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Practical Failure Compensation
in Active Phased Arrays

Menachem Levitas, David A. Horton, and Theodore C. Cheston,Life Fellow, IEEE

Abstract—A practical failure compensation technique for active
phased arrays is presented. It is suitable for real-time applications
and is applicable to any distribution of the failures across the
array. It is independent of the external signal environment and
is capable of achieving substantial performance improvement
across broad selectable angular sectors at the expense of some
additional performance degradation in other less important sec-
tors.

Index Terms—Active arrays, phased arrays.

I. INTRODUCTION

A CTIVE phased arrays are different from passive phased
arrays in that they contain an active transmit/receive

(T/R) module behind each radiating element.1 Since the num-
ber of such active modules, all operating in parallel, is vastly
greater than the number of transmitters and receivers in passive
array architectures, the probability of some module failure
tends to be correspondingly higher. However, in contrast to
the passive array, a module failure in an active array does not
have catastrophic consequences. The effects of such failures
are usually expressed in terms of corresponding degradation
of the antenna pattern and possible losses of some transmit
power. The amount of degradation depends on the number
and types of failures and on their location within the array.
Increased module age and excess temperature will contribute
to such failures.

As the number of failed modules increases, the pattern
gradually worsens until at a certain point it becomes unaccept-
able. The array is then considered to have failed. The precise
degradation level required to declare an array failure depends,
of course, on system specifics. When this point is reached,
the array should have modules replaced or be scheduled for
overhaul.

To increase the mean-time-between-failures (MTBF) of an
active array—thereby increasing its availability—it is neces-
sary both to maximize the average lifetime of a T/R module
through appropriate manufacturing and maintenance processes
and to mitigate the effects of module failures through the im-
plementation of reasonably effective autocompensation tech-
niques. Such techniques modify the illumination function
across the remaining “healthy” elements so as to best compen-
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sate for the pattern degradation caused by the failures. Beside
extending the array’s MTBF, a successful implementation of
an autocompensation technique will also ensure that the user
will obtain the best possible performance out of the array over
any given time interval. An effective autocompensation will,
therefore, be important not only to control cost, but also to
ensure that when simple repair and recalibration is not within
reach, the degradation of an error-compensated array will be
slow and graceful.

Prior works in the field known to these authors consist
either of complex syntheses of new “optimal” antenna patterns
using the remaining elements after multiple failures (see,
e.g., [1]–[3]) or of compensation techniques geared toward
improved performance in the presence of specific external
interference sources [4], [5].

In this work, the chief concern was to develop an auto-
compensation technique of a practical—as opposed to opti-
mal—nature. The goal was to achieve significant improve-
ments in the patterns of arrays with failures across broad
selectable solid-angle sectors, independently of the external
environment and without having to incur unduly lengthy and
complex computations. We required from the start that our
technique be very simple and that it should adapt easily to
any failed element configuration—no matter how complex.
The next section describes our approach. Validation results
are given in Section III.

II. TECHNICAL APPROACH

The radiation pattern of a phased-array antenna is a prop-
erly weighted linear superposition of its individual element
patterns. In a similar vein, we require that the compensation
adjustment for a composite failure in an active phased array
be constituted of a linear superposition of individual single
failed element adjustments. (Throughout this paper, we use
the terms “failed module” and “failed element” interchange-
ably—always implying that it is the active module behind the
radiating element that failed.)

We first assume that separate built-in-test/fault-isolation-test
(BIT/FIT) circuits are in place to detect each module failure.
We next require that in each offending module, the responsible
channel be turned off in such a way that the radiating element
will remain connected to a matched load. This is done in order
to avoid having to address the specific nature of each failure.
Another implicit assumption is that the interelement coupling
across the array will not be disturbed when an element is
switched into its “off” state. The array architecture should be
supportive of these capabilities.
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After the above steps have been taken, we proceed to imple-
ment our failure compensation technique as described in the
following sections. Though, in principle, failure compensation
techniques can be employed both on transmit and receive, we
choose to focus our present effort on the receive path. We
consider this path to be the more important because to conserve
transmit power active arrays usually implement much lower
sidelobe patterns on receive than on transmit. Also, because
oftentimes the solid-state power amplifiers employed in active
phased arrays are designed to operate in a saturated mode,
the indicated autocompensation technique would necessarily
be different in some respects than that to be employed on
receive, e.g., it would not include amplitude compensation.

