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CAD of Waveguide Array Antennas
Based on “Filter” Concepts

Huib J. Visser,Member, IEEE, and Marco Guglielmi,Senior Member, IEEE

Abstract—In this paper, an alternative approach for the design
of open-ended waveguide array antennas is presented. The ap-
proach is based on microwave filter concepts. The exploitation
of this alternative viewpoint has been made possible by the
availability of a very efficient computer-aided design (CAD)
tool which is based on a full-wave modal analysis technique.
In this paper, we first outline the technique for the efficient
analysis of open-ended waveguide array antennas. Using the
software developed and following the alternative design approach,
two different application examples are then shown, indicating
how the alternative viewpoint introduced gives indeed significant
additional degrees of freedom.

Index Terms—Antenna arrays.

I. INTRODUCTION

T HE demand for increased sophistication and decreased
development effort for phased-array antennas, motivates

the continuous development of new computationally efficient
computer-aided design (CAD) tools. In this paper, we present
an accurate and computationally efficient full-wave theory that
can be used to study and design open-ended waveguide array
antennas. The increased computational efficiency achieved
opens up the possibility of exploring new viewpoints in
the design of such antennas as clearly demonstrated by two
applications discussed in Section V.

Phased-array antennas generally consist of a large number
of identical radiators arranged into a periodic lattice. The
infinitely periodic structure is therefore a convenient starting
point for the antenna design. To study an infinitely periodic
structure, we only need to analyze one “unit cell” element,
which consists, in its most basic form, of the transition from
a cylindrical waveguide to the free-space unit cell [1]–[3].
In the free-space unit cell, the electromagnetic fields can be
decomposed into Floquet modes so that the unit cell is, in fact,
equivalent to a cylindrical waveguide with phase-shift walls.
The study of the infinite array problem is therefore reduced
to a waveguide discontinuity problem, namely the transition
from a metallic waveguide to a phase-shift wall waveguide.

The design of modern microwave components generally
requires full-wave analysis techniques in order to accurately
account for all higher order mode interactions. A popular
procedure which is frequently used in the context of waveguide
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discontinuity problems is the scattering matrix formulation
of the mode-matching procedure [4]. This approach has also
been used in the analysis of open-ended waveguide phased-
array antennas [5]–[7]. The resulting codes, however, although
accurate, can be computationally very inefficient. In addition,
mode matching can be affected by “relative convergence”
problems [8], potentially giving rise to erroneous solutions.
Recently, a multimode equivalent network representation for
arbitrary planar waveguide junctions has been developed in
terms of multimode admittance or impedance parameters [9].
This technique was originally developed in the context of CAD
tools for microwave filters and is extended here to the efficient
analysis of waveguide-to-free-space unit cell junctions.

It is important to note that both the mode-matching method
and the multimode equivalent network representation method
belong to the family of modal analysis, but there are substantial
differences. In applying a mode-matching procedure to the
analysis of a waveguide junction, the unknown fields are
expanded in infinite sets of normal modes [5]–[7]. Then the
continuity of tangential electric and magnetic fields at the
discontinuity is enforced. The resulting equations are rewritten
into a set of equations involving unknown coefficients only.
The series are then simultaneously truncated and the system
is solved. The fact that infinite series are truncated simultane-
ously can give rise to “relative convergence” problems. Fur-
thermore, in the scattering formulation of the mode-matching
procedure, a frequency dependent matrix inversion is required
for the characterization of every discontinuity [6], [7]. Then,
in order to characterize cascaded discontinuities, an additional
frequency dependent matrix inversion is required for every
cascading operation [6], [7]. As we will see, using the method
of the multimode equivalent network representation, no matrix
inversions are required to characterize a discontinuity and,
in order to characterize cascaded discontinuities, only one
matrix inverse operation is required. Furthermore, because of
its specific formulation, the method is uniformly convergent,
thus not susceptible to “relative convergence” problems.

In this paper, we first describe in detail the development
of the multimode admittance network formulation as well
as additional means to further improve the computational
efficiency. We then compare the results obtained with our
theory with both measured and simulated results. Then, an
alternative design procedure for infinite open-ended waveguide
phased-array antennas is presented. The alternative procedure
essentially consists of viewing the array as a microwave filter
with the feeding waveguide as the input port and with free-
space as the output port. Two specific design examples are
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Fig. 1. Planar junction between two arbitrary waveguides.

Fig. 2. Multimode equivalent network representation of the junction shown
in Fig. 1.

finally discussed indicating how the new approach presented
indeed gives significant additional degrees of freedom.

