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Abstract—Antenna near-field measurements typically require
very accurate measurement of the near-field phase. There are
applications where an accurate phase measurement may not be
practically achievable. Phaseless measurements are beginning to
emerge as an alternative microwave antenna measurements tech-
nique when phase cannot be directly measured. There are many
important aspects for successful implementation of a phaseless
measurement algorithm. This paper presents appropriate phase-
less measurement requirements and a phase retrieval algorithm
tailored for the bi-polar planar near-field antenna measurement
technique. Two amplitude measurements and a squared am-
plitude optimal sampling interpolation method are integrated
with an iterative Fourier procedure to first retrieve the phase
information and then construct both the far-field pattern and
diagnostic characteristics of the antenna under test. In order
to critically examine the methodologies developed in this paper,
phaseless measurement results for two different array antennas
are presented and compared to results obtained when the near-
field amplitude and phase are directly measured.

Index Terms—Antenna diagnostics, antenna measurements, bi-
polar near-field, phaseless measurement, phase retrieval.

I. INTRODUCTION

NEAR-FIELD antenna measurement methods [1], [2], in
contrast to conventional far-field methods, make use of

a measuring probe in the radiating near-field region of the
antenna under test (AUT). The far-field pattern of the AUT,
not being directly measured, must be indirectly computed from
the measurements made in the near-field region. For planar
near-field measurements, a Fourier transform of the complex
(amplitude and phase) near-field data is required to obtain the
far-field pattern. A very accurate measurement of the near-field
phase is typically required. There are applications, however,
where an accurate phase measurement may not be practically
achievable. For example, in high-frequency applications the
accuracy of the phase measurement might be limited by the
positional tolerances of the measuring probe. The prohibitive
cost of vector measurement equipment can also be a substantial
impediment to obtaining any phase information.

Phaseless measurement methods are beginning to emerge
as an alternative microwave antenna measurements technique
when it is impractical to directly measure phase. The process
of recovering the phase is known as the “phase retrieval” prob-
lem. A variety of algorithms, almost exclusively numerical in
nature, have been investigated in recent years for the phase re-
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trieval problem at microwave and millimeter wave frequencies.
Excellent overviews of both the underlying mathematical basis
for the phase retrieval problem and a comparison of various
practical algorithms are contained in [3], [4]. A number of
methods have focused on iterative Fourier algorithms with
enforcement of the measured phaseless data constraints at
each step. Examples of techniques in this category include the
error-reduction (Gerchberg–Saxton) [5], input–output [4], and
Misell [6] algorithms. These techniques all originated in the
optical regime and require amplitude measurements in the far-
field region, which, of course, is impractical from the near-field
antenna measurements perspective.

The plane-to-plane [7] algorithm, an iterative Fourier tech-
nique, was specifically formulated for the case of planar
near-field antenna measurements and, therefore, admits the
same measurement apparatus for both required phaseless near-
field antenna measurements. In recent years, an approach to
the phase retrieval problem as a nonlinear inverse problem
[8] has gained attention. In this technique, an appropriately
defined functional based on the known squared amplitude
near-field data is numerically minimized. This approach to
the phase retrieval problem is also amenable to the planar
near-field antenna measurement scenario. With few exceptions,
however, these techniques have been applied to simulations
and measurements in which the near-field measurement planes
were separated by a considerable electrical distance.

There are many important aspects for successful imple-
mentation of a phaseless measurement algorithm. This paper
presents appropriate phaseless measurement requirements and
a phase retrieval algorithm tailored for the bi-polar planar near-
field antenna measurement technique. Two amplitude measure-
ments and a squared amplitude optimal sampling interpolation
method are integrated with an iterative Fourier procedure to
first retrieve the phase information and then construct both
the far-field pattern and diagnostic characteristics of the AUT.
In order to critically examine the algorithms presented in [9]
for antenna imaging applications and refined in this paper for
phaseless array diagnostics, phaseless measurement results for
two distinct examples, the phase retrieval of a near-circular
aperture array antenna and the phaseless diagnostics of a
masked elliptical aperture array antenna, are presented and
compared to results obtained when the near-field amplitude
and phase are directly measured.

