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A Technique for Extrapolating Numerically Rigorous
Solutions of Electromagnetic Scattering Problems to
Higher Frequencies and Their Scaling Properties
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Abstract—The possibility of extrapolating the current distri- In this paper, we examine the extrapolation problem by pos-
bution on two-dimensional scatterers to high frequencies, from ing the following question: Assuming that the MoM solution
the knowledge of the solution at two or more lower frequencies, o the current distribution has been generated for a few (two

is investigated in this paper. A simple extrapolation algorithm is . . .
developed in which the current distribution is first calculated at or more) frequencies for which the body is at least moderately

two lower frequencies, and then split into propagating or decaying large in terms of wavelength and yet is manageable in size,
traveling wave components in the lit and shadow regions. These is it possible to accurately predict the solution for higher

components are scaled to higher frequencies, by using simplefrequencies for which the body is too large to be handled
operations such as stretching of the magnitude and linear extrap- ]using the available resources?

olation of the phase. This technique enables one to solve a class o - . .. .
large-body scattering problems, well beyond the range of rigorous We show in this paper that the answer is indeed in the

numerical techniques. Furthermore, the extrapolated solution affirmative for the cases of the geometries investigated, even
is rapidly constructed over a very wide range of frequencies, for the situation where the conventional asymptotic methods
typically by utilizing the rigorous solution at only two lower typically fail, e.g., for grazing incidence. The extrapolation

frequencies. The application of the extrapolation algorithm is technique is based on a frequency scaling procedure in which

demonstrated for several examples, viz., an ellipse with a high R g .
aspect ratio, and wing-shaped geometries with rounded and the computed current distribution on the body is first split into

sharp edges. The robustness of the technique is illustrated by general constituent traveling components, each of which is
considering grazing angles of incidence where the asymptotic then extrapolated, individually, by using algorithms described
techniques typically break down. in this paper. We use the terstaling for extrapolation of a

Index TermS_E|ectr0magnetiC Scattering by rough surfaces. Single trave“ng wave constituent in Contl‘astﬁxtl’apolation
which is employed for the total current distribution that can

include one or several traveling waves. The individual scaling
I. INTRODUCTION is necessitated by the fact that the different components of

UMERICALLY rigorous approaches to frequenCythe current distribution follow different scaling laws. This is

domain electromagnetic scattering problems, e.g., tﬁéplamed on detail in Section I

method of moments (MoM) or the finite-element method To |Ilus.trate the vgrsauhty of the extrapolatlop ap.proach,
we examine three different types of scatterers in this paper.

(FEM), can become extremely expensive in terms of MEMOBY e first of these is an ellipse with a high aspect ratio which

requirement and central processing unit (CPU) time when :
. . . . Is_a typical example of a geometry of a smooth scatterer, and
dealing with a large scatterer, especially when the solution is : . . ;
which supports only a single traveling wave at each point of

needed over a broad band of frequencies. One approacr}hé) surface when the scatterer size is large. Next, we turn to

obviating this problem is to solve as large as a problem g}z}/ing—shaped geometry with a sharp edge, which launches

can possibly be accommodated on the available computer, an ge-diffraction currents that scale differently [2] than does

: . )
then attempt to extrapolate the solution to higher frequencn?ﬁé physical optics component. Finally, the third case studied
modification of the previous wing-shaped geometry whose

Despite the great need for solving large body problems using
numerical rather than asymptotic techniques, the extrapolation . : . ) .

. . : . _edges are now rounded. This case is of particular interest since
technique [1] has not received as much attention in th . S .~
: . . the surface has a slope discontinuity that causes an additional
literature as it probably deserves. In [1] an extrapolation

technique has been combined with the MoM to solve scatteriH?V?“ng wave.to be excited fpr the TE polarlzat!on. Th?
scaling properties of the constituent components in the lit,

problems from large bodies of revolution, and the possibilitg/ - g . . .
. . . . . hadow and the transition regions are discussed in detail in
of extrapolating entire domain basis functions of compl

ex .
exponential type has been studied. Section V.
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Interpolation & extrapolation algorithm is not universally applicable to the total current
distribution. For the sake of simplicity of notation, let us
assume that the curred} represents one of the components
of the total current distribution, viz./. (axial) for the TM
case and/; (transverse) for the TE case. L&t, .Jo, and .J3
be the current distributions on the surfacgs S», and Ss,
respectively. Also let/; and J, be obtained by employing
a numerically rigorous technique, e.g., the MoM or FEM.
Our objective is to derive/s from J; and J, via a scaling
procedure.