A. Single-Element Failure Compensation

We divide the compensation process for a single-element
failure into two complementary steps. The one step restores
performance at and near the pattern’s azimuth plane; the other
step recovers parts of the lost performance in the pattern’s
elevation and intercardinal planes.

Relative to the ensuing discussion, it will be borne in mind
that the so-called “principal azimuth” and “principal elevation”
planes are defined in relation to the antenna pattern. Their
actual orientations depend on the locations of the main-beam
axis and the array’s elevation axis (i.e., its axis.) The
pattern’s principal elevation plane always contains these two
vectors and, therefore, even when steering with the main beam
in azimuth, it always remains vertical in relation to the array
coordinates’ azimuth plane. The pattern’s principal azimuth
plane, though always perpendicular to the array’s elevation
plane, also contains the main beam’s axis. Therefore, it only
coincides with the array coordinates’ azimuth plane when the
main beam’s axis is also in that plane. In what follows, we will
frequently refer to the pattern’s principal or cardinal planes
simply as the “azimuth” and “elevation” planes.

Since air and surface-borne arrays are usually mounted at
close to vertical orientations, the pattern’s principal planes can
often be loosely associated with the azimuth and elevation
planes as defined by the local earth coordinates. It will be
seen that this association is important to the understanding of
the potential operational significance of the autocompensation
technique to be described.

B. Pattern Compensation in the Azimuth Plane

1) A General Description:In the principal azimuth plane,
the far-field pattern is defined by a one-dimensional az-
imuth illumination function. It is obtained from the two-
dimensional array illumination function by collapsing every
column illumination into the sum of its individual-element
component weights. When an element in a given column fails,
it influences the azimuth pattern through the decrease of the
scalar amplitude sum that corresponds to this column. This
pattern can be easily repaired by increasing the amplitudes of
other elements in the column by the total margin necessary to
offset this shortfall.

Fig. 1(a) shows a rectangular grid array in which one
element has failed. The failed element is indicated, together

(a)

(b)

(c)

Fig. 1. (a) Rectangular array with central element failure and compensating
elements highlighted. (b) Amplitude compensation for element failure. (c) A
pattern compensation in the azimuth plane via amplitude adjustments to the
near column neighbors.

with its immediate neighbors in the column. Fig. 1(b) shows
the way that the three corresponding electric field vectors
add up in the principal azimuth plane—before the failure,
after the failure, and after amplitude compensation has been
applied. Fig. 1(c) shows the corresponding antenna patterns
in the principal azimuth plane. The prefailure and postfailure
compensation patterns are identical.

As long as the compensating elements are selected strictly
within the failure’s own column, the principal azimuth pattern
at the carrier frequency is precisely restored. The effect of such
compensation schemes on the pattern behavior in other planes
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Fig. 2. Effects of amplitude compensation scheme on elevation plane pat-
tern.

is always less than perfect. The specifics of this behavior
depend on how the compensation is implemented within the
column.

2) Compensation Options and Selection:There is gener-
ally a multitude of options as to how to select compensating
elements within a failure column. Their relative impacts can
be best understood by comparing the two extreme options. Of
these, one confines the compensating action to the failure’s
two immediate neighbors. The other spreads it throughout the
entire column.

When the two nearest neighbors are used, each will have
its amplitude increased by half the amplitude of the failed
element. Clearly, in the principal azimuth plane, the illumina-
tion function will thereby be completely restored. However,
as we begin to depart from the azimuth plane the thus
compensated illumination function will also begin to depart
from the illumination ideal for these planes. This is because
the projections of the compensating elements’ locations onto
planes other than the principal azimuth plane are different from
that of the failed element. Since the elements used are nearest
to the failure, this departure will normally be quite small
near the azimuth plane. In the neighborhood of the principal
elevation plane substantial additional pattern degradation is
expected because there the departure will be maximal.

