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Analysis of Finite Arrays—A New Approach

Boris Tomasic,Senior Member, IEEEand Alexander Hessel,ife Fellow, IEEE

Abstract—A novel method for the analysis of finite arrays is
presented. The method is based on a global array concept where z
the array problem (for single-mode elements) is reduced to a
solution of a single Fredholm integral equation of the second kind.
This formulation offers several types of solutions (not all explored d

yet) with illuminating results. The approximate solution of this ’ Exn(x.0)
integral equation, for example, yields finite array characteristics 72 728 7 7
in terms of equivalent infinite array scattering parameters and l V % m ? % | X
mutual admittances. The method is general, i.e., applicable to any a inc l ref
. -] |« Vi \
element-type and periodic array geometry. Presently, the method
n N

applies to single-mode elements (one unknown per element), -N n=0 1

however, it can be extended to a multimode analysis. )
Fig. 1. Array geometry.

Index Terms—Antenna arrays, finite phased arrays.

integral equation is the product of the active admittance of the
|. INTRODUCTION infinite array and the array factor of the uniformly illuminated

HASED-array antennas can be analyzed using two baglnlte array. Individual aperture voltages (or currents) are

methods: an element-by-element approach and a periogit sequently obtained by Fourier integral inversion.
' y ppro: ap (i'he appeal of the Fredholm integral equation formulation is
structure approach. The former method, which requires eva{

. ! . L ; Hét it is flexible, being amenable to many types of solutions,
ation and inversion of a matrix, is rigorous and well suited for . )
not all of which have been explored. For example:

small array antennas [1]. However, it is often too complex an ) ) ) o
numerically/computationally difficult to apply to large finite 1) Since the kemel in the Fredholm integral equation is
separable, the integral equation can be transformed into

arrays. The periodic structure approach [2], which usually is X X i
based on a unit cell concept, is a simple and approximate & linear system of equations, which is a well-known
conventional representation;

method that neglects the array edge effects and consequently is i _ ) o
not sufficiently accurate for low sidelobe array designs. Beside?) the integral equation can be solved using variational
these two basic methods, there are a number of techniques (€Chniques in conjunction with standard integration
for analysis of finite large arrays [3]-[12]. Each of these _ C0des; _ o
techniques has advantages in particular applications: however3) the integral equation can be solved using iterative
improvements in accuracy, generality, simplicity (theoretical ~ Schemes (In this case, the initial value fir can be
and computational), and physical interpretation of the results €h0Sen to be that of an equivalent infinite array. For
are still desired. large arrays, it is expected that only a few iterative steps
This paper explores a new approach to the solution of finite will bg needed for numerlca.l evaIgann of the Fredholm
arrays. The method presented has the accuracy of the element- €duation, thus the method is rapidly convergent.);
by-element approach and the simplicity of the periodic struc-4) the Fredholm integral equation can also be solved ap-
ture approach. It is applicable to any single-mode element Proximately by taking advantage of the local property
type and periodic array geometry. The method replaces the ©f the array factor in the kernel; the results are illu-
conventional solution of simultaneous integral equations, one  Minating and, as will be shown, can be expressed in
for each element, by casting the discretized set of algebraic t€rms of infinite array coupling coefficients and mutual
equations into a single (for single-mode elements) Fredholm- ~ admittances.
type integral equation of the second kind for a global gen-
erating function V. The generating function’’ is called
global because it gives a perspective on the array probleniThe formal derivation of the Fredholm integral equation
in the form of a single integral equation. The kernel of this given in Appendix A. Below we present an alternative
derivation, the engineering approach, which results in the same
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array elements are parallel-plate-guide-fed slits, of widih

a ground plane with a single TEM aperture field distribution. v;nc(a) —_—
The elements are excited according to Yo Y, )
. . . v ref ®) P
Vine(§) = ygree™™, pn=-N,--- N (1) n

wheren denotes the element serial numbeérss the interele- 2=0

ment phasing, anafmc are the TEM-mode incident voltagesFig- 2. Equivalent transmission line representation of parallel-plate-guide
atz=0" (aperture) The total voltagd,, in the aperture is, " element.
therefore, the sum of the incident and reflected voltages, i.e.,
. C. Modal Currentsl,,—Transmission Line Representation
Va(8) = V"(8) + Vil(6). )

In a parallel-plate waveguide at the apertgte= 0~), the
The objective of the analysis is to determine tigs (with TEM-mode voltages and currents are (see Fig. 2)
known V)*’s) in a mutually coupled array environment. Vio(8) = VI (8)[1 + (8] (6a)

