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Abstract—In this paper, we present a new array calibration [~
procedure for over-the-horizon (OTH) radar, using disparate ‘
sources. Unlike previous array calibration methods, which re-
quire a specific type or class of sources for calibrating the
array, the method we propose can use combinations of single-
mode, multimode, and near-field sources; each source with either

A
) ¢
known or unknown DOA's (directions-of-arrival). Multidimen- N T
sional MUSIC is exploited for time-invariant DOA sources, while \
single-snapshot techniques are used for sources that have time- B /

Range Cells

varying DOA’s. A nonlinear separable least-squares solution to
the array calibration problem is used to estimate the array
coupling matrix and sensor positions. Simulation results indicate
that good estimates are obtained for the unknown parameters Time (snapshots)

and further the array sidelobe levels and bearing errors are

significantly reduced when these estimated parameters are used inFig. 1. lllustration of disjoint clustersA, B, and C' are disjoint clusters,
array processing. The algorithm performance was also compared each of which may contain a number of sources/signals.

with the Cramer—Rao lower bound and found to be statistically
efficient.

For OTH radar array calibration one may use special sources
Index Terms—Array calibration, Cramer—Rao lower bound, sych as beacons, noise sources such as radio stations, and

Jindalee, meteors, OTH radar. sources of opportunity such as backscattered echoes from
meteors. These sources have widely varying properties, which
I. INTRODUCTION must be accounted for when used for array calibration [31],

%2]. For example, in [28], [29] we showed how backscattered

RRAY calibration has been an active area of resear N .
. . , echoes from ionized meteor trails may be used for array
in array processing for the last few decades with marly

papers relating mainly to sonar and radar being pUb"ShealLiJarl?lzg)n.revious array calibration methods, which require
in [1]-[29]. For towed sonar hydrophone arrays, receiver P y ' q

. . . . a specific type or class of sources for calibrating the array,
gain/phase errors and the time-varying sensor position &r- )

.the method we propose here can use all available sources
rors, degrade performance. Radar arrays generally have tlrge

. . . 2 or_array calibration. For example, the methods proposed by

invariant sensor position errors, but have the additional proQ- : o

lem of mutual coupling. In this paper, we consider radatcc and Ng [21]-[23], [27] to estimate sensor positions and
. piing. paper, \ . mutual coupling, need disjoint single-mode sources of known

receiver arrays, for example, for bistatic over-the—horlzoBOA,s and the DOA’s must be time-invariant. The method we

(OI-:I_(::) (;?r?ﬂarraa:jpaﬁhgfrt;og&errors in sensor positions, unknoWhCPoSe here, however, can use disjbatusters (see Fig. 1) of

mutual coupling and rgceiver gain/phase vzriations,are knoVr\1londisjoint single-mode, multimode, and/or near-field sources,

ith either known or unknown DOA'’s. Further, the DOA of

to degrade performance [30]. Hence, for such radars currenvt\fa/ch source may be either time-varying or ime-invariant

being developed for coastal surveillance, which incor ora?e . . . .
9 P P ‘Ijn Section Il, we describe the signal model. In Section llI,

antenna arrays that can be erected quickly on unprepare ; . X
. . . . . we consider the case of a cluster of time-varying DOA sources.
sites, array calibration is essential. While gain/phase errqrs . 2 .
. . . A . n Section IV, the case of a cluster of time-invariant DOA
may be calibrated relatively easily by the injection of signals :
L i, sources are considered and we formulate the problem for each
at the receiver inputs, both sensor position errors and mutda ) . .
. . S N case. Then, in Section V, we show how to combine cost func-
coupling require more sophisticated calibration methods.

tions from a number of clusters of either type into an overall

_ , , cost function. In Section VI, the proposed algorithm is given
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II. SIGNAL MODEL For the case of multiple sources, either uncorrelated or
For a narrowband signad; (¢) impinging an M-element correlated (multimode) signals, which are overlapped in time
array, in the absence of mutual coupling, the output of t{Bondisjoint), we can generalize (5) as follows fursignals:

mth sensor is z=CAs+n (7)

