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Abstract—In this paper, we present a new array calibration
procedure for over-the-horizon (OTH) radar, using disparate
sources. Unlike previous array calibration methods, which re-
quire a specific type or class of sources for calibrating the
array, the method we propose can use combinations of single-
mode, multimode, and near-field sources; each source with either
known or unknown DOA’s (directions-of-arrival). Multidimen-
sional MUSIC is exploited for time-invariant DOA sources, while
single-snapshot techniques are used for sources that have time-
varying DOA’s. A nonlinear separable least-squares solution to
the array calibration problem is used to estimate the array
coupling matrix and sensor positions. Simulation results indicate
that good estimates are obtained for the unknown parameters
and further the array sidelobe levels and bearing errors are
significantly reduced when these estimated parameters are used in
array processing. The algorithm performance was also compared
with the Cramer–Rao lower bound and found to be statistically
efficient.

Index Terms—Array calibration, Cramer–Rao lower bound,
Jindalee, meteors, OTH radar.

I. INTRODUCTION

A RRAY calibration has been an active area of research
in array processing for the last few decades with many

papers relating mainly to sonar and radar being published
in [1]–[29]. For towed sonar hydrophone arrays, receiver
gain/phase errors and the time-varying sensor position er-
rors, degrade performance. Radar arrays generally have time-
invariant sensor position errors, but have the additional prob-
lem of mutual coupling. In this paper, we consider radar
receiver arrays, for example, for bistatic over-the-horizon
(OTH) radar applications.

For OTH radar arrays errors in sensor positions, unknown
mutual coupling and receiver gain/phase variations are known
to degrade performance [30]. Hence, for such radars currently
being developed for coastal surveillance, which incorporate
antenna arrays that can be erected quickly on unprepared
sites, array calibration is essential. While gain/phase errors
may be calibrated relatively easily by the injection of signals
at the receiver inputs, both sensor position errors and mutual
coupling require more sophisticated calibration methods.
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Fig. 1. Illustration of disjoint clusters:A;B; andC are disjoint clusters,
each of which may contain a number of sources/signals.

For OTH radar array calibration one may use special sources
such as beacons, noise sources such as radio stations, and
sources of opportunity such as backscattered echoes from
meteors. These sources have widely varying properties, which
must be accounted for when used for array calibration [31],
[32]. For example, in [28], [29] we showed how backscattered
echoes from ionized meteor trails may be used for array
calibration.

Unlike previous array calibration methods, which require
a specific type or class of sources for calibrating the array,
the method we propose here can use all available sources
for array calibration. For example, the methods proposed by
See and Ng [21]–[23], [27] to estimate sensor positions and
mutual coupling, need disjoint single-mode sources of known
DOA’s and the DOA’s must be time-invariant. The method we
propose here, however, can use disjoint1 clusters (see Fig. 1) of
nondisjoint single-mode, multimode, and/or near-field sources,
with either known or unknown DOA’s. Further, the DOA of
each source may be either time-varying or time-invariant.

In Section II, we describe the signal model. In Section III,
we consider the case of a cluster of time-varying DOA sources.
In Section IV, the case of a cluster of time-invariant DOA
sources are considered and we formulate the problem for each
case. Then, in Section V, we show how to combine cost func-
tions from a number of clusters of either type into an overall
cost function. In Section VI, the proposed algorithm is given
with a simulation example in Section VII. Statistical analysis
of the algorithm is conducted in Section VIII and the algorithm
is compared with the Cramer–Rao lower bound in Section IX.
Section X contains the conclusion, while the Appendix give
an example and contain mathematical derivations.