B. Modal Currentsl,,—Network Representation 1.(6) =YoV,™(6)[1 — I'n(0)] (6b)

For an array with2V + 1 elements excited with equalwhere the parallel-plate guide characteristic admittance is

amplitude and progressive phase, in a single TEM-mode = 1

approximation the modal voltagds,(6) and modal currents Yo=\/— =555 (6¢)
— . Ho 376.7
I,(6) at z = 0~ (aperture) are related by the mutual admit-
tance matrixY as andT, is the active reflection coefficient of the finite array.
- From (6a)
{1} =XY>{V,.} (3a)
Va(6)
[a(8) = — -1 (7a)
where the modal voltage and current vectors are Vine(§)
C VT r Iy T and, consequently,
Yr—t In—t L,(6) = 25V (8) — YoVu(6), —N<n<N. (7b)
V) = Ve | ) = L, | (3b) D. Integral Equation
: : Equating (5b) and (7b), we get
_V—]\T i _I_]\T i 1 T

. o J'I’Ll/ I 1mc _
In (3a), Y™ refers to an infinite array, however, since in 27 _WY (V) v, &)e = 2oV, (8) = YoVu(9).
single-mode approximatioW,, = 0 for |n| > N, Y is a o o _ N _ (8)
(2N + 1) x (2N + 1) complex symmetric Toeplitz matrix. Multiplying (8) by ¢/™* and summing}_,_  yields an
To facilitate the analysis, we define the global generatlﬁ@hgmogeneous Fredholm-type integral equation of the second

function

T

X N , Vi, )=C | K(a,v §dv+ Fla, §  (9a)
Vv, §) = Z Vi (8)ed™ (4a) (o 0) = —r ( 1)V (22 ) (@ 9)
n=—N where the constant’ is
and thus 1
1" . “= "o, (9b)
_ —jnv
Va(6) = 5 /_7T V(v, §)e dv (4b) and the kernel
or in vector form Ko, v) =Y W)AF(a, v). (9c)
1 —j Here, as mentioned aboVE> is the active admittance of an
V(6 — V / Y du. 4c g N o .
{Valo)k = 27 (1 8){e b (40) equivalent infinite array and F' is the array factor given by
Noting that N
J ' ' AF(o,v) = Y o), (10)
Y {e I} = V() {e ™) (5a) =N

where Y° is the active admittance of an infinite arrayThg inhomogeneous term in (9a) defines the array excitation
and is

substitution of (4c) into (3a) yields

(00 =5 [ YV e b (6D Hed) _Zn_z;N V@, 11)
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Having solved forV’, we determine the total voltages in theB. Approximate Solution

apertures from (4b), i.e., We consider an approximate solution of (16a). Note that for

large arrays, the main contribution to the integral comes from

Vo (6) = 1 /7T V(a, 5)e—jna da, the vicinity of the peak of the array factor, i.e., when= «.
2m J_x Thus, lettingN — oo in the expression fordf, (10), we
n=-N,--,0 - N. (12)  obtain for the solution of (16a)
Y
It is interesting to note that since the kernel in integral o, §) =~ 701‘(04, 5). a7
Yy + Yo (a)

equation (9a) is separable (degenerate), the integral equation

can be transformed into a system of linear equations, whichSsibstitution of this expression into (15) yields in terms of

a well-known conventional representation [13], [14]. known physical parameters of the infinite array. The details of
the derivation can be found in [14]. Thus, we have

lIl. SOLUTION OF THE INTEGRAL EQUATION ve(8) = v (8) + vV (6) (18a)
where
A. Transformation of Variable N
We seek a solution in the form vé(l)(é) = Vi"(6) — 1 w—" ) (18b)
e N
Vi (8) = V228 + vn(6) (13) and
N N

where V> are the known voltages of the equivalent infinite v(2)(6) _ Z Vine(§)see _ 1 Z V()50
array andw, represents the correction to an infinite array 2 " "
solution. Consequently

) ) _ Z 552 Z y""’ Veo(s).  (18c)
Vv, §) =V>=(v, §) + 6(v, 6) (14a) — S

n=—N n=—N

Here,y,, are mutual admittances aiftf;, are scattering (cou-

where pling) coefficients of the corresponding infinite array. Having
N solved for the correction term;, (as already mentioned), the
Vo(u, §) = Z Voo(8)e™ (14b) total voltage on the'th element of a finite array is
and A Vi(®) = Vi (8) +ve(6) (19)
X N i where the total voltage of the corresponding infinite afigy
o, 8) = ZN vn(8)e"™. (14¢) is assumed to be known. As shown in [14f" — 0 and

vé@) — 0asN — oo.
With known V,’s, we readily derive other finite-array pa-

From (14c), the correction term is k . -
rameters. The active reflection coefficierts, for example,

