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Analysis of Finite Arrays—A New Approach
Boris Tomasic,Senior Member, IEEE,and Alexander Hessel,Life Fellow, IEEE

Abstract—A novel method for the analysis of finite arrays is
presented. The method is based on a global array concept where
the array problem (for single-mode elements) is reduced to a
solution of a single Fredholm integral equation of the second kind.
This formulation offers several types of solutions (not all explored
yet) with illuminating results. The approximate solution of this
integral equation, for example, yields finite array characteristics
in terms of equivalent infinite array scattering parameters and
mutual admittances. The method is general, i.e., applicable to any
element-type and periodic array geometry. Presently, the method
applies to single-mode elements (one unknown per element),
however, it can be extended to a multimode analysis.

Index Terms—Antenna arrays, finite phased arrays.

I. INTRODUCTION

PHASED-array antennas can be analyzed using two basic
methods: an element-by-element approach and a periodic

structure approach. The former method, which requires evalu-
ation and inversion of a matrix, is rigorous and well suited for
small array antennas [1]. However, it is often too complex and
numerically/computationally difficult to apply to large finite
arrays. The periodic structure approach [2], which usually is
based on a unit cell concept, is a simple and approximate
method that neglects the array edge effects and consequently is
not sufficiently accurate for low sidelobe array designs. Beside
these two basic methods, there are a number of techniques
for analysis of finite large arrays [3]–[12]. Each of these
techniques has advantages in particular applications; however,
improvements in accuracy, generality, simplicity (theoretical
and computational), and physical interpretation of the results
are still desired.

This paper explores a new approach to the solution of finite
arrays. The method presented has the accuracy of the element-
by-element approach and the simplicity of the periodic struc-
ture approach. It is applicable to any single-mode element
type and periodic array geometry. The method replaces the
conventional solution of simultaneous integral equations, one
for each element, by casting the discretized set of algebraic
equations into a single (for single-mode elements) Fredholm-
type integral equation of the second kind for a global gen-
erating function . The generating function is called
global because it gives a perspective on the array problem
in the form of a single integral equation. The kernel of the
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Fig. 1. Array geometry.

integral equation is the product of the active admittance of the
infinite array and the array factor of the uniformly illuminated
finite array. Individual aperture voltages (or currents) are
subsequently obtained by Fourier integral inversion.

The appeal of the Fredholm integral equation formulation is
that it is flexible, being amenable to many types of solutions,
not all of which have been explored. For example:

1) since the kernel in the Fredholm integral equation is
separable, the integral equation can be transformed into
a linear system of equations, which is a well-known
conventional representation;

2) the integral equation can be solved using variational
techniques in conjunction with standard integration
codes;

3) the integral equation can be solved using iterative
schemes (In this case, the initial value for can be
chosen to be that of an equivalent infinite array. For
large arrays, it is expected that only a few iterative steps
will be needed for numerical evaluation of the Fredholm
equation, thus the method is rapidly convergent.);

4) the Fredholm integral equation can also be solved ap-
proximately by taking advantage of the local property
of the array factor in the kernel; the results are illu-
minating and, as will be shown, can be expressed in
terms of infinite array coupling coefficients and mutual
admittances.

II. DERIVATION OF THE INTEGRAL EQUATION

The formal derivation of the Fredholm integral equation
is given in Appendix A. Below we present an alternative
derivation, the engineering approach, which results in the same
integral equation.

A. Array Model and Excitation

To demonstrate the basic concept we select a simple two-
dimensional array of equispaced “single-mode” ele-
ments shown in Fig. 1, where is the element spacing. The
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array elements are parallel-plate-guide-fed slits, of widthin
a ground plane with a single TEM aperture field distribution.
The elements are excited according to

(1)

where denotes the element serial numbers,is the interele-
ment phasing, and are the TEM-mode incident voltages
at (aperture). The total voltage, , in the aperture is,
therefore, the sum of the incident and reflected voltages, i.e.,

(2)

The objective of the analysis is to determine the’s (with
known ’s) in a mutually coupled array environment.