— —idm — W T
Zm(f) = (14 am)e s(t)e () (@) where A = [a(61),a(62),---,a(fy)], and the vectors of
wherea,, & ¢,, are the gain and phase errors and(t) is complex signal amplitudes ig= [s1, s, - - -,sn]". The cost
additive receiver noise. The radar operating radian frequencyégction is then

W, Trn = (T sin B, + 4y, cosb,)/v, x, andy,, define the 2
position of( themth sensor for a t\zv/o—dimensional (2-D) array, @ = |lz — CAs|". (8)
6, is the DOA of the signal (with respect to broadside), and
v is the speed of light in free-space. IV. TIME-INVARIANT DOA SOURCES
The vector ofM sensor outputs of the array is We call time-invariant DOA sources, those sources whose
A(t) = Ta(6))s1(¢) + n(t) @) EOA varies at most margin.ally from a pominal yalue. For'
ese sources, one can estimate a spatial covariance matrix.
wherez(t) = [z1(t), za(t), - - -, 2a (DT, I = diag{(1 + a1) Examples of time-invariant DOA sources are meteor trail
eI (1 + ap)e™I®v) ) a(,) = [e~iwne e~iwmn  echoes and beacon sources [31], [32]. We start this section
e ne )T () = [ny(t),ne(t), - -+, nar ()] L. by outlining the multidimensional MUSIC algorithm and then
In the presence of mutual coupling [33] formulate the problem for time-invariant sources.
Multidimensional MUSIC, proposed originally in [34] (see
z(t) = Cl'a(01)s1(t) +n(t) (3) also [35]), is a multidimensional search procedure for DOA

1 . . estimation. It does not have the drawback of one-dimensional
whereC = (I + Z,/Zy)~* is called the coupling matrix. .
. : . . . . search procedures (such as MUSIC) of not being able to cope
Matrix I,; is the M x M identity matrix, Z, is the array . . . . .
: ; . . with coherent signals since it does not assume the signal
mutual coupling matrix, and’y, is the scalar load impedance. . . : .
) : o : covariance matrix to have full rank. Consider the eigenvectors
The covariance matrix for this signal, assuming zero mean . . )
noise. is corresponding to the largest eigenvalues of the covariance
' matrix (i.e., the signal subspace) and#be the matrix whose
R= E{z(t)z(t)H}. (4) columns are these eigenvectors. It can then be shown [36] that

in uncorrelated receiver noise, there exists a matrix/vestor
Given either measurement§&) and/or estimated covariancesych that

matricesR for a number of signals, the problem is to estimate
the sensor positions and coupling matrix by formulating a cost E=CAS 9)
function and minimizing it with respect to these and other

unknown parameters. We have assumed here that the@ata where the elements  arenot necessarilfthe signal ampli-
have been corrected for gain/phase errors tudes (unlike the elements sfin Section l1l1), but rather relate

the actual steering vectors (columns of the prodU&sS) to

the signal eigenvectors . The category of sources that
lll. TIME-VARYING DOA SOURCES have to be considered here are:

For time-varying DOA sources one cannot obtain a mean-. gne single-mode source;

ingful spatial covariance matrix due to the nonstationary . gne multimode source;

spatial behavior of the source. Instead, one can use singles myitiple nondisjoint single-mode sources;

snapshot data for array calibration provided the signal-to-. myitiple nondisjoint multimode sources.

noise ratio (SNR) is sufficiently high. In fact, time-varying We formulate a nonlinear least-squares problem for each

DOA sources, which have distinct DOA’s each snapshot, Caster of nondisjoint sources as

provide multiple single-snapshot sources for array calibration.