II. THE BASIC ADMITTANCE FORMULATION

The structure to be analyzed is a planar junction between
two arbitrary waveguides, as shown in Fig. 1. The two waveg-
uides could be, for instance, the feeding rectangular waveguide
of the array and the phase-shift wall waveguide, as already
discussed. The objective of this section is to discuss a method
for the development of the multimode equivalent network
representation for the junction in the form shown in Fig. 2. The
key feature of the method described is that it starts from the
wanted final results, the equivalent network representation, in
order to obtain analytical expressions for the evaluation of the
relevant matrix elements. The procedure is based on general
network theory and is equivalent to ideallymeasuring directly
the value of the admittance parameters.

In mathematical terms, the network in Fig. 2 is equivalent
to the following linear system:

(1)

where and are modal currents and voltages, respec-
tively, and where can be 1 for region (1) or 2 for region
(2), as shown in Fig. 1. The modal currents and voltages in

Fig. 3. Structure used for the evaluation of theY
(1; 1)
m;n andY (2; 1)

m;n elements.
A short circuit is placed at port 2 of Fig. 1 and the distancelref is introduced
between in and output ports.

(1) are the amplitudes of the vector mode functions and
relevant to the waveguide cross section (). The vector

mode functions for standard cylindrical waveguides can be
found in [10], the vector mode functions for a phase-shift wall
waveguide are derived in the Appendix.

The system in (1) can now be used to actually obtaindirectly
a formal expression for the evaluation of the elements.
We can, in fact, write

(2)

where and can be 1 for region (1) or 2 for region (2),
respectively. The expression in (2) can now be rewritten in
the form

(3)

where is the TM field generated at port () by
the incident mode of amplitude in port ( ). CS( ) is the
cross section ().

To explain the use of (2) and (3), we can start with the
admittance elements . For these elements, the definition
requires a single-mode incident from the left (port 1) and a
short circuit in port 2. The distance must now be introduced
between the input and output ports since we can not measure
a voltage on a short circuit. The resulting structure becomes
the one shown in Fig. 3 for which we can write directly

(4)

where is the Kronecker delta (equal to one for ;
equal to zero otherwise).

For the elements , the definition in (2) requires again
a single-mode incident from the left (port 1) and a short circuit
in port 2. The current response will now be measured at port
2 using standard orthogonality [10] and the same structure in
Fig. 3. Using then simple transmission line calculations, the
resulting expression is

(5)

which can also be used for since the junction is lossless
and reciprocal. Finally, for the elements , the definition
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Fig. 4. Structure used for the evaluation of theY (2; 2)
m;n elements. A short

circuit is placed at port 1 of Fig. 1.

in (2) requires a single mode exciting from the right (port 2)
and a short circuit at port 1. The situation is now as indicated
in Fig. 4 and the current response is again taken at port 2. To
use (3), we now need to write an expression for . Taking
into account the continuity of the TM field at port (2), we
can write

(6)

Using again the orthogonality of the modes and simple trans-
mission line theory, we then obtain

(7)

In all of the expressions derived, the symbolstands for the
scalar product of the quantities involved (coupling integrals re-
sulting from the use of the orthogonality conditions) andand

are the normalized vector mode functions of the waveguides
in the appropriate regions. is the propagation constant
of the modes in region (1) and is the corresponding
characteristic admittance.denotes the complex conjugate.

It is important to note that only the calculation of the
elements require summations and that the running index of the
summations affect only the modes of the larger waveguide,
namely region (1). Furthermore, the indexesand represent
TE and TM modes at port (1) and (2) of the multimode
equivalent network representation, whilerepresents TE and
TM modes in region (1). In all summations, TE and TM modes
are sorted according to their increasing cutoff wave number.
The energy stored in the discontinuity is correctly accounted
for once the summations reach numerical convergence.

When the admittance coupling matrices of individual dis-
continuities have been obtained, cascaded discontinuities can
be easily analyzed by constructing a global multimode equiv-
alent network representation. An important feature of this
method is that the analysis of the global network thus obtained
requires only one inversion per frequency point (or angle) of
a banded linear system and can therefore be performed very
efficiently [11]. The dimension of this system is determined by
the accuracy required in the final solution. The separate control
over the required accuracy from the one over the stored en-
ergy [ summations] ensure uniform convergence of the

(a)

(b)

Fig. 5. Evolution of Y (2; 2)
m;n as function of the summing index for a

rectangular waveguide to free-space junction in an infinite waveguide array
antenna. (a) Array configuration. (b)(m; n) = (40; 40).

results and thus eliminates “relative convergence” problems.
The summations involved however, can be treated in order to
significantly further increase the computational efficiency.

