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Near-Field to Near/Far-Field Transformation
for Arbitrary Near-Field Geometry Utilizing

an Equivalent Electric Current and MoM
Tapan Kumar Sarkar,Fellow, IEEE, and Ardalan Taaghol

Abstract—Presented here is a method for computing near- and
far-field patterns of an antenna from its near-field measurements
taken over an arbitrarily shaped geometry. This method utilizes
near-field data to determine an equivalent electric current source
over a fictitious surface which encompasses the antenna. This
electric current, once determined, can be used to ascertain the
near and the far field. This method demonstrates the concept
of analytic continuity, i.e., once the value of the electric field is
known for one region in space, from a theoretical perspective, its
value for any other region can be extrapolated. It is shown that
the equivalent electric current produces the correct fields in the
regions in front of the antenna regardless of the geometry over
which the near-field measurements are made. In this approach,
the measured data need not satisfy the Nyquist sampling criteria.
An electric field integral equation is developed to relate the near
field to the equivalent electric current. A moment method proce-
dure is employed to solve the integral equation by transforming it
into a matrix equation. A least-squares solution via singular value
decomposition is used to solve the matrix equation. Computations
with both synthetic and experimental data, where the near field
of several antenna configurations are measured over various
geometrical surfaces, illustrate the accuracy of this method.

Index Terms—Antenna arrays.

I. INTRODUCTION

T HERE exists a large volume of literature on near-field
to far-field transformation [1]–[3]. Presented here is a

method for near-field to near/far-field transformation which
requires no specific geometry for near-field measurements. The
earliest work in this area was performed in the early sixties
by Brown and Jull [4] for two-dimensional (2-D) cylindrical
scanning in which the radiated field was expanded in terms
of a series of radially expanding modes. The amplitude and
phase of each mode were calculated by a Fourier analysis of
the measured near field and the radiation pattern was obtained
as a Fourier series containing those measured amplitudes and
phases. Kerns [5] also did work on planar scanning. Probe-
compensated spherical scanning formulas were developed by
Jenson [6] in 1970. Wacker proposed a method to extract the
modal coefficients from spherical near-field measurements and
a scheme to use fast Fourier transform (FFT) to compute those
coefficients [7], [8]. Leach and Paris [9] extended the 2-D
cylindrical scanning theory to three dimensions in the early
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seventies. This method is derived by first expanding both the
field radiated by the antenna and the field radiated by the
measurement probe, when it is used as a transmitter, into
cylindrical wave expansions. An overview of the development
of near-field scanning techniques is found in [10] where
the theory of near-field antenna measurements is outlined
beginning with ideal probes scanning on arbitrary surfaces and
ending with arbitrary probes scanning on planar, cylindrical,
and spherical surfaces. Appel–Hansen presents a detailed
description of planar, cylindrical, and spherical scanning in
[11]. Narasiman and Kumar [12] have tried an approach in
which near fields on a planar surface are used to synthesize
source currents on planar arrays or apertures. This technique
makes use of an exact solution to the fields radiated by the
aperture antenna without disregarding the source currents.
The far-fields represent the Fourier transform of the near
field, which extend throughout all space. However, this only
provides the true fields in the region in terms of the
finite Fourier transform of the measured near fields over a
planar surface.

In this approach, by using the equivalence principle [13],
an equivalent electric current replaces the radiating antenna.
Furthermore, it is assumed that the near field is produced by
the equivalent electric current and, therefore, via Maxwell’s
equation from the measured near-field data, the current source
can be determined. Once this is accomplished, the near field
and the far field of the radiating antenna in all regions in space
in front of the radiating antenna can be determined directly
from the equivalent electric current. It is consequently shown
that from the knowledge of the field in one region of space
measured over any geometry, the field values for any other
region can be extrapolated, therefore confirming the concept
of analytic continuity.