This additional degradation near the elevation plane can be
avoided by using the entire column to compensate for the
failure. When this is done, the failed element’s amplitude can
be spread across the remaining elements in the proportions
dictated by the illumination function prevailing in the column.
Performance in the principal azimuth plane is thus perfectly
restored without introducing an additional degradation into the
principal elevation plane.

Fig. 2 shows principal elevation plane patterns for the array
in Fig. 1. Shown are the prefailure pattern, the uncompensated
postfailure pattern, and the compensated postfailure pattern.
The amplitude compensation is identical to that shown in
Fig. 1(b). Its degrading effect on the principal elevation pattern

is evident. When the amplitude compensation is spread across
the entire column, as per the prevailing illumination function,
it does not degrade from the postfailure elevation pattern.

Though this second scheme is superior in relation to per-
formance in the two principal planes, extensive simulations
showed that overall it was the inferior option. The reason was
that due to the large spread of the correction across the column,
the illumination began to depart very rapidly from ideal even
for slight deviations from the principle azimuth plan. Thus,
the effect of the correction was confined to a very narrow
region immediately adjoining this plane. This was clearly in
opposition to our goal set forth in the introduction of achieving
significant pattern improvement over wide angular sectors. A
general conclusion in this respect, borne out by our results
in Section III, was that to remain consistent with this goal it
would be necessary to confine all single-element compensation
manipulations to the failed element’s immediate neighbors in
the column. The element patterns of these neighbors possess
the phase centers nearest to that of the failed element and
can remain in approximate phase with it across wider angular
sectors than other element patterns. Therefore, we selected
the nearest neighbor compensation as our standard azimuth
compensation scheme. We accepted the resulting degradation
near the principal elevation plane as an additional margin to be
handled by our elevation compensation scheme to be described
next.

C. Compensation in the Elevation Plane

If we were to compensate for the failed element in the
principal elevation plane using the same amplitude technique,
it would be necessary to increase the amplitudes of some
elements within the failed element’s row. This would upset the
illumination function balance already obtained in the azimuth
plane and degrade the now perfect azimuth pattern in that
plane. What we need instead is a degree of freedom that could
be used to improve the elevation pattern without introducing
adverse effects into the azimuth pattern. Next, we show that
phase is such a parameter and describe its utilization in
connection with elevation pattern compensation.

1) Phase Compensation Within the Failure Col-
umn: Fig. 3(a) shows three adjacent elements labeled

and in an array’s column. Behind each element
is a phase shifter that can be used to modify the phase
response of this element independently of all the others.
When the beam is steered to a given elevation via these phase
shifters, the space about it is divided into three regions [see
Fig. 3(b)]: the “horizontal” beam-axis plane and “upper” and
“lower” hemispheres. When the beam points horizontally and
the array columns are vertical, the “horizontal” beam-axis
plane is horizontal and these hemispheres are upper and
lower—also in the local earth coordinates sense.

Fig. 3(c) shows how the three corresponding electric field
vectors add up in each of the three regions. In the beam
plane they are parallel and add up linearly. In the “lower”
hemisphere they add up with a relative phase gradient in one
sense. And in the “upper” hemisphere they add up with a
relative phase gradient in the opposite sense. The size of each
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(a) (b)

(c) (d)

(e)

Fig. 3. (a) Three adjacent column elements together with their phase shifters. (b) Three directions of arrival. (c) CompositeE-field phasors due to three
elements at three directions of arrival. (d) Three elementE-field phasors before and after middle element failure at three directions of arrival. (e) Three element
E-field phasors before failure, after uncompensated central element failure, and after phase rotation compensation at three directions of arrival.

gradient depends on how far from the beam plane the signal
originates.