Examples of time-varying DOA sources are meteor head Q= ||E_CAS||2F (10)
echoes and calibration sources mounted on a truck or aircraft
[31], [32]. whereE is the M x d' signal subspace matrix/vector, asd

For the case of one single-mode source, a single snapshdsig d x d’ matrix/vector for the cluster of nondisjoint sources.
(Note the subscript’ in (10) denotes that this norm is the
z="Ca(f)s+n (5)  Frobenious norm.) The number of signals presend iand
me number of signal eigenvaluesds If all the signals are
uncorrelated in the cluster thef = d and if any signals are
correlatedd’ < d.
Q = ||z — Ca(8)s|’. (6) Note that if a source has a time-invariant DOA for some
) . . . B _ N portion of its duration and has a time-varying DOA for the rest
For time-varying DOA signab; = 6:(t); however, for simplicity of

notation, the dependence is not shown but can be easily inferred from Qlfethe time, one can use Fhe a}pproaches in both Sections IlI
context. and IV for the corresponding time segments.

for which we formulate a nonlinear least squares problem wi
a cost function
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V. OVERALL COST FUNCTION

We can combine all subproblems, for each and all of the Initialisation
disjoint clusters, into one problem with a single cost function IL
using the addition property of norms. The cost function is as T i
folows: [ 1 :
. d Y =
Q=% - CAS|; (11) . Step 1 |
gl . . . 1
where matrixZ contains a column of for each different y sensor position estimation -
. . Q1 DOAs estimation 5
cluster of time-varying DOA sources and column(s) Bf ol complex s's estimation |og
for each different cluster of time-invariant sourceS. is ! P ' 2
made up ofS’s from each disjoint subproblem/cluster. In the R 1 _______________ ! E
rest of this paper/N will refer to the number of different \J f -
subproblems/clustersyr to the total number of signals, and Step 2 | g | ?_;
N to the number of columns iZ. An example of the . o -SRI
~ Lo X R . coupling matrix estimation 2 I
structure ofZ and S is given in the Appendix. DOAs estimation rg |
While this problem cannot be solved in general, matrices complex §7s estimation R
C, A, and S have special structures: the coupling matrix we | |
estimate is symmetric (see [29] for the details), the columns ;_______________: i

of A are steering vectors, arfél is a sparse matrix of known :
structure. We thus consider minimizing (11) given the special
structure of these matrices. Further, the algorithm we propase 2. Algorithm sequence.
in the next section is only expected to provide a solution close
to the_ global minimum when the initial parameter vajues a[)eutputs for thenth cluster of time-varying DOA sources. For
sufficiently close to the actual parameter values. . . .
. . the case of each cluster of time-invariant DOA sources

Note that for a near-field source, if the range of the source
from the radar is known as is the case for backscattered echoes () = v, (OTCIR,C,v,(0) (13)
and known transmitters [31], [32], then the steering vector is

known except for the DOA and so these sources can be uddiereR, is the estimated covariance matrix for thi cluster
for array calibration. of time-invariant DOA sources.

The peak of each spectra gives the DOA of the strongest
source in the cluster. When multiple sources exist (in a cluster)
and their DOA’s have to be estimated from either a single

The algorithm sequence for this multiparameter optimizahapshot or a covariance matrix, the projection matrix is used.
tion was based on the observation that it was possible For example if for the strongest signal, one obtained a DOA
significantly improve the sensor position estimates even wheh#,,,, then the steering vector for finding the next strongest
the coupling parameters were unknown, but it was not possilsignal’'s DOA is
to obtain any such improvements in the estimates of the 1
coupling parameters when the sensor position errors were v,(0) = Iy — i Vo (O )vo(0m) T )vo(6).  (14)
large. By trying to improve the sensor position estimates (at_ ] ) .
each stage updating the DOA’s and comples) and then This steering vector is then used in the Ba_rtlettspectrum es-
estimating the coupling matrix (again at each stage updatiHﬁ‘ator aboye to obtain the next_ s_trongest signal’s DOA._ This
the DOA’s and complex’s), the cost function is minimized. procedure is repeated for obtaining any subsequent signals’