The remainder of this paper is organized as follows.
Section II briefly describes the bi-polar planar near-field
antenna measurement technique. Section III provides an
overview of the essential aspects of the optimal sampling
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Fig. 1. The UCLA bi-polar planar near-field antenna measurement range.

interpolation (OSI), a component of the bi-polar phase retrieval
algorithm. A step-by-step guide to the bi-polar phase retrieval
algorithm is given in Section IV. This section also details
two critical components of the process: squared amplitude
OSI and Fourier iteration. Section V contains measurement
results for two different array antennas in order to illustrate
the applicability and accuracy of the phase retrieval algorithm.
Finally, some concluding remarks are given in Section VI.

II. BI-POLAR PLANAR NEAR-FIELD

ANTENNA MEASUREMENTS AT UCLA

The concept, design, and implementation of the bi-polar
planar near-field antenna measurement technique has been
extensively described by the authors in previous publications
[10]–[12]. It has been demonstrated that this measurement
technique is a highly accurate and cost-effective means for
performing antenna measurements and diagnostics. Among the
many attractive features of this bi-polar technique are a large
scan plane size requiring minimal “real-estate” investment and
a simple mechanical implementation requiring only rotational
motions.

The UCLA bi-polar planar near-field scanner (shown in-
stalled in an anechoic chamber in Fig. 1) consists of an AUT
mounted to a positioner that rotates about one axis and a
probe antenna mounted to a probe arm that rotates about a
second axis. The combination of these two rotational motions
results in near-field data collected on concentric circular rings
with data samples located at the intersection with circular
radial arcs. The bi-polar sampling distribution, shown in
Fig. 2, arises from a repeated measurement sequence in which
the AUT rotates through a full revolution followed by an
incremental rotation of the probe arm away from the scan
plane center. This sampling distribution is described by the
independent coordinates where is the angle the probe
arm makes with the positive axis and is an azimuthal-like
angle which remains constant along each circular radial arc.
The probe arm length, a parameter of the coordinate system,
determines the radius of the circular radial arcs. The scan plane
radius , a parameter of the measurement, is determined by
the maximum angular extent of the probe arm .

Fig. 2. Bi-polar planar near-field sample arrangement and coordinate system
(�; �). L is the length of the probe arm.

The scanner’s robotic positioning system and programmable
motion-control software permit considerable flexibility with
respect to the sample arrangements which may be acquired
[13]. For example, if the probe arm angle is incremented
uniformly one obtains concentric rings spaced nonuniformly in
the polar coordinate, however, on the other hand, if the probe
arm angle is incremented nonuniformly (in a prescribed
fashion) one obtains concentric rings uniformly spaced in.
The number of near-field samples on a measurement ring may
also be varied from inner to outer ring to prevent oversampling
of the near-field near the scan plane center. Interestingly
enough, a bi-polar linear spiral scan can also be achieved
through the simultaneous rotation of the AUT and probe arm
[14].

III. OPTIMAL SAMPLING INTERPOLATION

OF BI-POLAR NEAR-FIELD DATA

Planar near-field antenna measurement techniques require
a Fourier transform of the complex (amplitude and phase)
near-field data to obtain the far-field pattern of the AUT.
It is usually desirable, from a computational perspective, to
employ a fast Fourier transform (FFT) for both the near-field
to far-field transformation (with correction for the measuring
probe) [15] and for antenna holographic diagnostics [16]. The
FFT, however, requires rectangularly distributed data samples.
The direct application of the FFT to the bi-polar near-field
sample distribution, therefore, is not automatic. Other options
are available for computing the far-field pattern directly from
the bi-polar near-field samples, for example, the Jacobi-Bessel
and Fourier-Bessel transforms [11]. In most cases, however,
these techniques are more computationally demanding than
the FFT.

To exploit the computational advantages of the FFT, the bi-
polar near-field samples need to be converted to a rectangularly
regularized format. An OSI algorithm [11], [17] is employed
for this purpose for several reasons, the most notable of
which are the proper determination of the bi-polar sample
spacings (which may be considerably relaxed beyond the
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Fig. 3. Bi-polar planar near-field phase retrieval algorithm.

universally considered maximum sample spacing of) and
the accurate recovery of plane-rectangular samples from a
minimum number of bi-polar samples.

The OSI technique considers the AUT a finite radiating
structure with limited spatial bandwidth whose extent depends
only on the overall dimensions of the AUT. An appropriate
representation for the radiated near field is then a cardinal
series expansion. The properties of the sampling functions,
however, suggest the use of a central interpolation formula
in which only a limited number of samples in the vicinity
of the desired output sample are utilized. This, of course,
implies the introduction of truncation error. The problem
at hand is then, given the bandwidth, sample spacing, and
the number of retained samples, to find an approximation
function for which the maximum relative error is a minimum.
The required sample spacings, including an oversampling
factor , and the approximating functions for the plane-
polar technique, corresponding to linear (radial) and circular
(azimuthal) domains, have been detailed [17].