When the middle ( th) element fails the sum is affected
in each of the three cases. Fig. 3(d) shows the vector sum
before and after failure for each case. In the lower and upper
hemispheres—the differences between the pre and postfailure
vector sums—accounts for sidelobe degradation. In the main
beam it accounts for reduced gain. To compensate for sidelobe
degradation, it is necessary to bring the vector sum of the
remaining neighbors as closely as possible to the original
prefailure three-element, sum. (This is because, when the
sidelobe level is low, the remainder of the column produces a
resultant electric field that is nearly the exact opposite of the
prefailure three-element field.)

Fig. 3(e) shows that we can achieve a correction in one
hemisphere by rotating the phases of the two remaining
elements in such a way as to make them more collinear. The
effect of any given rotation on the antenna pattern depends
on the viewing angle relative to the main beam. The same
figure also shows that the sense of corrective rotation, which
improves performance in one hemisphere and degrades it in
the other hemisphere. By reversing the sense of our corrective
rotation, we reverse the hemispherical preference.

To minimize undesirable rotations to the overall electric
field vector, the corrective rotations applied to the two vectors
must be such as to reproduce the original prefailure direction
of the resultant three-element field in the principal elevation
plane. Given the proximity of the two correcting elements,
their original amplitude weightings would often be nearly
equal. Whenever this is the case, their respective rotations

should be nearly equal in magnitude but opposite in sign.
(When the failure occurs far enough from the center of the
column, the amplitudes of the two neighbors can become less
equal due to the array taper. When this is the case, the entire
effect is also weighted down via the same taper.)

The magnitude of the corrective rotations should be selected
based on the overall behavior across the two hemispheres.
Since azimuth correction requires that both vectors’ ampli-
tudes be increased this must be included in the process of
determining which phase rotation produces the best overall
sidelobe performance.

Fig. 4(a) shows the composite process of amplitude and
phase compensation, as seen from the principal azimuth plane.
Fig. 4(b) shows the corresponding antenna patterns in the
principal elevation plane. It is seen that after phase com-
pensation, the elevation pattern improves considerably in one
“hemisphere” while undergoing some additional deterioration
in the other “hemisphere.” Fig. 4(c) shows a corresponding
cut in the 45 intercardinal plane.

1) Further Considerations Pertaining to Phase-Rotation
Compensation:At any point in space, the antenna pattern is
the normalized phasor sum of all the single elements in the
array. In the main beam, the phasors are nearly parallel. In the
sidelobes they add up to small residual values. If the array is
divided into any two mutually exclusive groups of elements;
then, in the sidelobe region they will be nearly complementary,
i.e., they will form phasor sums of nearly equal magnitudes but
nearly opposite directions. A given element and its immediate
neighbors, can be viewed as one such group. The remainder of
the array forms its complementary group. When the element
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(a)

(b)

(c)

Fig. 4. (a) Description of the compensation, as seen from the principal
azimuth plane. (b) Effects of phase rotations in the two hemispheres: principal
elevation plane. (c) Effects of phase rotations in the two hemispheres: 45�

inclination plane.

fails, the array sidelobe performance can be partially restored
by modifying its neighbors’ phasor contributions, so as to bring
the group’s total (as nearly as possible) to its original prefailure
phasor sum. We have previously introduced both amplitude-
and phase-based methods, whereby such corrections can be
partially achieved. We shall now discuss the phase-rotation
method in more detail and expose some of its properties and
limitations.

(a)

(b)

(c) (d)

Fig. 5. (a) Array receive geometry. (b) Phasor sum near the mainbeam. (c)
Phasor sum near 30� below the mainbeam axis. (d) Phasor sum near the
lower end-fire direction.