The algorithm sequence is shown in Fig. 2. DOA's in the cluster. _
Once initial values for all these signals’ DOA’s have been

obtained for the cluster, these values together with the nominal
sensor positions can be used to form the mati), of

As with most nonlinear least-squares problems, the initiadteering vectors for the cluster. Using the nominal coupling
ization is of paramount importance. First, the nominal sensgfatrix and matrixA(n), initial values for the complex’s

position values and the nominal coupling matrix are used withr the cluster are estimated as follows for time-varying DOA
the Bartlett spectrum estimation procedure to obtain initigbyrces case as

estimates of each of the unknown signals’ DOA's. N
For the case of each cluster of time-varying DOA sources sn = (CoA(n)) Tz, (15)
the Bartlett spectrum is

VI. ALGORITHM

A. Initialization

while for time-invariant DOA sources case
p(8) = v, (6)"CL 2,2 Cou, (6) (12) S, = (C,A(n))*E, (16)

whereC, is the nominal coupling matrix,(6) is the nominal where( )" is the generalized inverse operator. Once all initial
array steering vector, ang, is the single snapshot of sensocomplexs’s for all clusters, have been estimated, the maftix
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in (11) can be formed. Matrid in (11) is created by simply DOA sources (15) is used and for each disjoint cluster of
combining the matrice#i(n) columnwise. time-invariant DOA sources (16) is used.

B. Sensor Position Estimation F. Assumptions

The last estimates of the DOA's, coupling matrix, and The following assumptions have been made.

complex s’s are used in this step to estimate the sensor. The number of signals present in each measured snapshot

positions. The last estimates of sensor positions are used in a of array outputs and in each estimated covariance matrix
Newton search to update the estimates of the sensor positions. js known (see [37] for a method to determine the number

Let y(k) = [x7(k),y" (k)]* wherexz(k) andy(k) are the of signals). (Note this is not easy in practice when
vectors of estimated sensor positions after itle iteration. correlated sources exist.)
Then ¢ A procedure is available for determining whether a source
- has a time-varying DOA or a time-invariant DOA (see
Yh 1) =) —uH W)k a7y P28 S Emevaning (

whereH is the Hessian matrix for the sensor positions the We now suggest a possible approach, which we proposed
gradient vector for the sensor positions, and the step lengthirig38] for nonstationary detection, to detect variations in the
0 < u < 1. Expressions for this Hessian and gradient, whidbOA of incident signals. The time interval over which the
are derived from the cost function in (11), are given in thsignal is present is divided intd subintervals of duration

Appendix. T. Then L covariance matrices are estimated with tib
covariance matrix (wheré = 1,2,--- L) obtained over the
C. Coupling Matrix Estimation interval (1,4T") as follows:

The last estimates of the sensor positions, the signals’ T
DOA's and complexs’'s are used in this step to estimate the 5 1 H
; X S R, = — z(H)z(H)". 21
coupling matrix. It can be shown that the cost function in (11) T ; (#)2(?) (1)
can be rewritten as follows: '
T _ T (18) Note the duratiorf” chosen must be long enough to get a good
Q=|z | estimate ofR2; and also short enough so th&% represents
where z = vec(Z), the MN; element column vector con-©Only information at a particular time. _
taining all entries ofZ in a column-wise order. Vector ~Eigendecomposing each of tiecovariance matrices, one
contains the M + 1)A/2 unknown complex coupling matrix OPtains £y the signal subspace dt, andU, the noise sub-
parameters since we assume in this paper that the coupifice Offt. Using £, as a reference, consider the following

matrix is symmetric (see [29] for the details). Matri is function:

created from the matrix productS; an expression for this Fb) = IIEHﬁb||2 (22)
(M +1)M/2 x M N3 matrix is given in the Appendix. The !
coupling parameters are then estimated as or alternatively
= (FH*z 19 o o H o o
e= ()2 (19) Fb) = TrE B 0,0, (23)

D. DOA Estimation If the signal's DOA is time-invariant, therf should remain
The last estimates of the sensor positions, coupling matgiall for all b, while if the signal's DOA is time-varying

and complexs’s are used in this step to estimate the signalshould increase with. Hence, by considering this function it

DOA'’s. The last estimate of the signals’ DOA'’s are used in ghould be possible to detect DOA variations.