The interpolation of the bi-polar near-field samples into
a plane-rectangular format given the surrounding bi-polar
samples, for the case in which the bi-polar measurement rings
are uniformly spaced in the polar coordinate, is calculated
using

(1)

where is the vector output of the measuring probe,
where is the distance between the AUT and the probe,

are the indexes of the near-field sample nearest
(on the left) to the desired output sample, and are,
respectively, the number of retained radial arc and azimuthal
samples, is the radial sample spacing of the measurement

rings, is the azimuthal sample spacing on ring, is
the Chebychev convergence function [17], is the Dirichlet
interpolation function [17] where is related to the number
of samples on the th ring, and

(2)

A rigorous discussion of sampling requirements in the bi-
polar coordinates is found in [10] and is based on sampling
requirements in the plane-polar coordinates [17]. The OSI
interpolation formula (1) takes slightly different forms when
the bi-polar sampling is performed in the “native” bi-polar
coordinates [11] and for bi-polar linear spiral sampling
[14].

IV. BI-POLAR PHASE-RETRIEVAL ALGORITHM

A phase retrieval algorithm related to the plane-to-plane
technique [7] has been developed for use with the bi-polar
planar near-field measurement system. An important require-
ment of this algorithm is its applicability topracticalnear-field
range implementations, which typically require both the AUT
to measurement planeandmeasurement plane to measurement
plane (multiple phaseless near-field measurements are typi-
cally required for phase retrieval) separation to be on the order
of just a few wavelengths (contrast this with the
separations typical in optical applications of phase retrieval).

The objective of this section is to clearly outline the proce-
dural steps relating to both the phaseless bi-polar measurement
requirements and the implementation of the phase retrieval
algorithm. A pictorial representation of the bi-polar phase
retrieval algorithm, which appears in Fig. 3, will assist in
illustrating this process.

Phaseless bi-polar measurements (step 1) are obtained for
two different positions of the measuring probe with respect
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to the AUT aperture plane. The near-field amplitude data, on
each of these measurement planes, is acquired in accordance
with the sampling requirements to be described in the next
subsection. The UCLA bi-polar scanner can conveniently
acquire data on these two measurement planes because of
the automated vertical travel built into the probe assembly.
In addition, the rotational capabilities of the probe allow the
principal polarization of the AUT to maintain orientation with
that of the probe during the duration of the measurement.

A “squared amplitude OSI” (step 2) is used to interpo-
late the phaseless bi-polar measurement data on each plane
to a rectangularly regularized format. This is an important
step in the algorithm and the critical considerations behind
interpolation of the squared-amplitude data are detailed in the
next subsection. The squared-amplitude OSI is followed by
formation of the amplitude function from the rectangularly
regularized squared amplitude data. The amplitude data on
each measurement plane along with knowledge of the aperture
size and shape (referred to as the “object” or “aperture”
constraint) comprise the inputs to the Fourier iteration (steps
3–6) used for the phase retrieval. The details of the Fourier
iteration are described in the second subsection.

The product of the Fourier iteration is the complex near-
field distribution on the AUT aperture plane and each of
the two measurement planes. The Fourier iteration ensures
(assuming successful retrieval of the phase) that the complex
field distribution on these three planes are related by the
Fourier transform. This relationship allows the far-field pattern
of the AUT to be computed from the complex field distribution
on any one of these three planes (step 7), using standard planar
near-field techniques [15].

A. Squared Amplitude OSI

The phase-retrieval algorithm requires interpolation of the
phaseless bi-polar near-field measurement data on each mea-
surement plane to a rectangularly regularized format such
that an efficient FFT can be used for the subsequent Fourier
iteration. The motivation for interpolation of thesquared
amplitude data stems from the Fourier convolution theorem.
This theorem ensures that if (denoting the complex near-
field data) is a bandlimited function then so is the squared
modulus , but to a bandtwicethat of . A similar statement,
however, cannot be made for the modulus. This statement
is expressed mathematically as

If then

and
(3)

where is the Fourier transform of , is the complex
conjugate of , and is the convolution operator. It has
been demonstrated that the near-field of a radiating antenna,
after extraction of an appropriate phase factor, is quasi-
bandlimited [17] and, hence, the squared amplitude data is
quasi-bandlimited. This bandlimitedness allows a component
of the squared amplitude data to be interpolated and this

interpolation is performed using OSI [11], [17] as

(4)

Finally, since the squared amplitude data is bandlimited to
a band twice that of an equivalent amplitude and phase
measurement, the required bi-polar sampling rate istwice that
of the equivalent amplitude and phase measurement. This
sampling rate has been thoroughly examined in [17]. For
practical applications, however, the bandwidth properties of
the squared amplitude data would typically permit relaxation
of this sampling requirement.