Fig. 5 shows an array’s receive geometry in which the main
beam is steered in elevation to radians above the array
broadside. The element spacing in a column is given as “.”
A failed element is shown in the column position “.” Due
to phase steering, the projections of the failed element and
its immediate column neighbors “ ” and “ ” are
equiphase in the plane , perpendicular to the main beam.
Their respective projections in are shown as “ ,” “ ,”
and “ .” The separation between the neighbors’ projections
in is given as

which is less than, or equal to, the original separation in
the array column.
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The relative path delay to the elements along
the receive direction shown (radians below the main beam
axis) is

The received phase differences in the array due to a plane
wave incident from this direction is

Along the main beam axis,is zero and the received signals
are equiphase [see Fig. 3(c.i)]. Immediately above and below
the main beam axis the phase difference changes sign [see
Fig. 3(c.ii) and (c.iii)]. As increases, ( ) can
eventually reach a full cycle (i.e., ) at which point the
orientation changes again, e.g., from that of Fig. 3(c.ii) to that
of Fig. 3(c.iii). When , this happens at

When and , , i.e., along the low-
elevation end-fire direction. At , this condition will
happen at other angles. Because of the above, the phase-
rotation method is truly effective in one hemisphere, while
having a deleterious effect in the other. Furthermore, when
the amplitude of the phasor sum is increased via rotation, as
per Fig. 3(e.ii), it continues to exceed the original, unrotated
amplitude across most of the favored hemisphere, so long as

is close to zero.
In the favored hemisphere, the pattern sensitivity to rea-

sonably sized—i.e., 10–20phase rotations, is not high near
the main beam or near end-fire [see Fig. 5(a) and (c)]. This is
because in these regions the phasors are already nearly parallel
or antiparallel to the sum. The highest sensitivity is obtained
when the phasors are perpendicular to the sum [see Fig. 5(c)].
When and , this happens at or

.
The above observations are supported by Fig. 4(b). In this

figure, it is shown that the region of best sidelobe improvement
is centered about an elevation angle of30 and that the effect
of the correction becomes negligible as the bottom end fire
( ) is approached.

In this work, the specific correction used for all failure
conditions was a single fixed amplitude adjustment and a
single fixed phase rotation. It was selected based on results
from a detailed off-line array simulation that incorporated
different levels of multiple random failures and computed the
effects of the correction in every plane of the pattern. The on-
line application is straightforward. Above all, it requires no
computations. For the arrays under study, rotations close to
15 were generally found to be the best for beam elevations
near the array broadside. They were determined from the
off-line simulation by generating various levels of random
failures, applying different corrections, and comparing results.
In practical applications, different corrections can be selected
off-line as per elevation steering sector.

The following argument is given in support of the 10–20
range of the optimal rotation: in the receive direction most

sensitive to the rotational correction, the phasors from the
adjacent column neighbors are antiparallel [see Fig. 5(c)].
Assume that their average amplitude is close to that of
the failed element’s. Then, if each respective amplitude is
increased by one half the failed element’s amplitude, a 20
rotation would approximate the original prefailure phasor total
in this region. When we spread our rotation compensation
scheme across additional neighbor pairs, as per Section II-C-2
below, the value becomes closer to about 15. Our extensive
numerical simulations have borne this out.

The subjects of correcting outside the principal planes and of
implementing corrections for multiple failures, are discussed
throughout the remainder of this paper.

2) The Compensative Properties of Phase Rotations:We
briefly summarize some key properties of the phase rotation
technique.

1) The effects on overall sidelobe behavior in the upper and
lower hemispheres are opposite. An overall improve-
ment in one hemisphere implies an overall degradation
in the other and vice versa. Therefore, this technique
can only be useful in radar or communication systems
in which the sidelobe performance in one hemisphere is
much more critical than in the other. Airborne surveil-
lance and fire control radars are examples of systems in
which performance in the lower hemisphere is far more
critical than that in the upper hemisphere—especially
near its uppermost reaches. Shipborne radars are exam-
ples of systems in which sidelobe performance in the
upper hemisphere is far more important than that in the
lower hemisphere.

2) For any given compensative rotation, the local effec-
tiveness will be a function of the viewing angle relative
to the main beam’s elevation. The specific performance
values will depend on the array spacings, the carrier
wavelength, and the ideal prefailure illumination func-
tion.

3) The contiguous region size, over which improvement
can be attained, depends on the interelement elevation
spacing measured in carrier wavelengths. The smaller
the spacing is, the wider this region can be made.
Spacings on the order of half-wavelength generally yield
improvement regions of acceptable widths.

