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Near-Field to Near/Far-Field Transformation
for Arbitrary Near-Field Geometry Utilizing
an Equivalent Electric Current and MoM

Tapan Kumar Sarkarfellow, IEEE and Ardalan Taaghol

Abstract—Presented here is a method for computing near- and seventies. This method is derived by first expanding both the
far-field patterns of an antenna from its near-field measurements field radiated by the antenna and the field radiated by the
taken over an arbitrarily shaped geometry. This method utilizes measurement probe, when it is used as a transmitter, into

near-field data to determine an equivalent electric current source lindrical . A . fthe d | i
over a fictitious surface which encompasses the antenna. This©Y!Indrical wave expansions. An overview or the aevelopmen

electric current, once determined, can be used to ascertain the Of near-field scanning techniques is found in [10] where
near and the far field. This method demonstrates the concept the theory of near-field antenna measurements is outlined
of analytic continuity, i.e., once the value of the electric field is peginning with ideal probes scanning on arbitrary surfaces and
known for one region in space, from a theoretical perspective, its ending with arbitrary probes scanning on planar, cylindrical,

value for any other region can be extrapolated. It is shown that d herical f A I—H t detailed
the equivalent electric current produces the correct fields in the and- spherical Suraces. Appe=Hansen presents a aetalie

regions in front of the antenna regardless of the geometry over description of planar, cylindrical, and spherical scanning in
which the near-field measurements are made. In this approach, [11]. Narasiman and Kumar [12] have tried an approach in
the measured data need not satisfy the Nyquist sampling criteria. which near fields on a planar surface are used to synthesize
An electric field integral equation is developed to relate the near source currents on planar arrays or apertures. This technique

field to the equivalent electric current. A moment method proce- K f t solution to the field diated by th
dure is employed to solve the integral equation by transforming it 'MaK€S US€ OF an exact soiution 1o the nields radiated by the

into a matrix equation. A least-squares solution via singular value aperture antenna without disregarding the source currents.
decomposition is used to solve the matrix equation. Computations The far-fields represent the Fourier transform of the near
with both synthetic and experimental data, where the near field field, which extend throughout all space. However, this only

of several antenna configurations are measured over various provides the true fields in the region> 0 in terms of the

eometrical surfaces, illustrate the accuracy of this method. .. . .
g y finite Fourier transform of the measured near fields over a

Index Terms—Antenna arrays. planar surface.
In this approach, by using the equivalence principle [13],
|. INTRODUCTION an equivalent electric current replaces the radiating antenna.

) . . Furthermore, it is assumed that the near field is produced by
HERE exists a large volume of literature on near-fielf,o oqyivalent electric current and, therefore, via Maxwell's
to far-field transformation [1]-[3]. Presented here is gy ation from the measured near-field data, the current source
method for near-field to near/far-field transformation WhicRyy he determined. Once this is accomplished, the near field
requires no sp.ecm(.: geometry for near-field measurements. ,Tanﬁal the far field of the radiating antenna in all regions in space
earliest work in this area was performed in the ear'ly S_'Xt'efﬁ front of the radiating antenna can be determined directly
by Brown and Jull [4] for two-dimensional (2-D) cylindrical fm, the equivalent electric current. It is consequently shown
scanning in WhICh the rad|ate_d field was expanded_ in terMSat from the knowledge of the field in one region of space
of a series of radially expanding modes. The amplitude aﬂ‘?easured over any geometry, the field values for any other

phase of each mode were calculated by a Fourier analysisQfion can be extrapolated, therefore confirming the concept
the measured near field and the radiation pattern was Obta'%‘?%nalytic continuity.

as a Fourier series containing those measured amplitudes angl, alectric field integral equation is developed which per-

phases. Kems [3] a_lso did W(_)rk on planar scanning. Prolging ¢4 the measured near fields and the equivalent electric
compensated spherical scanning formulas were developed-Byrent This integral equation has been solved for the un-
Jenson [6] in 1970. Wacker proposed a method to extract ig,\n electric current source through a moment method
modal coefficients from spherical near-field measurements aﬁ}%cedure [14] with point matching, where the equivalent
asche'me to use fast Fouriertransform (FFT) to compute thQsgrent is expanded as linear combinations of 2-D pulse-
coefficients [7], [8]. Leach and Paris [9] extended the 2-R,qiq functions and, therefore, the integral equation is then
cylindrical scanning theory to three dimensions in the early,nqformed into a matrix equation. In general, the matrix is

rectangular whose dimensions depend on the number of field
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Another aspect of this approach is that the numerical inte- A
grations in the process of creating the moment matrix elements ‘
have been avoided by taking a limiting case. Since the field
points and the source points are to never coincide and if their
distances are much larger than the sizes of the current patches,
then the pulse-basis functions expanding the current source can
be approximated by the Hertzian dipoles.