An electric field integral equation is developed which per-
tains to the measured near fields and the equivalent electric
current. This integral equation has been solved for the un-
known electric current source through a moment method
procedure [14] with point matching, where the equivalent
current is expanded as linear combinations of 2-D pulse-
basis functions and, therefore, the integral equation is then
transformed into a matrix equation. In general, the matrix is
rectangular whose dimensions depend on the number of field
and source points chosen. The matrix equation is solved by the
moment matrix, which is decomposed into a set of orthogonal
matrices. The set of orthogonal matrices can easily be inverted.
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Another aspect of this approach is that the numerical inte-
grations in the process of creating the moment matrix elements
have been avoided by taking a limiting case. Since the field
points and the source points are to never coincide and if their
distances are much larger than the sizes of the current patches,
then the pulse-basis functions expanding the current source can
be approximated by the Hertzian dipoles.

The formulation and the theoretical basis for the equivalent
electric current approach along with the formation of the
corresponding matrix equation using the method of moments
and its solution using the method of least squares via singular
value decomposition is presented in the following sections.

Near-field to far-field transformations are generally used
for the far-field characterization of electrically large arrays
and particularly phased arrays. The near-field measurement
of a large antenna is not only very time consuming, but
cumbersome because of measuring the fields over certain
large canonical surfaces with high spatial accuracy. What this
method provides is a methodology not only to minimize the
number of measured data samples that needs to be collected
from a measurement but also shows that it is not necessary
to compute the fields over an entire canonical surface-imagine
measuring over a cylindrical/spherical near-field measurement
to deal with a 10-m-long antenna with submillimeter spatial
accuracy! For planar near-field to far-field measurements, the
method presented in this paper may be more efficient and accu-
rate than conventional techniques as documented in the various
references [17]–[21]. Also, in this method, the measured field
points need not satisfy the Nyquist sampling criteria. Hence,
this paper is quite suitable for pattern measurements of large
phased arrays.

II. FORMULATION OF THE ELECTRIC FIELD

INTEGRAL EQUATION BY THE EQUIVALENT

ELECTRIC CURRENT APPROACH AND MoM

Consider an arbitrary-shaped antenna, as shown in Fig. 1,
which radiates into free-space. The aperture of the antenna is in
a surface which separates all space into left-half and right-half
spaces. The aperture of the antenna is placed in theplane
and is facing the positive axis. Since we are interested only
in the electromagnetic field in the region where , we
place a perfect magnetic conductor in front of the radiating
antenna extending to infinity in the and directions on
the plane of the antenna. This is denoted by . By the
equivalence principle [13], a surface electric currentcan be
placed on a perfect magnetic conductor covering the aperture
of the antenna. The value of is equal to the tangential value
of the magnetic field on the -plane (Fig. 1)

on (1)

where is the magnetic field on the plane and is the
unit outward normal to the plane, pointing in the direction
of the positive axis.

Using image theory [13], an electric current may be
introduced on the plane whose value is

(2)

Fig. 1. Equivalent problem with an electric current sheet.

Fig. 2. Equivalent electric current sheet radiating in free-space.

Therefore,

(3)

radiating in free-space (Fig. 2) and producing exactly the same
field as the original antenna in the region . Now the
measured electric near field may be used to determinefrom

(4)

where is the electric near field measured over a ge-
ometry at a distance away from the aperture of the radiating
antenna.

From Maxwell’s equations, the electric field operator is ex-
pressed in terms of its electric current source in a homogeneous
medium as

(5)
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where is the magnetic vector potential defined as

(6)

where

(7)

and

(8)

The primed variables correspond to the source values and the
unprimed variables correspond to the field values. The region

where the equivalent electric current resides is taken to be
a rectangle in the plane for which and

. is divided into equally spaced
rectangular patches with dimensions and (Fig. 3) given
by

(9)

(10)

and are the and coordinates of the center of theth
patch and are given by

(11a)

(11b)

The components of the equivalent electric currentand
are approximated by equally spaced 2-D pulse basis functions

(12a)

(12b)

where and are the unknown coefficients of the- and
-directed electric currents, respectively, on theth patch.

is the 2-D pulse basis function pertaining to the
th patch and is defined as

if

otherwise.