III. I MPROVING COMPUTATIONAL EFFICIENCY

In order to investigate the behavior of as function
of the summing index , we analyze an infinite rectangular
waveguide array antenna as shown in Fig. 5(a). The array
lattice is triangular, an inductive iris is placed into every
waveguide aperture, and a dielectric sheet is placed in front
of the antenna aperture for wide-angle impedance-matching
purposes [5]. Fig. 5(b) shows a typical example of the evo-
lution of for the waveguide to free-space unit cell
junction of the structure as function of, for a given set of
( ). As we increase the maximum number of terms in the
summation of (7), we can see that there are distinct areas of
running index where the main contribution to can
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be found. Rather than starting the summation at and
proceed till convergence is reached, we would like to start the
summation at the centers of main contribution and proceed in
both directions till convergence is reached. To do so, we need
to find a way to pinpoint the starting points of the summations.
In the same figure, we also show the eigenvalue associated
with mode and mode ( for this particular example)
and the value of the eigenvalue associated with summing index
. The figure shows that the main contribution can be found

where the eigenvalues coincide, a result in correspondence
with intuition. By using a linear interpolation, we can easily
determine the appropriate starting points for the summation
in , i.e., the centers of the areas of strong contribution, thus
strongly improving the computational efficiency.

Another method to improve the computational efficiency is
to reduce the frequency dependent computations. To this end,
we can add and subtract to (7) astatic series [12], defined as

(8)

obtaining for the elements the following expression

(9)

where the second term in the right-hand side of (9) (called the
dynamicseries) is given by

(10)

and where the bars denote static quantities obtained by letting
the frequency go to zero in the original expressions.

Following this formulation, the static term in (8) needs to
be calculated only once before starting the frequency or angle
loop. The convergence of the dynamic sum is now much faster
due to the fact that the summation term in (10) tends to zero
for large values of the running index.

IV. NUMERICAL VALIDATION

Fig. 6 shows the computed reflection coefficient in the
diagonal plane for the embedded element of the structure in
Fig. 5(a), obtained using the admittance formulation (from
now on called the direct method) and as calculated using a
mode-matching procedure. Inspection of the embedded ele-
ment reflection coefficient shows that for this array antenna
a “blind scan angle” occurs at 53from broadside, meaning
that when used as aphased-array antenna at a scan angle
of 53 from broadside in the diagonal plane, all the energy
will be reflected. For operation within a scan cone of 45the
reflection is “reasonably” low; the corresponding VSWR is
less than 2 : 1. Very good agreement can be observed, proving
that the same accuracy can be obtained by both methods. The

Fig. 6. Reflection coefficient in the diagonal plane for the array an-
tenna shown in Fig. 5(a).a=b = 4:14; c=d = 2:98; s=t = 1:73,
t1=t2 = 0:4; t1=t3 = 0:91, a=�0 = 0:84.

Fig. 7. CalculatedE-plane reflection coefficient for the infinite array shown
in Fig. 5(a) with irises and dielectric sheet removed (t1 = t2 = t3 = 0).
The measured reflection coefficient for afinite 175-elements array antenna is
also shown.

direct method, however, is computationally more efficient and
is not susceptible to “relative convergence” problems.

To give an idea of the typical central processing unit
(CPU) time improvement, the use of the techniques described
produces an increase of speed over the basic direct method by
nearly a factor 3 for the structure in Fig. 5(a) (21.8 s per point,
using an IBM RISC 6000 platform). The same structure was
also analyzed with standard mode matching [13]. The direct
method is about an order of magnitude faster.

In Fig. 7 we show the results obtained from a simulation
using the direct method for an infinite array and the measure-
ments performed on a finite 175-element array. The array is
the same as the one used in the calculations of Fig. 6, but now
with the irises and the dielectric sheet removed. The reflection
coefficient in the plane is shown. In this plane no “blind
scan angles occur.” In the measurements we see a periodic
variation of the reflection coefficient. This effect is due to the
finiteness of the array. We do see, however, that the measured
values follow the simulated ones. Taking into consideration
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Fig. 8. Infinite thick grating.