1By disjoint we mean that they do not occupy both the same time snapshots
and the same radar range cells.
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II. SIGNAL MODEL

For a narrowband signal impinging an -element
array, in the absence of mutual coupling, the output of the

th sensor is

(1)

where & are the gain and phase errors and is
additive receiver noise. The radar operating radian frequency is

, , and define the
position of the th sensor for a two-dimensional (2-D) array,

is the DOA2 of the signal (with respect to broadside), and
is the speed of light in free-space.
The vector of sensor outputs of the array is

(2)

where

.
In the presence of mutual coupling [33]

(3)

where is called the coupling matrix.
Matrix is the identity matrix, is the array
mutual coupling matrix, and is the scalar load impedance.
The covariance matrix for this signal, assuming zero mean
noise, is

(4)

Given either measurements and/or estimated covariance
matrices for a number of signals, the problem is to estimate
the sensor positions and coupling matrix by formulating a cost
function and minimizing it with respect to these and other
unknown parameters. We have assumed here that the data
have been corrected for gain/phase errors.

III. T IME-VARYING DOA SOURCES

For time-varying DOA sources one cannot obtain a mean-
ingful spatial covariance matrix due to the nonstationary
spatial behavior of the source. Instead, one can use single-
snapshot data for array calibration provided the signal-to-
noise ratio (SNR) is sufficiently high. In fact, time-varying
DOA sources, which have distinct DOA’s each snapshot, can
provide multiple single-snapshot sources for array calibration.
Examples of time-varying DOA sources are meteor head
echoes and calibration sources mounted on a truck or aircraft
[31], [32].

For the case of one single-mode source, a single snapshot is

(5)

for which we formulate a nonlinear least squares problem with
a cost function

(6)

2For time-varying DOA signal�1 = �1(t); however, for simplicity of
notation, the dependence is not shown but can be easily inferred from the
context.

For the case of multiple sources, either uncorrelated or
correlated (multimode) signals, which are overlapped in time
(nondisjoint), we can generalize (5) as follows forsignals:

(7)

where and the vector of
complex signal amplitudes is . The cost
function is then

(8)

IV. TIME-INVARIANT DOA SOURCES

We call time-invariant DOA sources, those sources whose
DOA varies at most marginally from a nominal value. For
these sources, one can estimate a spatial covariance matrix.
Examples of time-invariant DOA sources are meteor trail
echoes and beacon sources [31], [32]. We start this section
by outlining the multidimensional MUSIC algorithm and then
formulate the problem for time-invariant sources.

Multidimensional MUSIC, proposed originally in [34] (see
also [35]), is a multidimensional search procedure for DOA
estimation. It does not have the drawback of one-dimensional
search procedures (such as MUSIC) of not being able to cope
with coherent signals since it does not assume the signal
covariance matrix to have full rank. Consider the eigenvectors
corresponding to the largest eigenvalues of the covariance
matrix (i.e., the signal subspace) and letbe the matrix whose
columns are these eigenvectors. It can then be shown [36] that
in uncorrelated receiver noise, there exists a matrix/vector
such that

(9)

where the elements of arenot necessarilythe signal ampli-
tudes (unlike the elements ofin Section III), but rather relate
the actual steering vectors (columns of the product ) to
the signal eigenvectors in . The category of sources that
have to be considered here are:

• one single-mode source;
• one multimode source;
• multiple nondisjoint single-mode sources;
• multiple nondisjoint multimode sources.

We formulate a nonlinear least-squares problem for each
cluster of nondisjoint sources as

(10)

where is the signal subspace matrix/vector, and
is a matrix/vector for the cluster of nondisjoint sources.
(Note the subscript in (10) denotes that this norm is the
Frobenious norm.) The number of signals present isand
the number of signal eigenvalues is. If all the signals are
uncorrelated in the cluster then and if any signals are
correlated .