1 (7 ' can be written in the following form [14]:
ve(8) = 2—/ (a, §)e 7 da £=0,%1,---, £N. N
- :
(15) Ty(8)= > Spe/“0445(6),  £=0,%1,--, £N
Substituting (14a) into (9a) we obtain the Fredholm integral n=—N
equation foro (20a)
where the correction termy; is
oo, ) =C | Ko, )o(v, §dv+ f(o, 8 16a N ,
( ) . ( )o(v, 6) f( ) (16a) 7?(6):1(1+Fm(5))[2—<1+ Z Yo ice— n)@)
2 . Y,
where N N
_ Z SOOCJ(Z n)é <1+ Z %Cj(nn,)())].
fla, 8) = 2Vi" AF(a, §) — V(e 8) + Z(c, §)  (16b) n=—N =N 0
(20b)
and

As shown in [14], the correction term; — 0 as N — oo.

= ) Neglecting the correction term, (20a) reduces to
(e, 8)=C K(a, )V>(v, §)dv (16¢)

Z Sooej(é n)é (21)

are known functions. n=—N
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which is a well-known expression for the active reflection calternative expression for the total aperture voltage of an active

efficient of a finite array. This expression has often been usaday (19) with excitation (1) can be simply written as

in practical array designs primarily because of its simplicity :

and reasonable accuracy. Vi(8) = Z Vi(p) (26a)
p=—N

C. Single-Element Excitation where Vy(p) is given by (25) with

For the case of a single-element excitation, say elemgnt ine e —ins
the previous analysis is also valid, where the inhomogeneous Vplt = pte (26b)
term in the Fredholm integral equation (9a) as given by (11) At this point, we can also easily determine the scattering
takes the form matrix of the finite array. To obtain the scattering coefficients,
inc ipa we divide both sides of (25) by »¢. Therefore, from (25
Fla, p) =2V e (22) using (24a) the scattering( (c)ougl/ziong) coefficients betm;hn)
Thus, the integral equation (16a) féta) remains the same and /th elements (in a match-terminated array environment)

and the inhomogeneous term is now are [14]
fla ) = 2V V(a, p) + I ) (230) S =St 27
_ where the correction term is
with N Sep 2 sép) + 3(2) (27b)
Ve = 3 VE@er. @3 M N
n=—N 1 1 1 Y
1 _ o) oo \ Yén
s =26, — 280 = (8rp + S) 22 (270)
It is important to keep in mind that the> in (23b) are ~ © 2 = 2 7" 2 Z,\ g P Yo
now the total voltages in the apertures of the corresponding N
infinite array where element is excited withVi>°, and all (2) =521 Z (p + 532)S22
. P 2 np in
other array elements are match terminated. Thus, —
. N N
Vo (p) = VR (bnp + 57, 24a oo \ Ynn
S ) = Vo (0 + 577) (242) 2 Z St Y (wptSz) B (@70)
where the Kronecker delta is n=-N n'==N
1, n=p As shown in [14],
b = {0, n # p. (24b) 827) — 0 and 82127) —0 as N — oco. (28)

In view of (23), following the procedure of Section IlI-B,

we find that the total aperture voltages are [14] D. Graphical Interpretation of Coupling Mechanism

To observe the coupling mechanism in a finite array, from

Vi(p) = Vi (p) + ve(p) (25a) (27a) and (27b) we write
where the correction term to an infinite array solution is Sep =S¢, + s(l) + 3(2) (29)
(D 2) Furthermore, in view of (28), (27b), and (27c) can be rewritten
ve(p) = v (p) + v () (250) i1 the following form [14]:
with (1 _ oo Yen!
S5 30a
1) inc 1 1700 Sép Z e 2Y0 ( )
v (p) =V b — 5 V() v
N
1 - 2 _ o o Ynn'
-3 X e (250) s 2 SEYShayy G
w=-nN 0 n=N
and where3” " = 30 _ni1+202 (v41) denotes the sum-
@ - . N - - mation over elements outside o% the actual array. Based
v (p) =VoSy — 5 D Vi(p)Se on these expressions, coupling mechanism between array
n=-N elementsp and £ can be graphically interpreted as follows.
‘ - Ny - Suppose we excite elemeptwith V,»* = 1 V. According to
T3 Z Sen Y, v (p)-  (25d) (29) and (30) the received (and total) voltage in elenteist
n=-N n==N that of an equivalent infinite arra§;> minus two contributions
1 2 1 :
As in the active array case("”(p) — 0 andv\”(p) — 0 as due to edge effects, i. esé ! and Sép)' The Sép) consists
N — oo [14]. of an infinite number of terms, each representing a “single-