The formulation and the theoretical basis for the equivalent
electric current approach along with the formation of the
corresponding matrix equation using the method of moments
and its solution using the method of least squares via singular <
value decomposition is presented in the following sections.

Near-field to far-field transformations are generally used
for the far-field characterization of electrically large arrays
and particularly phased arrays. The near-field measurement
of a large antenna is not only very time consuming, but
cumbersome because of measuring the fields over certain
large canonical surfaces with high spatial accuracy. What this
method provides is a methodology not only to minimize the
number of measured data samples that needs to be collected
from a measurement but also shows that it is not necesshl§ 1- Equivalent problem with an electric current sheet.
to compute the fields over an entire canonical surface-imagine
measuring over a cylindrical/spherical near-field measurement B
to deal with a 10-m-long antenna with submillimeter spatial x
accuracy! For planar near-field to far-field measurements, the :
method presented in this paper may be more efficient and accu-
rate than conventional techniques as documented in the various
references [17]-[21]. Also, in this method, the measured field
points need not satisfy the Nyquist sampling criteria. Hence,
this paper is quite suitable for pattern measurements of large
phased arrays.

Il. FORMULATION OF THE ELECTRIC FIELD
INTEGRAL EQUATION BY THE EQUIVALENT
ELECTRIC CURRENT APPROACH AND MoM

Consider an arbitrary-shaped antenna, as shown in Fig. 1,
which radiates into free-space. The aperture of the antennais in o
a surface which separates all space into left-half and right-half
spaces. The aperture of the antenna is placed ir:g¢helane Fig. 2. Equivalent electric current sheet radiating in free-space.
and is facing the positive axis. Since we are interested only
in the electromagnetic field in the region where> 0, we Therefore
place a perfect magnetic conductor in front of the radiating ’
antenna extending to infinity in the and y directions on J =2axH 3)
the zy plane of the antenna. This is denoted fy. By the o ) )
equivalence principle [13], a surface electric currdhtan be radiating in free-space (Fig. 2) and producing exactly the same
placed on a perfect magnetic conductor covering the apertfjld @s the original antenna in the regien> 0. Now the
of the antenna. The value df is equal to the tangential valueM&asured electric near field may be used to deterdhifrom
of the magnetic field on they-plane (Fig. 1) Emeas = E(J) (4)

J=axH onSy (1)  where E,.s is the electric near field measured over a ge-

) L . ometry at a distance away from the aperture of the radiating
where H is the magnetic field on they plane andh is the  gntenna.

unit outward normal to they plane, pointing in the direction  £rom Maxwell's equations, the electric field operator is ex-
of the positive axis. pressed in terms of its electric current source in a homogeneous

Using image theory [13], an electric curredt may be adium as
introduced on thery plane whose value is 1
E(J)=—jwpA(d)+ —V(V-AJ 5
oy o (B = —jenA@) + S V(V-AQD) )
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where A(J) is the magnetic vector potential defined as The effect of thed functions in (15) is to replace the integrals

in (19) by their integrands evaluated at the positions of the

A = o [ 3@t s ©) 5 functions.
RS Since the electric near-field is known at discrete points
where on the geometry over which it has been measured, a point-
g, J.,. J, matching procedure [14] is chosen. Substituting (15) into (4)
V=541 a_yy+ 92" () and (5) and utilizing point matching, the following matrix
and equation is obtained:
g(r, ') = i = IR (8) E ] Ly L] [J,
e P Bl i |

The primed variables correspond to the source values and the
unprimed variables correspond to the field values. The regiviere Epeas, 6 and Epeas 4 are complex quantities whose
So where the equivalent electric current resides is taken to Bements are thé and¢ components of the electric near field,

a rectangle in they plane for which—w,. /2 < = < w, /2 and
—w, /2 <y < w, /2.5 is divided intoN, N, equally spaced
rectangular patches with dimensiafis andAy (Fig. 3) given
by
Az =w, [N,
Ay =wy /N,

(9)
(10)

x; andy; are thex andy coordinates of the center of thigth
patch and are given by

y; =—wy/2 — Ay/2+ jAy.