Note that if a source has a time-invariant DOA for some
portion of its duration and has a time-varying DOA for the rest
of the time, one can use the approaches in both Sections III
and IV for the corresponding time segments.
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V. OVERALL COST FUNCTION

We can combine all subproblems, for each and all of the
disjoint clusters, into one problem with a single cost function
using the addition property of norms. The cost function is as
follows:

(11)

where matrix contains a column of for each different
cluster of time-varying DOA sources and column(s) of
for each different cluster of time-invariant sources. is
made up of ’s from each disjoint subproblem/cluster. In the
rest of this paper, will refer to the number of different
subproblems/clusters, to the total number of signals, and

to the number of columns in . An example of the
structure of and is given in the Appendix.

While this problem cannot be solved in general, matrices
, , and have special structures: the coupling matrix we

estimate is symmetric (see [29] for the details), the columns
of are steering vectors, and is a sparse matrix of known
structure. We thus consider minimizing (11) given the special
structure of these matrices. Further, the algorithm we propose
in the next section is only expected to provide a solution close
to the global minimum when the initial parameter values are
sufficiently close to the actual parameter values.

Note that for a near-field source, if the range of the source
from the radar is known as is the case for backscattered echoes
and known transmitters [31], [32], then the steering vector is
known except for the DOA and so these sources can be used
for array calibration.

VI. A LGORITHM

The algorithm sequence for this multiparameter optimiza-
tion was based on the observation that it was possible to
significantly improve the sensor position estimates even when
the coupling parameters were unknown, but it was not possible
to obtain any such improvements in the estimates of the
coupling parameters when the sensor position errors were
large. By trying to improve the sensor position estimates (at
each stage updating the DOA’s and complex’s) and then
estimating the coupling matrix (again at each stage updating
the DOA’s and complex ’s), the cost function is minimized.
The algorithm sequence is shown in Fig. 2.

A. Initialization

As with most nonlinear least-squares problems, the initial-
ization is of paramount importance. First, the nominal sensor
position values and the nominal coupling matrix are used with
the Bartlett spectrum estimation procedure to obtain initial
estimates of each of the unknown signals’ DOA’s.

For the case of each cluster of time-varying DOA sources
the Bartlett spectrum is

(12)

where is the nominal coupling matrix, is the nominal
array steering vector, and is the single snapshot of sensor

Fig. 2. Algorithm sequence.

outputs for the th cluster of time-varying DOA sources. For
the case of each cluster of time-invariant DOA sources

(13)

where is the estimated covariance matrix for theth cluster
of time-invariant DOA sources.

The peak of each spectra gives the DOA of the strongest
source in the cluster. When multiple sources exist (in a cluster)
and their DOA’s have to be estimated from either a single
snapshot or a covariance matrix, the projection matrix is used.
For example if for the strongest signal, one obtained a DOA
of , then the steering vector for finding the next strongest
signal’s DOA is

(14)

This steering vector is then used in the Bartlett spectrum es-
timator above to obtain the next strongest signal’s DOA. This
procedure is repeated for obtaining any subsequent signals’
DOA’s in the cluster.

Once initial values for all these signals’ DOA’s have been
obtained for the cluster, these values together with the nominal
sensor positions can be used to form the matrix , of
steering vectors for the cluster. Using the nominal coupling
matrix and matrix , initial values for the complex ’s
for the cluster are estimated as follows for time-varying DOA
sources case as

(15)

while for time-invariant DOA sources case

(16)

where is the generalized inverse operator. Once all initial
complex ’s for all clusters, have been estimated, the matrix
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in (11) can be formed. Matrix in (11) is created by simply
combining the matrices columnwise.

B. Sensor Position Estimation

The last estimates of the DOA’s, coupling matrix, and
complex ’s are used in this step to estimate the sensor
positions. The last estimates of sensor positions are used in a
Newton search to update the estimates of the sensor positions.

Let where and are the
vectors of estimated sensor positions after theth iteration.
Then

(17)

where is the Hessian matrix for the sensor positions,is the
gradient vector for the sensor positions, and the step length is

. Expressions for this Hessian and gradient, which
are derived from the cost function in (11), are given in the
Appendix.