It is known that an active array solution can be obtained aPgunce” couplingSys yens /(2Yo), as schematically shown in
superposition of solutions due to individual element excitatiodg. 3(a), wheren’ is outside of the array. S|m|larly$
in a match terminated array environment. Based on that, eonsists of an infinite number of “double-bounced” coupllng
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Sg?p 1.0
i —  exact
- - - infinite
m /(2 0.75 n
Yone/(210) i o from (21)
L 1
T T T 1 1 > © T
¢ R
NP N n T 0.5
o0
o -
! | 2 N §
nc __ (1) _t
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element serial number
(@
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1 1.0
-N p n 14 N n :
i exact
T l 0.75 — . new solution

inc 3(2) 7
‘/p = 1V [p

(b)

Fig. 3. Physical interpretation of coupling mechanism. (a) Single bounce.
(b) Double bounce.

magnitude
o)
e}
|

S unns [(2Y0)SE, where, as shown in Fig. 3(b); is outside 0.25
the array and: is in the array region. From here we can deduce
higher order terms in (29). However, as will be shown in the
following section, the two-term solution is adequate for most oo
practical applications. T, e 0 5 1
element serial number
IV. NUMERICAL RESULTS (b)

Numerical results obtained by our new approach were testegl 4. Magnitude of active reflection coefficients for a 25-element array

against an “exact” (reference) solution, which is obtained ﬁg =0° (a) Comparison between exact, infinite, a}nd results obtained from

. . 1). (b) Comparison between exact and our solution.
a conventional method of moments (MoM) procedure brleffy
described in Appendix B. Results for the equivalent infinite
array (derived in Appendix C) and results obtained by thbat except at the edges the agreement with the exact solution
approximation (21) are also shown. For clarity, in all figureis quite good. Fig. 4(b) illustrates the finite array solution
below the exact results are shown by a solid line, infinite arr@ptained from our new approach, which compares well with
results by a dashed line, results computed from (21) by hollatve exact results. Fig. 5(a) and (b) shows the same as Fig. 4(a)
circles, and results of (our) new approach by solid filled circleand (b), respectively, except that the scan atigle- 60°.

As a first numerical example we selected a 25-elementFor a second example we increased the array size to 51
array with parallel plate guide widtla/A = 0.2, and element elements. Fig. 6(a) and (b) compares the magnitude of the
spacingd/\ = 0.4. The array elements are excited accordingctive reflection coefficients at broadside scan of an infinite
to (1), i.e., with unit amplitude and linear phase progressionarray and results obtained by the new theory with the exact
Fig. 4(a) and (b) show the magnitude of the active reflectidioM solution. Fig. 7 shows a similar comparison when the
coefficients|T',| for the 25-element array at broadside scaarray is scanned té, = 60°. As seen, in both cases there is
(6o = 0°). Specifically, Fig. 4(a) compares the infinite arrayan excellent agreement between results obtained by the new
solution for the active reflection coefficient with the exacapproach and the conventional MoM-based reference solution.
solution. As is well known, the average [if;| is determined  The approximate solution to the Fredholm integral equation
by the infinite array solution, while oscillations about th¢hat we developed in Section 1lI-B, was intended for large
average progressively increasing toward the edges are duarn@ys. However, it turned out that the method also gives
array edge effects. Also, this figure compares the finite arragry good results for small arrays. To explain that, it is
solution obtained from (21) with the exact solution. Noticémportant to keep in mind that the approximate solution was
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1.0 1.0
_ exact i —— exact
0.75 ~ - - - infinite 0.75 - -~ infinite
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© 1 [ 7
T i © .
2 2
‘c ‘e 0.5 4
o o
o [#] -
£ E P AN
0.25 -
0.0 |IIIl|||||||IIII||||||| 0.0 IlIIIIIIIII|I||||IIIIII|IIIIIIlfl]l[]ll|[||l|||
—12 -6 0 6 12 —-25 -12 0 12 25
element serial number element serial humber
(@) (@
1.0 1.0
_ exact _ ——  exact
0.75 - . new solution 0.75 . new solution
[ T [} T
§ -
= 0.5 1 g 0.5 —
o - o -
: 7 £ /\/\/‘\/\/\N\M—V\M‘-’W‘\N\
0.25 0.25
0.0 rT T 1T rprrr 1 rrrr o111 Tt 0.0 TITII T T T [ TO T T T T T TR TR P T T I V[T I T I TTITT
—12 —B O‘ 6 12 -25 -12 0 12 25
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(b) (b)
Fig. 5. OMagnitude of active reflection coefficients for a 25-element arrayig. 6. Magnitude of active reflection coefficients for a 51-element array
o = 60°. (a) Comparison between exact, infinite, and results obtained frogy = 0°. (a) Comparison between exact and infinite array results. (b)
(21). (b) Comparison between exact and our solution. Comparison between exact and our solution.