(13)

Since it is assumed that the measured field points are far from
the current carrying region , the 2-D pulse-basis function
may be approximated by a Hertzian dipole existing at the
center of the th patch. Therefore

(14)

When (14) is substituted into (12) we have

(15a)

(15b)

The effect of the functions in (15) is to replace the integrals
in (19) by their integrands evaluated at the positions of the

functions.
Since the electric near-field is known at discrete points

on the geometry over which it has been measured, a point-
matching procedure [14] is chosen. Substituting (15) into (4)
and (5) and utilizing point matching, the following matrix
equation is obtained:

(16)

where and are complex quantities whose
elements are the and components of the electric near field,
respectively, measured at discrete points.and are column
vectors whose elements are the unknown coefficientsand

, respectively. , , , and are the submatrices
of the entire moment matrix in (16) whose explicit expressions
are given in (17a)–(17d)

(17a)

(17b)
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(17c)

(17d)

where and are the and coordinates, respectively, of
the th-field measuring point and and are the and
coordinates, respectively, of theth source point. is the
distance between theth field point and the th source point
and is given by

(18)

Note that in (17) the two subscriptsand have been replaced
by the single subscript. That is is where
and are determined by.

The resulting matrix equation (16) with supporting equation
(17) has been solved for the elementsand . This matrix
equation is solved using the method of least squares with
singular value decomposition [15].

Let us rewrite (16) in the following form:

(19)

In (19), is the moment matrix and in general is rectangular
with dimensions , where is the number of and

components of the measured electric field (i.e., is the
number of equations) and is twice the number of patches
in Fig. 3 (i.e., is the total number of unknowns). is the

unknown column vector of the elements and , and
is the right-hand side or the known column vector

containing the measured values of electric field.

Fig. 3. PlateSo on thexy plane where the equivalent electric current resides.

Using singular value decomposition, the matrix can be
decomposed into

(20)

where the matrix is and contains the left singular
vectors of and the is and contains the right
singular vectors. The superscriptdenotes complex conjugate
transpose. with dimensions contains a diagonal matrix
with singular values of matrix and the rest of its entries
are zero

...

...

(21)

The singular values below some value(given) are set to
zero and only dominant singular values are retained. Since

and are unitary matrices, we have

(22)

(23)

Therefore, may be written as

(24)

where

... (25)
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(a)

(b)

Fig. 4. (a) and (b) Comparison of exact and computed far field for� = 0
� and 90� cut for a 2� 2 electric dipole array on a 3.6�� 3.6� surface.

Near field was measured on an arc.

(a)

(b)

Fig. 5. (a) and (b) Comparison of exact and computed far field for� = 0
� and 90� cut for a 2� 2 electric dipole array on a 3.6�� 3.6� surface.

Near field was measured on a hemisphere.

Now the vector can be determined by premultiplying
by

(26)

From (22) and (23) we have

(27)

As described by (24), the solution of the matrix equa-
tion (16) with supporting equation (17) requires no matrix
inversion.

It is important to point out that the only error incurred in
this theoretical procedure is truncating the surface to .

How much error will this produce is still an open question.
Also, the measured data need not satisfy the Nyquist sampling
criteria. This sampling requirement has been transformed to
the basis functions where this enforcement is quite easy.