C. Coupling Matrix Estimation

The last estimates of the sensor positions, the signals’
DOA’s and complex ’s are used in this step to estimate the
coupling matrix. It can be shown that the cost function in (11)
can be rewritten as follows:

(18)

where the element column vector con-
taining all entries of in a column-wise order. Vector
contains the unknown complex coupling matrix
parameters since we assume in this paper that the coupling
matrix is symmetric (see [29] for the details). Matrix is
created from the matrix product ; an expression for this

matrix is given in the Appendix. The
coupling parameters are then estimated as

(19)

D. DOA Estimation

The last estimates of the sensor positions, coupling matrix
and complex ’s are used in this step to estimate the signals’
DOA’s. The last estimate of the signals’ DOA’s are used in a
Newton search to update the estimates of the signals’ DOA’s.
The vector of the signals’ DOA’s after the th iteration is

(20)

where is the Hessian matrix for the DOA’s,is the gradient
vector for the DOA’s, and the step length is .
Expressions for this Hessian and gradient, which are derived
from the cost function in (11), are given in the Appendix.
If any signal has a known DOA, this signal’s DOA is not
considered in (20).

E. Complex ’s Estimation

The last estimates of the sensor positions, coupling matrix,
and the signals’ DOA’s are used in this step to estimate
the complex ’s. For each disjoint cluster of time-varying

DOA sources (15) is used and for each disjoint cluster of
time-invariant DOA sources (16) is used.

F. Assumptions

The following assumptions have been made.

• The number of signals present in each measured snapshot
of array outputs and in each estimated covariance matrix
is known (see [37] for a method to determine the number
of signals). (Note this is not easy in practice when
correlated sources exist.)

• A procedure is available for determining whether a source
has a time-varying DOA or a time-invariant DOA (see
below).

We now suggest a possible approach, which we proposed
in [38] for nonstationary detection, to detect variations in the
DOA of incident signals. The time interval over which the
signal is present is divided into subintervals of duration

. Then covariance matrices are estimated with theth
covariance matrix (where ) obtained over the
interval as follows:

(21)

Note the duration chosen must be long enough to get a good
estimate of and also short enough so that represents
only information at a particular time.

Eigendecomposing each of thecovariance matrices, one
obtains the signal subspace of and the noise sub-
space of . Using as a reference, consider the following
function:

(22)

or alternatively

(23)

If the signal’s DOA is time-invariant, then should remain
small for all , while if the signal’s DOA is time-varying
should increase with. Hence, by considering this function it
should be possible to detect DOA variations.

Note that since mutual coupling and sensor position errors
are both time-invariant over typical radar dwell durations it is
possible to conclude any DOA variation detected by the array
is due to the received signal rather than the antenna array.

VII. SIMULATION EXAMPLE

Simulations were performed for a 16-element, nominally
equispaced linear array with interelement spacing of .
The actual sensor positions were and

, where and are zero mean Gaussian
random variables, each with variance of . The coupling
matrix used was an experimentally measured coupling matrix
from the Jindalee OTH radar transmitting array (situated in
central Australia). The initial sensor positions were taken to
be the nominal sensor positions, while the identity matrix was
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Fig. 3. Simulation example results: cost function decreases with iteration number; the actual(�) and the estimated(+) signals’ DOAs; actual coupling
matrix and estimated coupling matrix; errors in nominal(�) and final (�) sensor position estimates.

used as the initial coupling matrix. The termination criterion
was for the algorithm to stop when the cost functionchanged
in value by less than 0.1%.

In total, 30 sources were used with SNR’s of 30 dB.
The number of snapshots obtained from the time-invariant
DOA sources was 500. Disjoint clusters of time-varying
DOA sources: single source (two clusters), three sources
(two clusters), single known DOA source (several clusters).
Disjoint clusters of time-invariant DOA sources: single source

(two clusters), three correlated sources (two clusters), three
uncorrelated sources (one cluster), two correlated sources with
a single uncorrelated source (one cluster).

