = 9. (b) Comparison of flat-top beam patterns (desired pattern
with abrupt skirt) N = 19.

broadening factor: 3.185, 1.91 , 1.592 , and 1.273 for
and respectively. Similarly Fig. 3(a) illustrates

the sidelobe characteristics of the synthesized nonuniform
arrays for case b) utilizing the prescribed function in (22). The
3-dB beamwidth [Fig. 3(b)] of the nonuniform array remains
unchanged as in case a), with variation of the space broadening
factor: 3.185, 1.91 , 1.592 , and 1.273 for
and respectively. A perusal of the results yields the
following conclusions.

1) The value of the FSLL decreases continually as the value
of (in wavelengths) ranges from 0.1 to 0.5; however,
the corresponding value of the PSLL decreases along
with the FSLL up to a point and then begins increasing
again.

2) In case a), as the value of the array numberincreases,
the PSLL reaches its lowest value for a smaller value

of the space broadening factor. Case b) results are
similar to those of case a).

3) The 3-dB beamwidth essentially remains unchanged as
a function of for both cases a) and b).

Synthesized field patterns are depicted in Fig. 4(a)–(d) for
the two cases of target functions defined in (21) and (22). In
each figure, a comparison is made among the specified target
pattern , the pattern of the element equally spaced
array, and the pattern of the synthesized unequally spaced
array. From Fig. 4(a) and (b) [case a)], it is observed that by
employing the nonuniform array synthesis technique, the PSLL
is reduced by 6.5 dB over that of a uniform array for both

and . Fig. 4(c) and (d) compares the uniform
and nonuniform array patterns for and ,
respectively, corresponding to case b). In these figures, it is
observed that in comparison with the equally spaced array,
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(c)

(d)

Fig. 7. (Continued.) (c) Comparison of flat-top beam patterns (desired pattern with linear skirt)N = 9. (d) Comparison of flat-top beam patterns
(desired patterns with linear skirt)N = 19.

the reduction of the PSLL is 6.5 dB. The synthesized array
spacings are presented in Tables II(a) and (b) for cases a)
and b), respectively.

2) Synthesis of Flat-Top Beam Pattern:The next applica-
tion synthesizes an unequally spaced array to generate a
flat-top beam pattern. As in the case of the pencil-beam array,
the initial array geometry consists of points sources
having spacings; however, in present case, the current
distribution is nonuniform as described below in (25). Also,
two forms of the prescribed array factor will be detailed as
cases a) and b):

a) Prescribed with abrupt skirt:

(23)

b) Prescribed pattern with linear skirt:

(24)

The current distribution required to generate the prescribed
array factor can be derived from Fourier synthesis of an
equally spaced array [15] and is given as

(25)

In both cases a) and b) , , the
boundary , and the second boundary is the
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TABLE II
(a) SYNTHESIZED ELEMENT SPACINGS (�) PENCIL-BEAM

PATTERN WITH ABRUPT SKIRT. (b) SYNTHESIZED ELEMENT

SPACINGS (�) PENCIL-BEAM PATTERN WITH LINEAR SKIRT

(a)

(b)

position of the first null in the pattern of the corresponding
equally spaced array.

Fig. 5(a)(i) and (a)(ii) describes the variation of PSLL and
FSLL, respectively, of the synthesized nonuniform array for
case a) as a function of the space-broadening factorfor

and . Fig. 5(b) depicts the variation of the 3-
dB beamwidth with the factor . Similarly, Fig. 6(a) and (b)
illustrates the variation of the sidelobe levels and beamwidth,
respectively, for the case b). Analysis reveals that the pattern
synthesis of the flat-top beam ishighly sensitiveto the space-
broadening factor and as a consequence, hence, the range of

variation was reduced as compared with the previous pencil
beam examples. The following conclusions are based on the
results in Figs. 5(a) and (b) and 6(a) and (b).

1) The values of FSLL and PSLL decrease in an oscillatory
manner as the value of increases from 0–0.14. This

TABLE III
(a) SYNTHESIZED ELEMENT SPACINGS (�) FLAT-TOP BEAM WITH ABRUPT SKIRT.
(b) SYNTHESIZED ELEMENT SPACINGS(�) FLAT-TOP BEAM (WITH LINEAR SKIRT)

(a)

(b)

implies that the array pattern is very sensitive to small
changes in .

2) The 3-dB beamwidth essentially remains unchanged as
a function of .

Computed pattern responses are presented in Fig. 7(a) and
(b) for case a) and Fig. 7(c) and (d) for case b). Fig. 7(a)
compares the patterns corresponding to case a) for ,
where it is observed that the PSLL is improved over that of
the uniform array by 5 dB. For , Fig. 7(b) reveals
an approximately 7-dB reduction in PSLL. Similarly, Fig. 7(c)
and (d) illustrates the results for case b) for and

, respectively. The PSSL is again reduced by5
dB and 7 dB for and , respectively. The
synthesized array spacings are given in Tables III(a) and (b)
for case a) and case b), respectively.

The above numerical results demonstrate that utilizing the
nonuniform synthesis method presented in this paper, peak
sidelobe levels can be reduced by6.5 dB in comparison
with uniformly excited pencil-beam arrays and up to7 dB
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for flat-top beam arrays while essentially maintaining the same
beamwidth. The design of unequally spaced arrays by genetic
algorithms [9] yields 20-dB peak sidelobe level for thinned
linear and planar arrays optimized over both scan angle and
bandwidth of operation. Another comparison can be made
between the current method and recent optimization methods
[17], where the peak sidelobe level achieved is 18.5 dB
( 20 dB for current case with a 14-element array). A
primary advantage of the method presented in this paper is
that it is noniterative in nature and, hence, less prone to errors.
Optimization and genetic algorithms, on the other hand, are
inherently iterative techniques, with the associated potential
for speed, convergence, and accuracy problems.

The extension of the method to low sidelobe symmetric
planar arrays is straightforward and can be considered as
the two-dimensional counterpart of the algorithm described
in Section II. In the planar case, a two-dimensional Legendre
transformation can be effected on a desired array pattern

, where and
define the complete volumetric space around the array. Further
work is in progress to develop an efficient synthesis algorithm
for planar arrays.

IV. CONCLUSION

This paper describes a new analytical approach to the
synthesis of unequally spaced antenna arrays. The synthesis
technique is unique and practical in that it enables a designer
to determine pattern the appropriate element spacings for a
prescribed pattern (and a given array current distribution)
by means of a Legendre transformation of the array factor,
while maintaining constraints on the element-spacing values.
Numerical results have been presented for pencil and flat-
top beam arrays. The effects of unequal spacing, as reflected
by the sidelobe levels and 3-dB beamwidth, are studied
in detail. The results show that considerable improvement
in array performance can be obtained in comparison with
uniformly spaced arrays having the same number of elements
and identical current distribution.
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