B. Modal Currents —Network Representation

For an array with elements excited with equal
amplitude and progressive phase, in a single TEM-mode
approximation the modal voltages and modal currents

at (aperture) are related by the mutual admit-
tance matrix as

(3a)

where the modal voltage and current vectors are

...

...

...

...

(3b)

In (3a), refers to an infinite array, however, since in
single-mode approximation for , is a

complex symmetric Toeplitz matrix.
To facilitate the analysis, we define the global generating

function

(4a)

and thus

(4b)

or in vector form

(4c)

Noting that

(5a)

where is the active admittance of an infinite array,
substitution of (4c) into (3a) yields

(5b)

Fig. 2. Equivalent transmission line representation of parallel-plate-guide
array element.

C. Modal Currents —Transmission Line Representation

In a parallel-plate waveguide at the aperture , the
TEM-mode voltages and currents are (see Fig. 2)

(6a)

(6b)

where the parallel-plate guide characteristic admittance is

(6c)

and is the active reflection coefficient of the finite array.
From (6a)

(7a)

and, consequently,

(7b)

D. Integral Equation

Equating (5b) and (7b), we get

(8)
Multiplying (8) by and summing yields an
inhomogeneous Fredholm-type integral equation of the second
kind

(9a)

where the constant is

(9b)

and the kernel

(9c)

Here, as mentioned above, is the active admittance of an
equivalent infinite array and is the array factor given by

(10)

The inhomogeneous term in (9a) defines the array excitation
and is

(11)
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Having solved for , we determine the total voltages in the
apertures from (4b), i.e.,

(12)

It is interesting to note that since the kernel in integral
equation (9a) is separable (degenerate), the integral equation
can be transformed into a system of linear equations, which is
a well-known conventional representation [13], [14].

III. SOLUTION OF THE INTEGRAL EQUATION

A. Transformation of Variable

We seek a solution in the form

(13)

where are the known voltages of the equivalent infinite
array and represents the correction to an infinite array
solution. Consequently

(14a)

where

(14b)

and

(14c)

From (14c), the correction term is

(15)
Substituting (14a) into (9a) we obtain the Fredholm integral
equation for

(16a)

where

(16b)

and

(16c)

are known functions.

B. Approximate Solution

We consider an approximate solution of (16a). Note that for
large arrays, the main contribution to the integral comes from
the vicinity of the peak of the array factor, i.e., when .
Thus, letting in the expression for , (10), we
obtain for the solution of (16a)

(17)

Substitution of this expression into (15) yields, in terms of
known physical parameters of the infinite array. The details of
the derivation can be found in [14]. Thus, we have

(18a)

where

(18b)

and

(18c)

Here, are mutual admittances and are scattering (cou-
pling) coefficients of the corresponding infinite array. Having
solved for the correction term (as already mentioned), the
total voltage on theth element of a finite array is

(19)

where the total voltage of the corresponding infinite array
is assumed to be known. As shown in [14], and

as .
With known ’s, we readily derive other finite-array pa-

rameters. The active reflection coefficients, for example,
can be written in the following form [14]:

(20a)
where the correction term is

(20b)

As shown in [14], the correction term as .
Neglecting the correction term, (20a) reduces to

(21)
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which is a well-known expression for the active reflection co-
efficient of a finite array. This expression has often been used
in practical array designs primarily because of its simplicity
and reasonable accuracy.

C. Single-Element Excitation

For the case of a single-element excitation, say element,
the previous analysis is also valid, where the inhomogeneous
term in the Fredholm integral equation (9a) as given by (11)
takes the form

(22)

Thus, the integral equation (16a) for remains the same
and the inhomogeneous term is now

(23a)

with

(23b)

It is important to keep in mind that the in (23b) are
now the total voltages in the apertures of the corresponding
infinite array where element is excited with , and all
other array elements are match terminated. Thus,

(24a)

where the Kronecker delta is

.
(24b)

In view of (23), following the procedure of Section III-B,
we find that the total aperture voltages are [14]

(25a)

where the correction term to an infinite array solution is

(25b)

with

(25c)

and

(25d)

As in the active array case, and as
[14].