4) The effects of this technique tend to be less significant
in the immediate neighborhood of the principal azimuth
plane. This is because in these regions, the three vectors
are nearly parallel to begin with so that not much in-
crease in overall length can be accomplished by rotation.
The missing performance, however, is partially recov-
ered through the azimuth correction, which is effective
in the low-elevation region.

5) In the intercardinal planes, the performance will vary
depending on the inclination angle of the plane. This is
because the projection of the elevation spacing between
the correcting elements depends on this inclination an-
gle. It is not always easy to generate adequate compensa-
tions that are evenly spread across an entire hemisphere
using only the two elements above and below. In the
next section, we will address this issue.



530 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 3, MARCH 1999

2) Phase-Compensation Spread Across Six Immediate
Neighbors: It is possible to achieve an equivalent compen-
sation in the elevation plane by spreading the rotational
correction across the three nearest element pairs, which
straddle the failed element’s position in the column. [See
Fig. 6(a) and (b) for a hexagonal grid example. In these
figures, the failed element is represented by a different symbol.
It has no significance beyond denoting failure.] The magnitude
of the rotation, of course, may have to be adjusted to reflect
the new scheme. As long as attention is confined strictly to
the elevation plane, the two schemes are perfectly equivalent.
However, in every other plane, the compensative behavior
is quite different. In the azimuth plane, the compensation
will no longer be perfect because the amplitude sum in the
neighboring columns has changed.

In the intercardinal planes the behavior will be more bal-
anced than before. This can best be seen by observing the
three element pairs indicated in Fig. 6(a) and (b). (It is easier
to perceive the point if we group these pairs along the three
diagonals of the hexagon, as shown, instead of by columns.)
As the inclination angle grows, the projected spacings of
the failure column pair and of one diagonal pair decreases
in this plane. For the third pair, however, the projected
spacing becomes larger. This provides a more balanced overall
behavior.

When the array has a hexagonal geometry, as in the case
shown in Fig. 6, there is the additional advantage that the
elements of the two neighboring pairs are spaced closer
together than the corrective pair within the failure column. This
broadens their contiguous elevation region of effectiveness.
All of this has been proven through a detailed simulation and
through several compact antenna range measurements.

D. Multiple Failure Compensation

The compensation mechanism for multiple failure is linear
superposition. It is described below.

1) Pattern Compensation via Superposition:When several
elements fail in an active phased array, each receives the same
amplitude and phase correction described in the preceding
sections. Amplitude compensations are applied through the
two immediate neighbors in each failure’s column. In a
hexagonal array, phase compensations are applied through
the three element pairs, which constitute the six immediate
neighbors of each failure. In a rectangular array, it can be
applied either through the single nearest neighbor pair within
each failure’s column or through the three nearest neighbor
pairs that straddle each failure’s row.

The specific rotation to be used is derived only once via
a detailed array simulation and is used without alterations
thereafter. Possible refinements could be attained through the
optimization of separate corrections, say, for different percent
failures, etc. In our simulation work, we found that even
when we used a single corrective rotation for all possible
failure extents and distributions, we still obtained substantial
improvements in our sectors of interest.

Following this approach, the overall compensation is
achieved via the superposition of individual failure com-

(a)

(b)

Fig. 6. (a) Diagonal pairing of compensative elements in neighboring
columns. (b) Projection of compensative element positions onto an
intercardinal plane.

pensations. This is the same mechanism that accounts for the
formation of the overall antenna pattern and for the aggregate
failure pattern.

2) Required Provisions in the Presence of Closely Spaced
Failures: The above described superposition technique ap-
plies in a straightforward way only as long as the failures are
far enough removed from each other to preclude overlapping
of their immediate neighborhoods. When failures occur close
enough together that some of their immediate neighbors are
shared among them, each of these neighbors has to compensate
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for more than one failure. When failed elements are them-
selves immediate neighbors, ideal compensations cannot be
implemented because elements that are to compensate for other
element failures may have failed themselves. Failed elements
at the array edges experience similar problems because they
do not have full complements of neighbors.