Fig. 9. Normalized transmission coefficient versus the relative periodp=�
for the thick grating shown in Fig. 8 witha=p = 1=3; t=p = 1=3 and for
two angles of incidence� = 0

� and� = 30
�. The crosses are computed in

[13] with � = 0
�.

that we compare infinite array calculations and small size
finite-array measurements, the agreement between calculations
and measurements is very reasonable. The agreement between
calculations and measurements will improve with increasing
number of array elements.

As a further validation, we analyze the transmission coeffi-
cient for the thick grating (shown in Fig. 8) for two angles of
incidence. The results are shown in Fig. 9 and coincide exactly
with earlier published results [14], [15].

V. “FILTER” DESIGN OF WAVEGUIDE

PHASED-ARRAY ANTENNAS

Having described the analysis technique and having shown
the accuracy of the CAD tool developed, we now discuss
an alternative design procedure for open-ended waveguide
phased-array antennas. The basic concept is to view the unit
cell of the infinite array as a filter structure. In other words,
we consider the input feeding waveguide as the input port
and the phase shift wall waveguide as the output port. The
objective of the design is to obtain a phased-array antenna with
a prescribed useful bandwidth, in-band return loss, and out-of-

(a) (b)

Fig. 10. Novel open-ended waveguide array antenna concepts. (a) Infinite
planar array with filtering structure inside the rectangular waveguides. (b)
Infinite planar array with filtering structure in the phase-shift waveguides.

Fig. 11. Frequency response of the embedded element in the array antenna
of Fig. 10(a).

band rejection, in complete analogy to a microwave filter. This
goal is achieved by introducing between input and output the
number of required resonators and appropriate coupling struc-
tures in order to achieve an electrically compliant response.
Following this approach, the array design can be performed
following, for instance, the filter design procedure described
in [16]. Following this approach two different situations arise.
The first is when the complete filter structure is inside the
feeding waveguide, the second is when the filter structure is
in the phase-shift wall waveguide.

The first design that we present consists of a two-pole
structure inside the feeding waveguide [see Fig. 10(a)]. The
frequency response of the structure is shown in Fig. 11. The
angular variation of the frequency response (not shown here)
appears to be largely invariant with respect to the angle of
incidence.

The second structure that we present, again has two poles,
but now they are implemented in the phase-shift wall wave-
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Fig. 12. H-plane angular response of the embedded element in the array
antenna of Fig. 10(b) as function of frequency.

guide, as shown in Fig. 10(b) [17]. With this antenna we
can get the same frequency response at broadside as with
the previous antenna, but now the angular behavior depends
on frequency. This is shown in Fig. 12 where we show the
transmission pattern of an infinite array of square waveguides
arranged in a rectangular grid. From this figure we see that
when the frequency is increased, the antenna beam is launched
at an angle with respect to the array normal, the angle
increasing with frequency. The beam is invariant with the
azimuth angle, so that “conical ring” antenna patterns are
generated. The opening angle of the cone is controlled by
the frequency. From the same figure we observe that by using
this “space filter” for a fixed frequency, the angular element
pattern can be significantly narrowed.

VI. CONCLUSIONS

A simple and efficient procedure for the study of infinite
open-ended waveguide array antennas has been presented. A
number of comparisons have been performed with both sim-
ulated and measured data thus fully validating the theoretical
approach presented. In addition to theory, a novel phased-
array antenna design procedure has been presented which can
significantly increase the degrees of freedom in the electrical
design.

APPENDIX

PHASE-SHIFT WALL WAVEGUIDE MODES

Fig. 13 shows the phase-shift wall waveguide for an infinite
array with a general triangular lattice. The key parameters are
the distances and and the angle (for , we have
a rectangular lattice). For an empty waveguide with constant
cross section under TM excitation, the vector mode functions

and can be derived from the scalar-mode function
via [18]

(A.1)

(A.2)

Fig. 13. General triangular lattice unit cell.

where and are the wave numbers in the transverse
directions. The scalar-mode function must satisfy
the two-dimensional Helmholtz equation

(A.3)

together with the proper boundary conditions. Due to the
periodic structure, the solution of (A.3) can be written in the
form

(A.4)

where

(A.5)

(A.6)

and being the angles with respect to theand axis,
respectively, and

(A.7)

(A.8)

Introducing (A.4)–(A.8) into (A.3), we obtain

(A.9)

Finally, for the TM vector-mode functions, we obtain

(A.10)

(A.11)

where

(A.12)

(A.13)

(A.14)

The derivation of the TE vector-mode functions follows the
same procedure and, therefore, is not repeated.
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