It is known that an active array solution can be obtained as a
superposition of solutions due to individual element excitations
in a match terminated array environment. Based on that, an

alternative expression for the total aperture voltage of an active
array (19) with excitation (1) can be simply written as

(26a)

where is given by (25) with

(26b)

At this point, we can also easily determine the scattering
matrix of the finite array. To obtain the scattering coefficients,
we divide both sides of (25) by . Therefore, from (25)
using (24a) the scattering (coupling) coefficients betweenth
and th elements (in a match-terminated array environment)
are [14]

(27a)

where the correction term is

(27b)

with

(27c)

(27d)

As shown in [14],

and as (28)

D. Graphical Interpretation of Coupling Mechanism

To observe the coupling mechanism in a finite array, from
(27a) and (27b) we write

(29)

Furthermore, in view of (28), (27b), and (27c) can be rewritten
in the following form [14]:

(30a)

(30b)

where denotes the sum-
mation over elements outside of the actual array. Based
on these expressions, coupling mechanism between array
elements and can be graphically interpreted as follows.
Suppose we excite elementwith V. According to
(29) and (30) the received (and total) voltage in elementis
that of an equivalent infinite array minus two contributions

due to edge effects, i.e., and . The consists
of an infinite number of terms, each representing a “single-
bounce” coupling , as schematically shown in

Fig. 3(a), where is outside of the array. Similarly,
consists of an infinite number of “double-bounced” coupling
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(a)

(b)

Fig. 3. Physical interpretation of coupling mechanism. (a) Single bounce.
(b) Double bounce.

where, as shown in Fig. 3(b), is outside
the array and is in the array region. From here we can deduce
higher order terms in (29). However, as will be shown in the
following section, the two-term solution is adequate for most
practical applications.

IV. NUMERICAL RESULTS

Numerical results obtained by our new approach were tested
against an “exact” (reference) solution, which is obtained by
a conventional method of moments (MoM) procedure briefly
described in Appendix B. Results for the equivalent infinite
array (derived in Appendix C) and results obtained by the
approximation (21) are also shown. For clarity, in all figures
below the exact results are shown by a solid line, infinite array
results by a dashed line, results computed from (21) by hollow
circles, and results of (our) new approach by solid filled circles.

As a first numerical example we selected a 25-element
array with parallel plate guide width , and element
spacing . The array elements are excited according
to (1), i.e., with unit amplitude and linear phase progression.
Fig. 4(a) and (b) show the magnitude of the active reflection
coefficients for the 25-element array at broadside scan
( ). Specifically, Fig. 4(a) compares the infinite array
solution for the active reflection coefficient with the exact
solution. As is well known, the average of is determined
by the infinite array solution, while oscillations about the
average progressively increasing toward the edges are due to
array edge effects. Also, this figure compares the finite array
solution obtained from (21) with the exact solution. Notice

(a)

(b)

Fig. 4. Magnitude of active reflection coefficients for a 25-element array
�0 = 0

0. (a) Comparison between exact, infinite, and results obtained from
(21). (b) Comparison between exact and our solution.

that except at the edges the agreement with the exact solution
is quite good. Fig. 4(b) illustrates the finite array solution
obtained from our new approach, which compares well with
the exact results. Fig. 5(a) and (b) shows the same as Fig. 4(a)
and (b), respectively, except that the scan angle .

For a second example we increased the array size to 51
elements. Fig. 6(a) and (b) compares the magnitude of the
active reflection coefficients at broadside scan of an infinite
array and results obtained by the new theory with the exact
MoM solution. Fig. 7 shows a similar comparison when the
array is scanned to . As seen, in both cases there is
an excellent agreement between results obtained by the new
approach and the conventional MoM-based reference solution.