Newton search to update the estimates of the signals’ DOA’s.Note that since mutual coupling and sensor position errors

The vector of the signals’ DOA's after th{é+1)th iteration is  are both time-invariant over typical radar dwell durations it is
_ -1 possible to conclude any DOA variation detected by the array

Ok +1) = 6(k) — wH—(0(k))r(O(k)) (20) is due to the received signal rather than the antenna array.

whereH is the Hessian matrix for the DOA's,is the gradient

vector for the DOA's, and the step length is< » < 1. VII. SIMULATION EXAMPLE

Expressions for this Hessian and gradient, which are derive

from the cost function in (11), are given in the Appendi

If any signal has a known DOA, this signal’s DOA is n

considered in (20).

dSimulations were performed for a 16-element, nominally
xequispaced linear array with interelement spacing of 0.4 \.
OtLI'he actual sensor positions werg, = md + Az, and
Ym = Ay, WhereAz,, and Ay, are zero mean Gaussian
random variables, each with variance @fid. The coupling
matrix used was an experimentally measured coupling matrix
The last estimates of the sensor positions, coupling matrfrgm the Jindalee OTH radar transmitting array (situated in
and the signals’ DOA’s are used in this step to estimatentral Australia). The initial sensor positions were taken to
the complexs’s. For each disjoint cluster of time-varyingbe the nominal sensor positions, while the identity matrix was

E. Complexs's Estimation
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Fig. 3. Simulation example results: cost function decreases with iteration number; the (agt@eld the estimated+) signals’ DOAs; actual coupling
matrix and estimated coupling matrix; errors in nomifga) and final (x) sensor position estimates.

used as the initial coupling matrix. The termination criterioftwo clusters), three correlated sources (two clusters), three
was for the algorithm to stop when the cost functipchanged uncorrelated sources (one cluster), two correlated sources with
in value by less than 0.1%. a single uncorrelated source (one cluster).

In total, 30 sources were used with SNR’s of 30 dB. The results obtained are displayed in Fig. 3.
The number of snapshots obtained from the time-invariante The cost function initially decreases rapidly and then
DOA sources was 500. Disjoint clusters of time-varying tends to level off after about 25 iterations.
DOA sources: single source (two clusters), three sources The signals’ DOA’s estimates are good in most cases (the
(two clusters), single known DOA source (several clusters). largest DOA errors seem to be associated with clusters
Disjoint clusters of time-invariant DOA sources: single source that have multiple signal eigenvectors).
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Average Sidelobe Level 20dB SNR and 5 snapshots
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Fig. 4. Average and peak sidelobe levels for the nominal parameters), Fig. 5. Performance of algorithm for typical number of snapshots and SNR
estimated parametefs- —) and also the actual parametgks). obtainable from OTH radar sources.

 The magnitude and phase of the coupling matrix used abgtter than the sidelobe levels for the nominal paraméters
the coupling matrix estimated are in close agreement (the and is close to the sidelobe levels for the actual parameters
phase is unwrapped for easy comparison). (—). Hence, we conclude the algorithm has performed well. It
« The errors in thex and y coordinates after the final was also observed that the bearing errors were reduced.
iteration (*) are much smaller than the errors in the
nominal values(o). VIIl. STATISTICAL ANALYSIS