B. Fourier Iteration

An initial guess for the amplitude and phase in the aperture
plane of the AUT is made and truncated to the known physical
extent of the AUT. This estimate is then propagated, using
plane wave spectrum techniques [18] implemented by FFT
out to the first measurement plane. An error metric at this
measurement plane is then computed by summing the squared
difference of the calculated modulus and measured mod-
ulus at each point on the measurement plane. This
error metric, which represents a conventional sum squared er-
ror of the field amplitude values, mathematically takes the form

(5)

The computed error metric is stored, the measured modulus
replaces the calculated modulus, and the result is propagated
back to the AUT aperture plane.

The calculated amplitude and phase at the AUT aperture
plane is again truncated to the known physical extent of
the AUT and the result is propagated out to the second
measurement plane. An error metric identical to that computed
at the first measurement plane is calculated and stored, the
measured modulus replaces the calculated modulus, and result
is propagated back to the AUT aperture plane, where the
calculated amplitude and phase is again truncated to the known
physical extent of the AUT.

The computed error metrics on the two measurement planes
at this point are examined to determine whether iterations
should continue. Appropriate stopping criteria include both an
absolute error limit and an error convergence limit. If a stop-
ping criterion is met then the retrieved amplitude and phase on
the AUT aperture plane and the two measured planes are stored
and the iterations terminate. If a stopping criterion is not met
then the process is repeated until a stopping criterion is met.

V. MEASUREMENT RESULTS

One of the principal contributions of this paper is to
demonstrate the applicability of the bi-polar planar near-field
phase retrieval algorithm using both realistic near-field mea-
surement geometrical configurations and actual measurement
data. To accomplish this task and to illustrate the success
achieved in implementing this algorithm, bi-polar near-field
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Fig. 4. X-band planar waveguide-fed slot array antenna with nearly circular
aperture.

TABLE I
BI-POLAR PLANAR NEAR-FIELD PHASE RETRIEVAL

MEASUREMENT PARAMETERS AT 9.375 GHz

measurement results for two different array antennas are
presented. The distinct features of these antennas are discussed
in the following two subsections. These two example cases,
which focus both on far-field pattern construction and antenna
diagnostics, provide a solid foundation for exercising the
robustness of the bi-polar phase retrieval algorithm.

A. Phase Retrieval of a Near-Circular Aperture Array Antenna

The phase retrieval algorithm has been applied to phaseless
bi-polar planar near-field measurement data for the waveguide-
fed slot array antenna of Fig. 4. This antenna operates at 9.375
GHz and has a nearly circular aperture measuring ( -
plane) ( -plane). The antenna has 764 radiating slots
arranged on an ( -plane) ( -plane) lattice.

A summary of the bi-polar near-field measurement param-
eters on each of the two measurement planes is provided
in Table I. Amplitude and phase were measured on each
plane so that phase retrieval results could be compared to
results obtained when the amplitude and phase are retained
in the data processing. The near-field sampling rate for the
measurements wastwice the sampling rate which would have

(a)

(b)

Fig. 5. Magnitude of the measured bi-polar planar near-field data at (a)
d = 6:255� and (b)d = 8:836�.

been used for an equivalent amplitude and phase measurement.
The measurement plane separation was and both
measurements were configured to yield a valid angle of

.
The bi-polar near-field data on each measurement plane was

interpolated using the squared amplitude OSI of (4) to a 128
128 rectangular grid of samples with sample spacings of

. The squared amplitude OSI was performed
using a 10 10 patch of retained samples.
Fig. 5 shows the magnitude of the measured near-field data
on each of the two measurement planes. The similarity of the
near-field amplitude data on the two measurement planes is
a result of their limited separation and, in general, makes the
phase retrieval process more difficult.