The approximate solution to the Fredholm integral equation
that we developed in Section III-B, was intended for large
arrays. However, it turned out that the method also gives
very good results for small arrays. To explain that, it is
important to keep in mind that the approximate solution was
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(a)

(b)

Fig. 5. Magnitude of active reflection coefficients for a 25-element array
�0 = 60

0. (a) Comparison between exact, infinite, and results obtained from
(21). (b) Comparison between exact and our solution.

obtained based on the fact that the main contribution to the
integral in (16a) came from the vicinity of the peak of the
array factor in the kernel of the Fredholm integral equation.
The array factor, which is a sinc function, was approximated
by a -function. Thus for larger , this approximation is
better and as the solution becomes exact. On the
other hand, let us examine the rest of the integrand in (16a),
i.e., . The active admittance of an infinite array,

is a relatively slowly varying function of and .
However, the correction term is an oscillating function
of with a period of approximately . Therefore,
the behavior of is predominantly determined by
the behavior of . Since, the null-to-null beamwidth in the
array factor is also , we concluded that there
is always about one oscillation of per null-to-
null beamwidth independent of . Consequently, the error
due to the -function approximation for the array factor in
the approximate solution is almost independent of the number

(a)

(b)

Fig. 6. Magnitude of active reflection coefficients for a 51-element array
�0 = 0

0. (a) Comparison between exact and infinite array results. (b)
Comparison between exact and our solution.

of array elements . To demonstrate this, Fig. 8 shows
the magnitude of the active reflection coefficients for a three-
element array at scan. The four data curves compare
the solutions for the infinite array case, the approximation (21),
the new theory and exact MoM.

To observe the grating lobe effects on the accuracy of the
approximate solution, we also tested our theory on arrays with
element spacings greater than/2. Fig. 9(a) and (b) shows the
magnitude of the active reflection coefficients for a 13-element
array with element spacing and parallel-plate-guide
width . In Fig. 9(a), the scan angle 42 , which
corresponds to a main beam location 42off broadside and
the grating lobe at endfire. Fig. 9(b) shows the same except
that the main beam is at while the grating lobe is
in visible space. As seen in both cases, there is an excellent
agreement between our results and the reference MoM results
from which we concluded that our approximate solution is also
accurate in the presence of grating lobes.



TOMASIC AND HESSEL: ANALYSIS OF FINITE ARRAYS—A NEW APPROACH 561

Fig. 7. Magnitude of active reflection coefficients for a 51-element array
�0 = 60

0 comparison between exact, infinite, and our results.

Fig. 8. Magnitude of active reflection coefficients for a three-element array,
�0 = 60

0, comparison between exact, infinite, those obtained from (21), and
our results.

For a single-element excitation in a match-terminated array,
in Fig. 10(a) and (b) we compare the magnitude of the
total voltages in the apertures calculated from (27) with the
reference solution. The array consists of 13 elements with

and . In Fig. 10(a) the center array
element is excited with V while in Fig. 10(b) the
edge element is excited with V. To reduce the size
of the plots for the excited elements, only and
are shown. The respective voltages of an equivalent infinite
array are also shown in these figures.

V. CONCLUSIONS

A new method for the analysis of finite arrays has been
developed. It replaces the conventional solution of simulta-
neous integral equations—one for each element by a single
Fredholm-type integral equation of the second kind. This
formulation offers new types of solutions, not all of which

(a)

(b)

Fig. 9. Magnitude of active reflection coefficients for a 13-element array,
comparison between exact, infinite, and our results. (a)�0 = 42

0. (b)
�0 = 60

0.

have been investigated. We have presented one approximate
solution of this integral equation, which gives finite array char-
acteristics in terms of the equivalent, infinite array-scattering
parameters and mutual admittances. The method presently
applies to single-mode elements and numerical agreement
with exact MoM single-mode solutions has been shown to be
excellent. In addition, unlike the element-by-element integral
equation approach, this solution leads naturally to a physical
interpretation of the coupling mechanism. The method can
be extended to more realistic three-dimensional arrays and
multimode elements.

APPENDIX A
FORMAL DERIVATION OF THE INTEGRAL EQUATION

A. Fields in the Region

With reference to Fig. 1, the fields in theth aperture (at
) can be expressed in terms of the parallel plate
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