The components of the equivalent electric currénand./,,

T; (11a)

(11b)

are approximated by equally spaced 2-D pulse basis functions

N. N,
= Z Z Yii iz (2, o)

(12a)
i=1 j=1
N. N,
=) Byl o) (12b)
i=1 j=1

where~;; andB;; are the unknown coefficients of the and
y-directed electric currents, respectively, on tj¢h patch.

1L (",

ijth patch and is defined as

Ax , Az
Ty — 7 <z <z + 7
roon )1, if 13
H(az Y= Ay , Ay (13)
ij Yi——5 Sy Syj—i-T
0, otherwise.

Since it is assumed that the measured field points are far from L

the current carrying regiotby, the 2-D pulse-basis function

may be approximated by a Hertzian dipole existing at the

center of thesjth patch. Therefore

(', o) = ArAyd(z’ — @i, ¥ — y;). (14)
When (14) is substituted into (12) we have
Z Z Vi AxAyd(z' — zi, vy —y;)  (15a)
=1 j=1
Z Z By AzAys(x’ —z;, 4/ — ;). (15b)
=1 j=1

y') is the 2-D pulse basis function pertaining to the

respectively, measured at discrete poui;sandJ are column
vectors whose elements are the unknown coefficigptaind
B,,, respectively.L;, Lo, L1, and Ly, are the submatrices
of the entire moment matrix in (16) whose explicit expressions
are given in (17a)—(17d)

[L11]k, ¢

= [COS 0 cos ¢y, e ko R ¢

Jwp 3n 3
| (@t — o) + — %
l * R, Ry, Jjwel,
Jwp n 3
_ + 7 ' .
Rie R, JjweR},
+cos By, sin ¢y, e~ IR0 B
s H Jwp 3n 3
( k z)( K z)(}gz’[ Rﬁ,z ](ust’[
— sin @), ¢ ko R, e
f s f Jwit 3n 3
At = 292! n .
(o] - a2 u(szé e+
AzA
T (172)
T
[L12]k, e
= | cos By cos ¢y e TR RE €
A(ed — 22 _ Jwp 3n 3
(x] — &)y ye)<Rz7[ + 7 Jw&Ri,)
+ cos Oy, sin ¢y, ¢ R0 B e
Jwp 3n 3
. (yf _yS)Q + b _
L L R}, Ry, JjweR;,
_(dwm 1
Rk:é Rz:é jwstyé
—sin 6y, e_jkORk,l’
Jwi 3n 3
[@ — )z ><Rzl * i jwaR;) ]

AxAy
4

(17b)
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Lop]x, e
[ ] ) Ay -H,/2 (1,3) (1,8
= [ — sin (/)k CijkoRk’C Ax /a o tj: !:
(1, - ] ] o ] o o
Jwn 3n 3 “aa cee
’ (x{ _sz R3 + R: + iwelR?
k, ¢ ke JWELY 4 ' *  aperture plate (5.
_ jwu n n n 3 -H, /2 . ’ . ’H,/z oy
R, ¢ Ri,e jWERz,é .- --
. 1
—ika Ry s ~o o o
—cos g e 0Tk ey
|
f S f J I’L 3/’L 3 . M 0 : ’
(@ — 2y, — wi) + + - . ¢ :
[ * Rz,z Rﬁ,z JweRy, ¢ .o .
AzA (M, 1)-{_ o o o o
= (170) s
(L] dr /2 (H,H)
22|k, £
I x
= | —sin ¢, eI B . _ _ _
ks Fig. 3. PlateS, on thexzy plane where the equivalent electric current resides.

Using singular value decomposition, the matAxcan be
decomposed into

Fooav f e[ Jwr 31 3
[(xk z7) (Y, y£)<Rzyé+RﬁJ+jwsR2J

+cos ¢ e Jko R, e

Jwp
(vl - y?)2< +

R}, Ri, JjweR}, where the matrixXU is M x r and contains the left singular
) vectors of A and theV is N x » and contains the right
_(aem 1
Rkyg R% ¢ JCUER% ¢

A~ UxVH (20)
3u 3 )

singular vectors. The superscriitdenotes complex conjugate
transposeX with dimensions: x » contains a diagonal matrix