The degradation due to uncompensated mutual couplinga statistical analysis is required to analyze the algorithm’s

and sensor position errors on radar performance has begfformance in detail. The parameter we consider here is
guantified in [30]; the main degradation was found to be in the SLBoon(6) — SLBuwx(6)
_ nom - est

array sidelobe levels and it was shown that this resulted in poor () = + 100 (26)
performance in interference environments. Hence, to analyze SLBuow(0) = SLBaci(6)

the performance of the algorithm, one needs to compare tRRere SLB, 0. (0), SLB.(6), SLB..(#) are the average
sidelobe levels obtained using the estimated parameters Wiflelobe level obtained with nominal parameters, with es-
those of the uncalibrated array. It can be shown that giv@ifhated parameters and with actual parameters respectively.
the sensor positions and the coupling matrix, the weightinghch quantity is expressed in decibels and as a function
required to obtain minimum average sidelobes is of bearing 6. Hence, if () is small (close to zero) the

N N algorithm has not performed well, while4f8) is large (close

w(f,) = (€ )" Da(b) (24) to hundred) the algorithm has performed well.
a(0,)" D™ 'a(6,) We initially conducted 100 simulations with the sensor

h o s th , i i is th position errors being randomly generated in each case and
where €' is the estimated coupling matrix art{¢) is the ,hqened that the algorithm performed very well in all cases,
steering vector formed using the estimated sensor positio,

) NP : (¥th no failures. To test the algorithm performance for typ-
The matrixD = [ a(¢)a(¢)™ cos(¢) dp, where the integral .| SNR and number of snapshots obtainable from OTH

is over the sidelobe region. The array beam pattern is then, 45, sources, simulations were conducted for different SNR-
B, (¢) = ||w(8,)Hv($)|2 (25) snapshot combinations. Two combinations are shown in Fig. 5,
where the SNR and number of snapshots are 20 dB and 5,
where 6, is the steer direction of the beanp,is the DOA respectively, in the top image and 30 dB and 10 in the bottom
considered, an@(¢) is the actual steering vector (includingimage. Note, however, the SNR of time-varying DOA clusters
the effects of mutual coupling). Using (25) the sidelobe leve(single snapshot sources) are 30 dB in both cases. The same
can then be calculated. coupling matrix was used in all the simulations.

In order to obtain the sidelobe levels using the parametersClearly, the algorithm has performed very well, robust
estimated in Fig. 3, the sidelobe region required to computesults being obtained even for a few snapshots. We have,
matrix D was chosen so that the resulting beam had thewever, observed that poor results are obtained when the
same beamwidth as the Hamming window. Fig. 4 shows tB&NR of time-varying DOA clusters (single snapshot sources)
sidelobe levels for this example where both the average asdot high (below 25 dB), as one would expect.
peak sidelobe levels are shown as a function of azimuth. TheThe algorithm’s performance can be further improved by
sidelobe levels for the estimated parameters—) is much using better initial values for the parameters being estimated.
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Cramer-Fiao Bound for X3 ) Cramer-RaoBoundlor v3 is due to only single snapshots being obtained from the
TS A SIS : time-varying DOA sources; the CRLB being only achieved
asymptotically (i.e., large number of snapshots and SNR).

=1
=1

ot

o°

Standard Deviation (lambda}
Standard Deviation (fambda)

} X. CONCLUSION

107 e o A new array calibration approach, which can combine
SNR(08) SNR ) signals from disparate sources to estimate mutual coupling and
1o e a0 Bound fo Ampliude o o2 or omer- a0 Bound r Prase of 2 sensor position errors, has been presented. The performance of

the algorithm has been analyzed using simulations, illustrating
that the algorithm significantly reduces the array sidelobes
and bearing errors. It was also shown that the algorithm
performed well for typical SNR and number of snapshots
obtainable from OTH radar sources and that the algorithm
— e is statistically efficient. In general, while convergence to the
SNA (6B) SNR (a8} global minimum cannot be guaranteed for this algorithm, good

Fig. 6. Algorithm performance relative to theoretical performance bounfi€Sults are obtained for typically available initial conditions.