The results obtained are displayed in Fig. 3.

• The cost function initially decreases rapidly and then
tends to level off after about 25 iterations.

• The signals’ DOA’s estimates are good in most cases (the
largest DOA errors seem to be associated with clusters
that have multiple signal eigenvectors).
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Fig. 4. Average and peak sidelobe levels for the nominal parameters(���);
estimated parameters(� �) and also the actual parameters(�).

• The magnitude and phase of the coupling matrix used and
the coupling matrix estimated are in close agreement (the
phase is unwrapped for easy comparison).

• The errors in the and coordinates after the final
iteration are much smaller than the errors in the
nominal values .

The degradation due to uncompensated mutual coupling
and sensor position errors on radar performance has been
quantified in [30]; the main degradation was found to be in the
array sidelobe levels and it was shown that this resulted in poor
performance in interference environments. Hence, to analyze
the performance of the algorithm, one needs to compare the
sidelobe levels obtained using the estimated parameters with
those of the uncalibrated array. It can be shown that given
the sensor positions and the coupling matrix, the weighting
required to obtain minimum average sidelobes is

(24)

where is the estimated coupling matrix and is the
steering vector formed using the estimated sensor positions.
The matrix , where the integral
is over the sidelobe region. The array beam pattern is then

(25)

where is the steer direction of the beam, is the DOA
considered, and is the actual steering vector (including
the effects of mutual coupling). Using (25) the sidelobe levels
can then be calculated.

In order to obtain the sidelobe levels using the parameters
estimated in Fig. 3, the sidelobe region required to compute
matrix was chosen so that the resulting beam had the
same beamwidth as the Hamming window. Fig. 4 shows the
sidelobe levels for this example where both the average and
peak sidelobe levels are shown as a function of azimuth. The
sidelobe levels for the estimated parameters is much

Fig. 5. Performance of algorithm for typical number of snapshots and SNR
obtainable from OTH radar sources.

better than the sidelobe levels for the nominal parameters
and is close to the sidelobe levels for the actual parameters
. Hence, we conclude the algorithm has performed well. It

was also observed that the bearing errors were reduced.

VIII. STATISTICAL ANALYSIS

A statistical analysis is required to analyze the algorithm’s
performance in detail. The parameter we consider here is

(26)

where , , are the average
sidelobe level obtained with nominal parameters, with es-
timated parameters and with actual parameters respectively.
Each quantity is expressed in decibels and as a function
of bearing . Hence, if is small (close to zero) the
algorithm has not performed well, while if is large (close
to hundred) the algorithm has performed well.

We initially conducted 100 simulations with the sensor
position errors being randomly generated in each case and
observed that the algorithm performed very well in all cases,
with no failures. To test the algorithm performance for typ-
ical SNR and number of snapshots obtainable from OTH
radar sources, simulations were conducted for different SNR-
snapshot combinations. Two combinations are shown in Fig. 5,
where the SNR and number of snapshots are 20 dB and 5,
respectively, in the top image and 30 dB and 10 in the bottom
image. Note, however, the SNR of time-varying DOA clusters
(single snapshot sources) are 30 dB in both cases. The same
coupling matrix was used in all the simulations.

Clearly, the algorithm has performed very well, robust
results being obtained even for a few snapshots. We have,
however, observed that poor results are obtained when the
SNR of time-varying DOA clusters (single snapshot sources)
is not high (below 25 dB), as one would expect.

The algorithm’s performance can be further improved by
using better initial values for the parameters being estimated.
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Fig. 6. Algorithm performance relative to theoretical performance bound:
STD (�) and 99% confidence intervals (vertical bar) as a function of SNR
for the position of a sensor and for the amplitude and phase of a coupling
parameter. The solid line is the CRLB. Thirty algorithm runs were used to
obtain each STD value.