Simple rules can be used to modify the compensation
technique in such situations. While the performance still
deteriorates, enough can be salvaged to make the operation
worthwhile. Such a set of rules is described below. It was
used throughout the examples detailed in Section III.

Rules for Handling Closely Spaced Failures:

1) Shared Neighbors:When an element is to compensate
for two or more failures, both its amplitude and phase
manipulations will consist of the linear sum of the indi-
vidual per-failure amplitude and phase compensations.

2) Failed or Missing Neighbor-Amplitude:When one of the
immediate neighbors of a failed element has also failed,
its paired element will assume its original amplitude
correction independent of this failure. (In our current
scheme we didn’t attempt to compensate for this failure.
This was done in the interest of simplicity. In principle,
this can be improved upon.) The same approach applies
when a paired element is missing due to an array edge.

3) Failed or Missing Neighbor-Phase:When one element
of a compensative pair is missing due to failure or due
to proximity to an array edge, the remaining element
will not execute compensative phase rotations. This is
so as to minimize unwanted overall rotations. Stated
differently, phase rotations are only acceptable when
they come in balanced pairs.

III. SIMULATED AND MEASURED RESULTS

We first present the results of a multiple failure simulation,
following the above-described technique. The array was as
shown in Fig. 7. It was octagonal in shape, had a hexagonal
lattice, and contained approximately 2000 elements. In one
test case, 4% of the elements were failed by a random draw.
The failed element distribution across the array is also shown
in Fig. 7.

Fig. 8 shows three performance curves. The bottom curve
represents the ideal root-mean-squared (rms) sidelobe level
of the array prior to any failure computed in various planes.
The horizontal coordinate is the inclination angle of the rms
sidelobe plane given in degrees with respect to the horizontal,
i.e., azimuth, plane. The azimuth plane is thus represented
by the coordinate “0” and the elevation plane by 90. The
abrupt behavior of the curve is due to the relatively coarse,
5 step used by the simulation. The top coarsely-dashed curve
represents the uncompensated rms sidelobe level after failure.
The intermediate curve shows the rms sidelobe behavior after
amplitude compensation only, using the nearest neighbors. In
the principal azimuth plane the correction is perfect. It remains
near perfect for another 10on either side of this plane and
thereafter begins to deteriorate.

Fig. 9 shows the effects of a composite amplitude and
phase compensation. The compensation shown in this figure is

Fig. 7. Randomly selected 4% of elements failed.

Fig. 8. RMS sidelobe level versus reference plane inclination after 4%
failure corrected by applying half-amplitude compensations to two cocolumnal
elements nearest failures.

confined to the immediate neighbors of each failure within its
column. The intermediate curve of Fig. 8 is here replaced by
two curves. One, representing the compensated behavior in the
favored (here lower) hemisphere and the other representing the
compensated behavior in the other hemisphere. The improved
behavior in the favored hemisphere manifests itself through the
better sidelobe behavior throughout the entire hemisphere. In
the other hemisphere, the compensated behavior only becomes
significantly degraded in planes inclined more than 30in
relation to the azimuth plane. Still, the improvement in the
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Fig. 9. RMS sidelobe level versus reference plane inclination after 4%
failure corrected by applying half-amplitude 15� phase compensations to two
cocolumnal elements nearest failures.

favored hemisphere is not large at high inclination angles,
i.e., near the elevation plane. Attempting to improve it by
controlling the phase rotation only resulted in corresponding
degradation elsewhere in the coverage.

Fig. 10 shows how greater improvement can be obtained
in such planes by spreading both the amplitude and the
phase corrections across the nearest six neighbors. The cost is
incurred at and near to the azimuth plane, where performance
is now far less than perfect. This is due to the amplitude
distortion introduced into the neighboring columns.