AzrAy with » singular values of matriA and the rest of its entries
T ar (A7d)  are zero
wheref;, and¢;, are thef and¢ coordinates, respectively, of a1
the kth-field measuring point and; andy; are thex andy 02
coordinates, respectively, of thh source pointR;, ¢ is the 0
distance between thith field point and the/th source point T
and is given by x= 0 : (21)
0 0
Rae =\l =2+ -9 + (D2 (19)
Note that in (17) the two subscriptaand;j have been replaced - 01
by the single subscript. That is(z7, y;) is (x;, y;) wherei  The singular values below some valae(given) are set to
and j are determined by. zero and only~ dominant singular values are retained. Since
The resulting matrix equation (16) with supporting equatiofy and v are unitary matrices, we have
(17) has been solved for the eIemeri;sandJ This matrix
equation is solved using the method of least squares with vt =yt (22)
singular value decomposition [15]. vl —yH. (23)
Let us rewrite (16) in the following form:
S o Therefore,A=! may be written as
AX =E. (19
Alxvy iyt (24)
In (19), A is the moment matrix and in general is rectangular
with dimensionsM x N, where M is the number o and where
¢ components of the measured electric field (i&.,is the /o1 0
number of equations) and’ is twice the number of patches 1/
in Fig. 3 (i.e., N is the total number of unknownsX is the sl _ _ (25)

N x 1 unknown column vector of the elemenfs and.J,, and
FE is the right-hand side or the knowi x 1 column vector 0
containing the measured values of electric field. /o
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Fig. 4. (a) and (b) Comparison of exact and computed far fieldgfoe 0° and 90 cut for a 2 x 2 electric dipole array on a 3\6x 3.6\ surface.
Near field was measured on an arc.

. Normahzed Far Field - Numerical ++ Exact
§’ 0 v .
T
:E -20 " -
> 3
~ -40 —
g
._E _60 1 1 L 1 t t
& -100 -80 ~60 -40 0 40 60 80 100

@)

R e A, r“w,hzf* ——

=90 deg
o
i
4\?
=

d

[=3

< -ao0f .
o

Q

'E; -60 s " s s

;5 -100 ~0o -60 ~40 -20 0 20 40 60 80 100
w

Theta (¢ Degrees )
(b)

Fig. 5. (a) and (b) Comparison of exact and computed far fieldgfoe 0° and 90 cut for a 2 x 2 electric dipole array on a 36« 3.6\ surface.
Near field was measured on a hemisphere.

Now the vectorX can be determined by premultiplyiné How much error will this produce is still an open question.

by A~! Also, the measured data need not satisfy the Nyquist sampling
. 1z criteria. This sampling requirement has been transformed to
X =A"E. (26)  the basis functions where this enforcement is quite easy.

From (22) and (23) we have

4 _ I1l. NUMERICAL RESULTS
X ~VETiUHE. (27)

In this section, by the use of both synthetic and experimental
As described by (24), the solution of the matrix equanear-field data, we attempt to illustrate the accuracy of the
tion (16) with supporting equation (17) requires no matrirnethod presented here for near-field to near/far-field trans-
inversion. formation. The results will include experiments with different
It is important to point out that the only error incurred irantenna configurations as well as near-field data taken over
this theoretical procedure is truncating the surfaggto S,. various geometries. As a first example consider a four-dipole
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Ephi,phi=0,normalized far-filed (dB)

theta

@)

Etheta, phi=90,normalized far—field (dB)

theta

(b)

Fig. 6. Comparison of spherical modal expansion and this approach for a printed microstrip array. Measured data was used only on a hentisighere.
method. spherical modal expansion. (a) Comparison of the copolar plote fer0°. (b) comparison of the copolar plots fgr= 90°.

array placed at the corners of a 3% 3.6\ planar surface  Next consider the same four-dipole array as described in the
on the zy plane. The center of the 3\6< 3.6\ surface is previous example, however, the near-field geometry is taken
located at £ = 0, ¥ = 0). At a spherical distance ofA3from along an arc of a sphere. The near-field componghtand £,

the origin with @ < 8 < 30° and 0 < ¢ < 360°, on 200 have been computed analytically along this arc with radius of
discrete points, both the electric field componehtsand £, 3X and¢ = 0° with —90° < § < 90° at 1° intervals. Fig. 5(a)

