1999 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

IEEE Transactions on Antennas and Propagation
Volume 47 Number 4, April 1999

Table of Contents for this issue

Complete paper in PDF format

Numerical Optimization of a Cylindrical Reflector-in-Radome Antenna System

Vladimir B. Yurchenko, Ayhan Altintas¸, Senior Member, IEEE, and Alexander I. Nosich, Senior Member, IEEE

Page 668.

Abstract:

Accurate numerical optimization based on the rigorous solution of the integral equation using the method of analytical regularization is performed for the cylindrical reflector antenna in a dielectric radome. It is shown that the multiple scattering in this system is more significant for the optimum radome design than any nonplane-wave effects or the curvature of the radome. We claim that, although the common half-wavelength design is a good approximation to avoid negative effects of the radome (such as the loss of the antenna directivity), one can, by carefully playing with the radome thickness, its radius, reflector location, and the position of the feed, improve the reflector-in-radome antenna performance (e.g., increase the directivity) with respect to the same reflector in free-space.

References

  1. J. D. Kraus, Antennas.New York: McGraw-Hill, 1988.
  2. R. F. Harrington and J. R. Mautz, "An impedance sheet approximation for thin dielectric shells," IEEE Trans. Antennas Propagat., vol. AP-23, pp. 531-534, 1975.
  3. D. C. F. Wu and R. C. Rudduck, "Plane wave spectrum--Surface integration technique for radome analysis," IEEE Trans. Antennas Propagat., vol. AP-22, pp. 497-500, 1974.
  4. P. D. Einziger and L. B. Felsen, "Rigorous asymptotic analysis of transmission through a curved dielectric slab," IEEE Trans. Antennas Propagat., vol. AP-31, pp. 863-869, 1983.
  5. X. J. Gao and L. B. Felsen, "Complex ray analysis of beam transmission through two-dimensional radomes," IEEE Trans. Antennas Propagat., vol. AP-33, pp. 963-975, 1985.
  6. L. B. Felsen, N. Subramaniam, and K. Arichandran, "Equivalence relation between partial angular harmonic and ray-type Green's functions for a cylindrical dielectric layer," IEEE Trans. Antennas Propagat., vol. 38, pp. 1273-1279, 1990.
  7. J.-H. Chang and K.-K. Chan, "Analysis of a two-dimensional radome of arbitrary curved surface," IEEE Trans. Antennas Propagat., vol. 38, pp. 1565-1568, 1990.
  8. R. K. Gordon and R. Mittra, "Finite element analysis of axisymmetric radomes," IEEE Trans. Antennas Propagat., vol. 41, pp. 975-980, 1993.
  9. H. Ling, S.-W. Lee, P. T. C. Lam, and W. V. T. Rusch, "Focal shifts in parabolic reflectors," IEEE Trans. Antennas Propagat., vol. AP-33, pp. 744-748, 1985.
  10. G. A. Suedan and E. V. Jull, "Beam diffraction by planar and parabolic reflectors," IEEE Trans. Antennas Propagat., vol. 39, pp. 521-527, 1991.
  11. T. Ogˇuzer, A. Altintas¸, and A. I. Nosich, "Accurate simulation of reflector antennas by the complex source--Dual series approach," IEEE Trans. Antennas Propagat., vol. AP-43, pp. 793-801, 1995.
  12. H. Cory and P. J. B. Clarricoats, "Reflection coefficient at the feed of a radome-covered reflector antenna," Proc. Inst. Elect. Eng., vol. 129, pt.H, no. 4, pp. 145-152, 1982.
  13. P. J. B. Clarricoats, C. G. Parini, and M. S. A. S. Rizk, "Performance of radome-covered reflector antennas," Proc. Inst. Elect. Eng., vol. 129, pt. H, no. 4, pp. 153-160, 1982.
  14. Microwave Antenna Theory and Design, S. Silver, Ed.London: Peter Peregrinus Ltd, 1984.
  15. S. S. Vinogradov, E. D. Vinogradova, A. I. Nosich, and A. Altintas¸, "Analytical regularization based analysis of a spherical reflector symmetrically fed by a scalar beam," SIAM J. Appl. Math., 1998, submitted for publication.
  16. G. L. Hower, R. G. Olsen, J. D. Earls, and J. B. Schneider, "Inaccuracies in numerical calculations of scattering near natural frequencies of penetrable objects," IEEE Trans. Antennas Propagat., vol. 41, pp. 982-986, 1993.