A more satisfactory solution is shown in Fig. 11. Here
the amplitude compensation is confined to the immediate
neighbors in the failure column, whereas the phase com-
pensation is spread among the nearest six. The behavior
is now quite good near the azimuth plane and continues
to maintain a significant improvement throughout the entire
hemisphere. Furthermore, improvement is realized also in
the other hemisphere, throughout the first 30of inclination.
The sharp deterioration shown at higher inclination angles
constitutes the cost of the improvement. In a high-flying
surveillance aircraft, the large sidelobes at high elevation
angles do not usually matter. Conversely, in a shipboard
radar, where the upper hemisphere would be favored, sidelobe
degradation would be seen at large depression angles. Returns
from such angles are normally short enough in range to be
eclipsed by the transmit pulse.

Figs. 12–14 show the same information for 2%, 6%, and
12% random failure. It is seen that even in the case of 12%
failure, where substantial clumping routinely happens, signifi-
cant improvements still obtain. The deterioration observed near

Fig. 10. RMS sidelobe level versus reference plane inclination after 4%
failure corrected by applying one-sixth amplitude 15� phase compensations
to hexagons surrounding failed elements.

Fig. 11. RMS sidelobe level versus reference plane inclination after 4%
failure corrected by applying half-amplitude compensations to two cocolumnal
elements nearest failures and 15� phase rotations to hexagons surrounding
failed elements.

the azimuth plane is one result of such clumping. (It will be
recalled that to preserve simplicity and practicality when one



LEVITAS et al.: PRACTICAL FAILURE COMPENSATION IN ACTIVE PHASED ARRAYS 533

Fig. 12. RMS sidelobe level versus reference plane inclination after 2%
failure corrected by applying half-amplitude compensations to two cocolumnal
elements nearest failures and 15� phase rotations to hexagons surrounding
failed elements.

Fig. 13. RMS sidelobe level versus reference plane inclination after 6%
failure corrected by applying half-amplitude compensations to two cocolumnal
elements nearest failures and 15� phase rotations to hexagons surrounding
failed elements.

neighbor in the column is also a failure, the element only
receives one half of the required compensation. When both
neighbors fail, no amplitude compensation was applied.)

Fig. 14. RMS sidelobe level versus reference plane inclination after 12%
failure corrected by applying half-amplitude compensations to two cocolumnal
elements nearest failures and 15� phase rotations to hexagons surrounding
failed elements.

Fig. 15. Measured ideal (full array) elevation plane pattern.

Fig. 15 is the elevation plane pattern of a 40-element stick
antenna as measured at a Northrop Grumman compact antenna
range. The stick antenna consisted of two adjoining columns of
20 elements each. Fig. 16 shows the correspondingly degraded
pattern after a single central element was failed. Fig. 17 shows
the resulting elevation pattern after the amplitudes of the
adjoining neighbors in the column were increased by one half
the failed element’s amplitude. Due to the specifics of this case
(element spacing geometry and illumination function details),
a significant pattern improvement was realized at this stage
alone. When phase rotation was added, the improvement in the
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Fig. 16. Measured elevation plane pattern after single uncompensated central
element failure.

Fig. 17. Measured elevation plane pattern after half-amplitude compensa-
tions applied for single central element failure.

preferred hemisphere increased further whereas performance
in the other hemisphere degraded (Fig. 18).

IV. CONCLUSIONS

A failure compensation technique has been introduced for
active phased arrays. It is simple to implement and is com-
patible with real-time requirements. It does not depend on the
external environment and consists of a linear superposition
of individual failure compensations, each of which is applied
through the immediate neighbors of the failed element in
question. It utilizes a combination of amplitude and phase
operations. The amplitude operation role is chiefly to effect
pattern compensation at and near to the principal azimuth
plane. The phase operation role is to effect compensation
elsewhere. It is inherently asymmetrical. Whereas it provides
significant improvement in one hemisphere, it degrades per-
formance in the other—especially in regions far removed
from the principal azimuth plane. This property is found to

Fig. 18. Measured elevation plane pattern after half-amplitude 15� phase
rotation compensations applied for single central element failure.

be compatible with the operational requirements of many
airborne and surface based radar systems. It is particularly
effective at small elevation steering angles. The above has
been demonstrated via detailed simulations and some compact
antenna range measurements.
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