III. N UMERICAL RESULTS

In this section, by the use of both synthetic and experimental
near-field data, we attempt to illustrate the accuracy of the
method presented here for near-field to near/far-field trans-
formation. The results will include experiments with different
antenna configurations as well as near-field data taken over
various geometries. As a first example consider a four-dipole
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(a)

(b)

Fig. 6. Comparison of spherical modal expansion and this approach for a printed microstrip array. Measured data was used only on a hemisphere.� � � this
method. spherical modal expansion. (a) Comparison of the copolar plots for� = 0

�. (b) comparison of the copolar plots for� = 90
�.

array placed at the corners of a 3.6 3.6 planar surface
on the plane. The center of the 3.6 3.6 surface is
located at ( ). At a spherical distance of 3from
the origin with 0 30 and 0 360 , on 200
discrete points, both the electric field componentsand
are computed analytically. A fictitious planar surface in the

plane of dimensions 4 4 is used to form a planar
electric current sheet. This electric current sheet is divided
into 10 10 electric current patches. The values of these
currents were determined using synthetically computed near-
field data and choosing 114 singular values for the moment
matrix. Fig. 4 compares the absolute value of the electric far-
field components computed by the present method with the
exact far field computed analytically. Fig. 4(a) presentsin
decibels for as a function of and Fig. 4(b) presents

in decibels for . The comparison is visually
indistinguishable. The cross-polar components are negligible.

Next consider the same four-dipole array as described in the
previous example, however, the near-field geometry is taken
along an arc of a sphere. The near-field componentsand
have been computed analytically along this arc with radius of
3 and with 90 90 at 1 intervals. Fig. 5(a)
and (b) compares the same far fields as in Fig. 4 and again the
computed and the exact results are visually indistinguishable.

Next, experimentally measured data is utilized [16]. Con-
sider a microstrip array consisting of 32 32 uniformly
distributed patches on a 1.5 m 1.5 m surface. The near
fields are measured at discrete points on a spherical surface at
a distance 1.23 m away from the antenna at a frequency of 3.3
GHz. The data is taken every 4in for 0 360 and
every 2 in for 0 89 , i.e., only on one hemisphere.
Measurements have been performed using an open-ended
cylindrical WR284 wave guide fed with TE mode. Here a
fictitious planar surface on the plane of dimensions 1.9 m
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(c)

(d)

Fig. 6. (Continued.) Comparison of spherical modal expansion and this approach for a printed microstrip array. Measured data was used only on a hemisphere.
� � � this method. spherical modal expansion. (c) comparison of the cross-polar plots for� = 0

�. (d) comparison of the cross-polar plots for� = 90
�.

1.9 m is used to form a electric current sheet. This electric
current sheet is divided into 60 60 equally spaced electric
current patches 0.348apart. The total number of unknowns
for the fictitious current was 7200 as compared to the total
number of field points which were 8100. The singular value
cut-off in this case was 10 and the rank of the matrix was
3047. This figure compares the copolarization characteristic of
the electric far-field pattern obtained by the present method
with the result obtained numerically [16]. These numerical
results are the result of near-field to far-field transformation
using spherical wave expansions where the fields are expanded
in terms of TM and TE to modes. Fig. 6(a) describes

for and . Fig. 6(b)
depicts the copolarization characteristic of the electric far
field for . Fig. 6(c) and (d) describes the cross-
polarization characteristics of the far-field patterns. Fig. 6(c)
depicts for and .

The results are reasonable in the region
even though the data were available from .
The other curve on the figure corresponds to the spherical
modal approach which utilizes the data from

. It is important to note that the results obtained by the
equivalent magnetic current approach [17] are more accurate
than the equivalent electric current technique and it is also
computationally more efficient.

IV. CONCLUSION

The method presented here determines the fields for
in front of the radiating antenna simply from the knowledge
of the near field on any arbitrary geometry in space. Using
various antenna configurations and near-field geometries, an
investigation of the accuracy of this method was performed.
For cases where synthetic sources were used, the far field
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was compared with exact solutions and the agreements are
reasonable. For cases where actual experimental sources were
used, the far fields were compared with the conventional modal
approach, which utilized the data from . It
has been our experience that the equivalent magnetic current
approach provides always a better solution than the equivalent
electric current approach. This may be due to the fact that
the matrix arising from the electric field operator is more ill
conditioned than the matrix involved with the magnetic field
operator. In addition, the fields are decoupled for the magnetic
field operator [17]–[21].
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