The phase-retrieval algorithm was initiated with a pseudo-
random ( 3 dB amplitude, 30 phase, uniformly distributed)
estimate for the field in the aperture of the AUT. This initial
estimate of the aperture plane fields was intentionally chosen
to exercise the robustness of the algorithm. The phase retrieval
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Fig. 6. Phase retrieval error metric versus iteration number on the measure-
ment planed = 6:255�.

(a)

(b)

Fig. 7. Comparison of (a)H-plane and (b)E-plane principal plane far-field
patterns obtained from a reference (amplitude and phase) measurement and
phase retrieval. Valid angle issin(�v) = 0:766.

algorithm terminated at 134 iterations at which point the error
metric, computed using (5), failed to decrease further. A plot
of the normalized error versus the first 60 iterations is shown in
Fig. 6. The error metric was reduced by 22.9 dB after just ten
iterations beyond, which it tended to decrease slowly (reduced
by 24.9 dB at algorithm termination).

(a)

(b)

Fig. 8. Far-field patterns obtained from (a) amplitude and phase measure-
ment and (b) phase retrieval.

A 256 256 point FFT was used to compute the probe-
corrected far-field pattern from the phase retrieval near-field
data. A comparison of the -plane and -plane patterns
of the waveguide-fed slot-array antenna obtained from phase
retrieval and from processing utilizing the measured near-field
amplitudeand phase (reference) are shown in Fig. 7. The-
plane results are excellent with regard to both wide-angle and
low-pattern level. The -plane results are also excellent, how-
ever, the shouldering effect on the main beam is not accurately
reflected. The far-field pattern over the entire spectral region
for the case when amplitude and phase are retained in the
processing and for the phase retrieval are shown in Fig. 8.
These plots demonstrate that the far-field pattern obtained from
phase retrieval has been reproduced accurately over the entire
spectral region. Table II contains a comparison of several
commonly reported far-field pattern statistics for the reference
and phase retrieval cases. The pattern statistics confirm that the
phase retrieval process has accurately reproduced the reference
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TABLE II
FAR-FIELD PATTERN STATISTICS FOR THE

WAVEGUIDE-FED SLOT ARRAY ANTENNA

(a)

(b)

Fig. 9. Holographic image of aperture plane magnitude obtained from (a)
amplitude and phase measurement and (b) phase retrieval.

far-field pattern. The discrepancy in the peak sidelobe level
is due to the higher “shoulders” adjacent to the main beam
produced by the phase retrieval in the-plane pattern.

Microwave holographic images of the antenna aperture
plane fields have been produced for both the reference and
phase retrieval cases to assess the quality of the images
reconstructed from phaseless bi-polar near-field measurement
data. The holographic images were computed by FFT from the
probe-corrected plane wave spectra. The plane wave spectra

(a)

(b)

Fig. 10. Holographic image of aperture plane phase obtained from (a)
amplitude and phase measurement and (b) phase retrieval.

were zero-padded before application of the FFT in order to
produce images with sample spacings of .
A comparison of the aperture plane magnitude image for the
reference and phase retrieval cases is shown in Fig. 9. The
aperture plane phase image comparison is shown in Fig. 10.
A comparison of the reference and phase retrieval images
indicates that an accurate reconstruction of the aperture plane
fields from the phaseless bi-polar near-field data has been
obtained.

B. Phaseless Diagnostics of a Masked
Elliptical Aperture Array Antenna

The phase retrieval algorithm has been applied to phaseless
bi-polar near-field measurement data for the waveguide-fed
slot array antenna of Fig. 11. This antenna operates at 9.3 GHz
and has an elliptical aperture measuring 14.8( -plane)
8.7 ( -plane), an aperture considerably smaller than for the
AUT of the prior example. The antenna has 196 radiating slots
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Fig. 11. X-band planar waveguide-fed slot array antenna with elliptical
aperture. An aperture anomaly has been introduced by using aluminum tape
to mask a 3� 3 patch of slots in the upper right-hand quadrant.

TABLE III
BI-POLAR PLANAR NEAR-FIELD PHASE RETRIEVAL

MEASUREMENT PARAMETERS AT 9.3 GHz

arranged on an 0.74( -plane) 0.69 ( -plane) lattice. An
anomaly in the aperture distribution has been induced by using
aluminum tape to mask a 3 3 patch of slots in the upper
right-hand quadrant of the antenna.

A summary of the bi-polar near-field measurement param-
eters on each of the two measurement planes is provided
in Table III. As in the prior example, amplitude and phase
were measured on each plane for the purpose of establishing
a comparative reference and the near-field sampling rate
for the measurements wastwice the sampling rate which
would have been used for an equivalent amplitude and phase
measurement. The measurement plane separation was 2.560
and both measurements were configured to yield a valid angle
of .