STD (%) and 99% confidence intervals (vertical bar) as a function of SNR

for the position of a sensor and for the amplitude and phase of a coupling

parameter. The solid line is the CRLB. Thirty algorithm runs were used to

obtain each STD value. APPENDIX
AN EXAMPLE

<

Standard Deviation

<,

Standard Deviation {radians)

El
=1
o2

Note that for the coupling matrix, instead of the identity Consider disjoint clusters of time-varying DOA sources: one
matrix, which has been used for these simulations as tblester of a single source; one cluster of three sources (either
initial value, any modeled or previously estimated couplingorrelated or uncorrelated); disjoint clusters of time-invariant
matrix could be used. While, in general, we cannot guarantB©A sources: one cluster of a single source; one cluster of
convergence to the global minimum, the results obtaindioree uncorrelated sources. For this cases 4, Ny = §, the
indicate that good results are obtained for typical initiahatrix Z (A x 6) andS (8 x 6) are as given below, where
conditions. 21, zo are vectors of single snapshots and F; is a vector
and a matrix of eigenvectors
IX. CRAMER—RAO BOUND

The algorithm’s performance was compared to the Z =z1,22,e1, By
Cramer—Rao lower bound (CRLB) for clusters of multiple s;i7 0 0 0 0 07
shapshot time-invariant DOA sources. It was assumed that the 0 s, O 0 0 0
location of one sensor and the direction to another is known 0 s 0 O 0 O
and, hence, for the four-element array considered, there ~ 0 503 O 0 0 0
were only five sensor position&M — 3) unknown. Since 5= 0 0 s 0 0 O
we assume a symmetric coupling and placed the constraint 0 0 0 S4 Saa  Sa7
that C;; = 1, 18 coupling values M(M + 1) — 2) are 0 0 0 Sao Sa5 Sus
unknown. We considered 11 disjoint clusters, each with a L O 0 0 s43 Sag Sagd

single-mode source and another disjoint cluster with a single
multimode source (with three correlated signals), all Sig”%gorithm Details
with unknown DOA's; hence, 14 DOA'§Ny) are unknown. ) o
The total number of unknown parameters is, therefore, 372 EXpression for matri®” in (18): It can be shown that
(the noise power is assumed to be known). The CRLB {g" the symmetric coupling matrix we employ, the matfix
derived in [36]. in (18) is given for alll <m < M and1 <n < N; as

The solid line in Fig. 6 is the CRLB, where 500 snapshots
are obtained from these time-invariant DOA sources. We have, (,—1)r+4m

over-plotted the standard deviation (STD) valgesestimated Trtiepmyn pm) <1< p(m+1) =1
from 30 algorithm runs and the 99% confidence intervals = {Thn e ] = p(;) tm—h VYi<h<m—1
(vertical bar). The results clearly show that the algorithm ’ B 27)

attains the CRLB and is hence statistically efficient. We
obtained similar results for the other unknown parameters and N
in each case the bias was small compared to the STD. whereT = AS, and
When multiple snapshot time-invariant DOA sources and
single-snapshot time-varying DOA sources were used together, 1 m=1
we observed that the algorithm’s performance departed fromp(m) = { pm—1)+(M—-m+2) 2<m<M. (28)
the corresponding CRLB. This somewhat expected result p(m—1)+1 m=M+1
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B. Gradient and Hessian in (17)The 2M x 1 gradient element of thepth row is(—2xj/\) cos(6,,) in this case. The
vector ist(y(k)) = [(0Q/0x(k))T, (8Q/dy(k))T]T, and the 9%2Q/dz,dy, terms are similarly obtained (see [36]).