Note that for the coupling matrix, instead of the identity
matrix, which has been used for these simulations as the
initial value, any modeled or previously estimated coupling
matrix could be used. While, in general, we cannot guarantee
convergence to the global minimum, the results obtained
indicate that good results are obtained for typical initial
conditions.

IX. CRAMER–RAO BOUND

The algorithm’s performance was compared to the
Cramer–Rao lower bound (CRLB) for clusters of multiple
snapshot time-invariant DOA sources. It was assumed that the
location of one sensor and the direction to another is known
and, hence, for the four-element array considered, there
were only five sensor positions unknown. Since
we assume a symmetric coupling and placed the constraint
that , 18 coupling values are
unknown. We considered 11 disjoint clusters, each with a
single-mode source and another disjoint cluster with a single
multimode source (with three correlated signals), all signals
with unknown DOA’s; hence, 14 DOA’s are unknown.
The total number of unknown parameters is, therefore, 37
(the noise power is assumed to be known). The CRLB is
derived in [36].

The solid line in Fig. 6 is the CRLB, where 500 snapshots
are obtained from these time-invariant DOA sources. We have
over-plotted the standard deviation (STD) valuesestimated
from 30 algorithm runs and the 99% confidence intervals
(vertical bar). The results clearly show that the algorithm
attains the CRLB and is hence statistically efficient. We
obtained similar results for the other unknown parameters and
in each case the bias was small compared to the STD.

When multiple snapshot time-invariant DOA sources and
single-snapshot time-varying DOA sources were used together,
we observed that the algorithm’s performance departed from
the corresponding CRLB. This somewhat expected result

is due to only single snapshots being obtained from the
time-varying DOA sources; the CRLB being only achieved
asymptotically (i.e., large number of snapshots and SNR).

X. CONCLUSION

A new array calibration approach, which can combine
signals from disparate sources to estimate mutual coupling and
sensor position errors, has been presented. The performance of
the algorithm has been analyzed using simulations, illustrating
that the algorithm significantly reduces the array sidelobes
and bearing errors. It was also shown that the algorithm
performed well for typical SNR and number of snapshots
obtainable from OTH radar sources and that the algorithm
is statistically efficient. In general, while convergence to the
global minimum cannot be guaranteed for this algorithm, good
results are obtained for typically available initial conditions.

APPENDIX

AN EXAMPLE

Consider disjoint clusters of time-varying DOA sources: one
cluster of a single source; one cluster of three sources (either
correlated or uncorrelated); disjoint clusters of time-invariant
DOA sources: one cluster of a single source; one cluster of
three uncorrelated sources. For this case, , , the
matrix and are as given below, where

, are vectors of single snapshots and, is a vector
and a matrix of eigenvectors

Algorithm Details

A. Expression for matrix in (18): It can be shown that
for the symmetric coupling matrix we employ, the matrix
in (18) is given for all and as

(27)

where and

(28)
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B. Gradient and Hessian in (17):The gradient
vector is and the

Hessian matrix is

(29)

One can rewrite in (11) as

(30)

(31)

where is the th (of ) column of and is the th
column of .

Now define , where is
the Hadamard product and is an matrix with
all but the th row zero; the th element of the th row is

, where is the radar wavelength. Then

(32)

and hence

(33)

(34)

(35)

where is the real part, , and is an
element matrix with all but theth row zero; the th element of
the th row is . Equation (35) is obtained
from (34) since is the zero matrix for .
The partial derivatives with respect to thecoordinates are
obtained by replacing by , where is again an

element matrix with all but theth row zero; the th

element of the th row is in this case. The
terms are similarly obtained (see [36]).

C. Gradient and Hessian in (20):The gradient vec-
tor is and the Hessian matrix
is .

Now define , where
and

is the unit vector with all but theth element zero.
Then from (31)

(36)

(37)

where is the set of all indexes corresponding to the
cluster containing .

From (36)

(38)

where
. Hence

(39)
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Now from (37)

(40)

where and
.
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