A squared amplitude OSI of the phaseless bi-polar near-field
measurement data was used to render a plane-rectangular data
format identical to that of the prior example. Fig. 12 shows the
magnitude of the measured near-field data on each of the two
measurement planes. The similarity of the near-field amplitude
data on the two measurement planes and the absence of a
pronounced signature due to the induced aperture anomaly
should be noted.

As in the prior example, the phase retrieval algorithm was
initiated with a pseudo-random (3 dB amplitude, 30
phase, uniformly distributed) estimate for the field in the
aperture of the AUT.No a priori knowledgeof the induced
aperture anomaly was assumed. The phase-retrieval algorithm
terminated at 104 iterations at which point the error metric

(a)

(b)

Fig. 12. Magnitude of the measured bi-polar planar near-field data at (a)
d = 4:728� and (b)d = 7:288�.

of (5), which exhibited the same characteristic profile as that
shown in Fig. 6 for the prior example, failed to decrease
further. The error metric was reduced by 23.8 dB after just ten
iterations beyond which it tended to decrease slowly (reduced
by 27.2 dB at algorithm termination).

A comparison of the probe-corrected-plane and -plane
patterns of the waveguide-fed slot array antenna obtained
from phase retrieval and from processing utilizing the mea-
sured near-field amplitudeand phase (reference) are shown
in Fig. 13. The -plane results are excellent with regard to
both wide-angle and low-pattern level. The-plane results
are also excellent with perhaps the exception of the region

, however, it is noted that the pattern levels
here are relatively low. The pattern of the array with no
aperture blockage (obtained from a separate amplitude and
phase measurement) is also provided as means for establishing
a measure of the pattern “disruption” induced by this artificial
anomaly. Table IV contains a comparison of far-field pattern
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(a)

(b)

Fig. 13. Comparison of (a)H-plane and (b)E-plane principal plane far-field
patterns obtained from a reference (amplitude and phase) measurement
and phase retrieval. The antenna patterns with no aperture blockage (from
amplitude and phase measurement) are also shown for contrast. Valid angle
is sin(�v) = 0:906.

TABLE IV
FAR-FIELD PATTERN STATISTICS FOR THE

WAVEGUIDE-FED SLOT ARRAY ANTENNA

statistics for the reference and phase retrieval cases. Pattern
statistics for the case when the antenna has no blockage present
are also provided for contrast. The pattern statistics confirm
that the phase retrieval process has accurately reproduced the
reference far-field pattern.

Microwave holographic images of the antenna aperture
plane fields have been produced for both the reference and
phaseless measurement cases, to determine whether the phase
retrieval results could “capture” the existence of the imposed

(a)

(b)

Fig. 14. Holographic image of aperture plane magnitude obtained from (a)
amplitude and phase measurement and (b) phase retrieval.

aperture blockage. A comparison of the reference and phase
retrieval results for the aperture plane magnitude and phase are
shown in Figs. 14 and 15, respectively. The aperture blockage
has been recovered accurately (size and location) although noa
priori knowledge about its existence was assumed. In addition,
the phase retrieval process has also precisely captured the
magnitude and phase distribution of the AUT aperture field.

VI. CONCLUSION

A phase retrieval algorithm particularly well-suited for
phaseless bi-polar planar near-field antenna measurements was
presented. This algorithm employed both squared amplitude
OSI and iterative Fourier techniques. The application of the
described algorithm to two waveguide-fed slot array antenna
phaseless measurement examples was presented. The first ex-
ample focused on the phase retrieval of a near-circular aperture
array antenna and the second on the phaseless diagnostics of
a masked elliptical aperture array antenna. The far-field pat-
tern and antenna aperture holographic images produced from
the phase retrieval algorithm were shown to have excellent
agreement with results produced using the measured near-field
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(a)

(b)

Fig. 15. Holographic image of aperture plane phase obtained from (a)
amplitude and phase measurement and (b) phase retrieval.

amplitudeandphase. These results indicate that phase retrieval
methods are now becoming a mature and practical antenna
measurement alternative when phase cannot be measured (or
measured accurately), for example, in high-frequency antenna
applications. The success of the phase retrieval algorithm,
however, is dependent on many factors including, for example,
the proximity of the “initial guess” to the actual solution.
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