2M x 2M Hessian matrix is C. Gradient and Hessian in (20)The Ny x 1 gradient vec-
W [0%Q)ox(k)oxT (k)  92Q/ox(k)oy™ (k) tor isr(6(k)) = 8Q/96(k) and theNr x Ny Hessian matrix
H{y(k) = [82Q/8y(k)8xT(k) 2Q oy(oyT (k) | is H(O(k)) = 9*Q/06(Fk)08" (k).

(29  Now define 4y, = 04/96, = D(9,)Aeye;, where
D(6,) = (—2nj/AN)diag{x cos(f,) —y sin(6,)}, and e,

One can rewriter? in (11) as is the unit vector with all but theth element zero.

L
Then from (31
Q~ Y |z - CAs (30) (31)
=1
. - H
L Q /86, = (—2f'CAe, 5 — 57 A, C" 3
=) G'a-zcAs -5 A"C" 5 ! lc%,) ’
=1 -H 3 H i - ~H AH ~H . -
—|—éf{AHO'HCAél) (31) + 5 AGPC CAs; + 357 A" C"CAy, 5)
where %; is the Ith (of L) column of Z and §; is the Ith - .
colummn of &, = —2R lz(:) [#1CD(6,) Aepel 5
cL(p

Now define A,, = 0A/dz, = Dz, ® A, where ® is
the Hadamard product anDz, is an M x Nz matrix with H A H -
all but the pth row zero; thenth element of thepth row is — 5 AT CTCD(0,)Aepe, 51 (36)
(=2mj/A) sin(6,,), where X is the radar wavelength. Then

I
0Q/0x, = S (~#'CA, 3 — 31T A, CV' = - 29?{ > G -s'ac e, )Aepeféz}

=1 ICL(p)
+3/ A, C"CAs + 3 AT CTCAL %) (37)
L
= — zm{z (7" — 5" A" Cc"YC(Dx, @A)él} where L(p) is the set of alll indexes corresponding to the

cluster containingd,,.
(32) From (36)

and hence
92Q/0%x, 92Q/%, = — 2§R{ Z [élHC’Dgp (Qp)Aepe};él
L lelL(p)
= —2%{2 [z — 57 A C?)C(Dxp ® Dxyp © Ay + EFCD(HP)A(;DGP@?S'I
=1 .
— 31 A, C"CD(6,)Acycl 3
- 3 (A" © D) C" C(Dzp © A)Sl]} — 3/ AT CHCD,,(8,) Acyel s,
(33)

_H AH H ; T-
— ATCTCD(8,)A
9*Q /9,0, St (0p)As, epe, Sl]}

_ _m{
l

38
[(zH - 2 A" C™YC(Dx, © Dz, © A3 (38)

Mh

1

whereDy = dD/d6, = D»(6,) = (27j/)) diag{z sin(6,)

—31 (A" @ DslCH C(Dx, @A)sl]} +y cos(6p)}. Hence
(34)

2 9*Q[%0, = —2RQ Y [#'C(D2(6,)

=1 + D(6,)D(6,))Ae,e; 51
whereR{ } is the real partg # p, and Dz, is anM x Np + (37 e ¥ AT D(6,)CT CD(6,)
element matrix with all but theth row zero; thexth element of CH AH pH
the ¢gth row is (—2x5/X) sin(6,,). Equation (35) is obtained — 5 ATCTC(D:(6;)
from (34) sinceDzx, © Dz, is the zero matrix forg # p.
The partial derivatives with respect to thecoordinates are + D(6,)D(6,)))Ae,e. 5] ¢
obtained by replacind)x, by Dy,, where Dy, is again an

M x Np element matrix with all but theth row zero; thenth (39)
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Now from (37)

92 /06,06,

whereg # p and D(6,) = (—2xj/A) diag{z cos(8,) —
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[29]
[20]

1208 37 A, CTCD(8,)Ac,els
ICL(p)

[21]

[22]
—2R¢ > 3 eel AT D(0,)CTCD(6,) Aepel 5
1eL(p) [23]
(40)
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