are computed analytically. A fictitious planar surface in thend (b) compares the same far fields as in Fig. 4 and again the
zy plane of dimensions ¥Mx 4\ is used to form a planar computed and the exact results are visually indistinguishable.
electric current sheet. This electric current sheet is dividedNext, experimentally measured data is utilized [16]. Con-
into 10 x 10 electric current patches. The values of thesgder a microstrip array consisting of 3% 32 uniformly
currents were determined using synthetically computed nedistributed patches on a 1.5 wm 1.5 m surface. The near
field data and choosing 114 singular values for the moméields are measured at discrete points on a spherical surface at
matrix. Fig. 4 compares the absolute value of the electric faa-distance 1.23 m away from the antenna at a frequency of 3.3
field components computed by the present method with tdHz. The data is taken every 4n ¢ for 0° < ¢ < 360° and
exact far field computed analytically. Fig. 4(a) presefifsin every 2 in ¢ for 0° < ¢ < 8%, i.e., only on one hemisphere.
decibels for¢ = 0° as a function o and Fig. 4(b) presents Measurements have been performed using an open-ended
FEy in decibels for¢ = 90°. The comparison is visually cylindrical WR284 wave guide fed with TE mode. Here a
indistinguishable. The cross-polar components are negligibletitious planar surface on they plane of dimensions 1.9 m
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Fig. 6. (Continued) Comparison of spherical modal expansion and this approach for a printed microstrip array. Measured data was used only on a hemisphere.

-+ - this method spherical modal expansion. (c) comparison of the cross-polar plots fo10°. (d) comparison of the cross-polar plots for= 90°.

x 1.9 m is used to form a electric current sheet. This electric The results are reasonable in the5° < 8 < 45° region
current sheet is divided into 68 60 equally spaced electriceven though the data were available fram< 6 < 90°.
current patches 0.348apart. The total number of unknownsThe other curve on the figure corresponds to the spherical
for the fictitious current was 7200 as compared to the totadodal approach which utilizes the data frobn < 6 <
number of field points which were 8100. The singular valugs0°. It is important to note that the results obtained by the
cut-off in this case was I¢ and the rank of the matrix was equivalent magnetic current approach [17] are more accurate
3047. This figure compares the copolarization characteristictbfin the equivalent electric current technique and it is also
the electric far-field patter&,, obtained by the present methodcomputationally more efficient.

with the result obtained numerically [16]. These numerical
results are the result of near-field to far-field transformation
using spherical wave expansions where the fields are expanded
in terms of TM and TE tor modes. Fig. 6(a) describes The method presented here determines the fields fer0

20 logy( |Ey| for ¢ = 0° and —89° < 6 < 89°. Fig. 6(b) in front of the radiating antenna simply from the knowledge
depicts the copolarization characteristic of the electric farf the near field on any arbitrary geometry in space. Using
field for ¢ = 90°. Fig. 6(c) and (d) describes the crossvarious antenna configurations and near-field geometries, an
polarization characteristics of the far-field patterns. Fig. 6(@vestigation of the accuracy of this method was performed.
depicts20 log, | Ey| for ¢ = 90° and —89° < § < 89°. For cases where synthetic sources were used, the far field

IV. CONCLUSION
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was compared with exact solutions and the agreements gm ____, Field Computation by Moment MethodsOrlando, FL: Krieger,
reasonable. For cases where actual experimental sources \g/ e1987.

. . . 15] G. H. Golub and C. F. Van LoanMatrix Computations,2nd ed.
used, the far fields were compared with the conventional modal” gaitimore, MD: Johns Hopkins Univ. Press, 1989.

approach, which utilized the data frot < 6 < 180°. It [16] Spherical near-field data obtained from C. Stubenrauch, NIST, Boulder,
has been our experience that the equivalent magnetic currgo

Co.
) . . J A. Taaghol and T. K. Sarkar, “Near/far field transformation for arbitarary
approach provides always a better solution than the equivalent near-field geometry utilizing an equivalent magnetic curretEEE

electric current approach. This may be due to the fact that Trans. Electromagn. Compatol. 38, pp. 536-542, Aug. 1996.

. . - . .[18] P. Petre and T. K. Sarkar, “Planar near field to far field transformation
the matrix arising from the electric field operator is more i using an equivalent magnetic current approa¢BEE Trans. Antennas

conditioned than the matrix involved with the magnetic field  Propagat, vol. 40, pp. 1348-1356, Nov. 1992.

operator. In addition, the fields are decoupled for the magne[?@] , “Planar near field to far field transformation using an array and
field dipole probes,lEEE Trans. Antennas Propagatiol. 42, pp. 534-537,
ield operator [17]-[21]. Apr. 1994,

[20] , “Difference between modal expansion and integral equation
methods for planar near-field to far-field transformatioRJER, vol.
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