obtained based on the fact that the main contribution to thé array element@ N + 1. To demonstrate this, Fig. 8 shows
integral in (16a) came from the vicinity of the peak of thehe magnitude of the active reflection coefficients for a three-
array factor in the kernel of the Fredholm integral equatioelement array af; = 60° scan. The four data curves compare
The array factor, which is a sinc function, was approximatetle solutions for the infinite array case, the approximation (21),
by a é-function. Thus for largerV, this approximation is the new theory and exact MoM.

better and asV — oo the solution becomes exact. On the To observe the grating lobe effects on the accuracy of the
other hand, let us examine the rest of the integrand in (16approximate solution, we also tested our theory on arrays with
i.e., Y>°(v)o(r). The active admittance of an infinite arrayelement spacings greater thaf2. Fig. 9(a) and (b) shows the
Y=°(v) is a relatively slowly varying function of and N. magnitude of the active reflection coefficients for a 13-element
However, the correction termi(r) is an oscillating function array with element spacing/A = 0.6 and parallel-plate-guide

of v with a period of approximatelyr/(2N + 1). Therefore, widtha/)\ = 0.4. In Fig. 9(a), the scan angly = 42°, which

the behavior oft">°(v)#(v) is predominantly determined by corresponds to a main beam location® 4#f broadside and

the behavior ofi(¢/). Since, the null-to-null beamwidth in thethe grating lobe at endfire. Fig. 9(b) shows the same except
array factor is alsoin/(2N + 1), we concluded that therethat the main beam is & = 60° while the grating lobe is

is always about one oscillation df>°(»)o(r) per null-to- in visible space. As seen in both cases, there is an excellent
null beamwidth independent aV. Consequently, the error agreement between our results and the reference MoM results
due to theé-function approximation for the array factor infrom which we concluded that our approximate solution is also
the approximate solution is almost independent of the numlsacurate in the presence of grating lobes.
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Fig. 7. Magnitude of active reflection coefficients for a 51-element array €)
6o = 60° comparison between exact, infinite, and our results.
1.0
1.0 i
7 | — exact
7 exact 0.75 — - - - infinite
N o il new solution
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_ o from (21) 2 7
v _ . new solution 2 b
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Q.0 T element serial number
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Fig. 8. Magnitude of active reflection coefficients for a three-element arrag/ig' 9. Magnitude of active reflection coefiicients for a 13-element array,
- : e ST mparison between exact, infinite, and our results. = 429 (b
6y = 60°, comparison between exact, infinite, those obtained from (21), a@§ :p 600 %2 (®)

our results.

For a single-element excitation in a match-terminated arrdjave been investigated. We have presented one approximate
in Fig. 10(a) and (b) we compare the magnitude of tHeolution of this integral equation, which gives finite array char-
total voltages in the apertures calculated from (27) with trcteristics in terms of the equivalent, infinite array-scattering
reference solution. The array consists of 13 elements wigarameters and mutual admittances. The method presently
a/X = 0.2 andd/\ = 0.4. In Fig. 10(a) the center arrayapplies to single-mode elements and numerical agreement
element is excited with/j* = 1 V while in Fig. 10(b) the with exact MoM single-mode solutions has been shown to be
edge element is excited withi™ = 1 V. To reduce the size excellent. In addition, unlike the element-by-element integral
of the plots for the excited elements, or“%ref| and |V6ref| equation approach, this solution leads naturally to a physical

are shown. The respective voltages of an equivalent infiniféerpretation of the coupling mechanism. The method can
array are also shown in these figures. be extended to more realistic three-dimensional arrays and

multimode elements.

V. CONCLUSIONS
APPENDIX A

developed. It replaces the conventional solution of simulta-

neous integral equations—one for each element by a singie Fields in the Region < 0
Fredholm-type integral equation of the second kind. This With reference to Fig. 1, the fields in theth aperture (at
formulation offers new types of solutions, not all of which: = 07) can be expressed in terms of the parallel plate
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