As a first approximation to/;, we stretch the magnitude of

. o . .
Fig. 1. Three surfaces in a wavelength scale that represent a scattere‘]latpy computngl (tr), and eXtrapOIatmg the phase “nearly’

three different frequencies. as in (4), to get

_ . o ¢1 = phaséJ(r)]
given scatterer at three different frequencies in a wavelength { ¢, = phas@/,(r)] (5)
scale. The surfaceS, and Sz are related ta5; via a stretch- Js = |J; (tr)|efj(¢1+a4,;%ll); Ay =y — 1.

ing procedure, because their geometries satisfy the following

relationship: The phase scaling is linear so long as the surface currents

on 57 consist of a single traveling wave. The choice of linear

Vre S, — {pr € 5o (1) scaling of the phase can be intuitively explained as follows:
tr € S3 Let us denote the length parameter along the surface, by

and the propagation constants of the traveling wavesaatd
ts on S; and Ss, respectively, by3(s), and 33(ts). Then,
the phase accumulatiod;(s) due to propagation along!
is given by 3,(I)dl, and integratingd¢$; along the path of
filtr) = fi(r). (2) propagation yields the desired result for the phase. The above
result is based on the Ansatz thaf(ts) = 51(s), which we

Assume thatS; is illuminated by a plane wavdl® = : . : X
Hyc—/%7, wherek is the vector wave number. In the IitW|II ver_lfy later numerically. The phase &k on S5 is thus
aPproxmated as

region, the physical optics (PO) approximation to the curren

distribution J, which is often employed for large smooth . :/s o D) £ 6
scatterers, is given by 93 (ts) 50/3( J(tl) = t1(s). ©

where p and ¢ are constant positive numbers. ff(r) is a
scalar function orS; we define the stretched functioff (¢r)
on S5 as

Jpo = 200 X HE. (3) Obviously, when the current on the scatterer constitutes more
than one traveling wave, the individual contributions must be
Let ¢, = k-r and¢, = k- pr be the phases of the curreniycyjeq separately, since their wave numbers are different.
distributionsJ, ., andJap, on 51 andSs, respectively. Then  ag the surfaceS; expands, i.e., the scaling parameter
the PO approximation td; can be written as is increased, the current distribution evolves, and it often
Jspo = (i1 X flo)prO(tr)C—j(k.r—l—Ad,%); Ay =y — approac_he_s the PO Iimi_t. We take adva_nta_ge_of this knowledge
by modifying (5) that incorporates this limit for larg8s.
(4) Toward this end we definé.(r) and the deviation function
wherehy is a unit vector parallel td,. Equation (4) states D(r) from the PO limit as follows:
that in order to calculatdsy,, from Jy,, andJ,,,, we need to NG
stretch the magnitude df,,, to the new surface and perform Anfr) = (= 1) (73)
a linear extrapolation for the phase. Equation (4) is obviously D(r) = |Japo(tr)] — |J7 (tr)]. (7b)
an example of scaling, since the value of the function at@nally, we represent the magnitude of the scaled solution for
stretched pointr depends on the value of the function at pointghe current via the equation
p;r on other surfaces. However, the above scaling procedure, s ()AL (r)
though simple, is not sufficiently general to be applicable to | /3| = |J1 + (1 -¢ " )D(r) (8)
other components of the current, as we will soon see. Afherew(r) is determined for each by substituting|J,| into
important objective of this work is to extend the extrapolatiothe left hand side of (8) and solving far(r). Equations (5)

procedure to a more general current distribution of the typgd (8) will be verified numerically for the four cases that are
encountered in the geometries investigated in this paper. discussed in the following two sections.

Ill. SCALING OF ONE
TRAVELING WAVE CURRENT COMPONENT IV. TM CASE

The first step to developing a general scaling procedureConsider a two-dimensional metallic scatterer with an el-
is to realize that different components of the surface currdigtical geometry with a 5:1 aspect ratio. The geometrical
distribution must be scaled differently, i.e., a single scalingarameters for the three surfacés, S. and S3 (Fig. 1) are
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P FAR FIELD FOR THE ELLIPTICAL GEOMETRY, TM POL.
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Fig. 2. A PEC scatterer with an elliptical geometry illuminated by a TM =) /
incident plane wave at grazing incidence. The parameteasdb; correspond - -20 g P4
to the surfacesS; of Fig. 1. /
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Fig. 4. Far-field results for the elliptical geometry with TM excitation.
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Fig. 3. Current distributions on the elliptical scatterer as a function of the R s T
distances measured from the transition paiht(Fig. 2). The extrapolated 10 o
solution is compared to the direct MoM and the physical optics solutions. 0 S0 100 150 200 250 300 350 400

0
given in Fig. 2’,and the scaling faCt(_)m?F 3 in this example. Fig. 5. Far-field results for the elliptical geometry with TM excitation.
Let a TM-polarized plane wave be incident on the scatterer @mparison between the direct and PO solutions.
grazing. The results for the magnitude of the induced current

distribution for the scaled solution (EXT), the direct MoM H
solution (DIR) and the PO approximation are shown in Fig. 3.
The MoM solutions throughout this work have been calculated k igp

by using a combined field integral equation (CFIE) formulation

to avoid the internal resonance problem. The accuracy of the

scaling procedure is demonstrated by the excellent agreement

between the scaled and direct solutions throughout, while the Zlf’i?% 22=21173» Za=19§k

PO and direct solutions are seen to differ from each other in the b 2=413) =124

transition region. It is evident that the transition of the surfadgg. 6. A wing-shaped geometry with a sharp edge illuminated by a T™M

current from the lit to the shadow region must be smootkcident plane wave. The front part consist of a portion of a circle of radius

h he PO . . di h h b, anda is the distance between the center of the circle and the edge. The
owever, the _apprOX|mat|0n prg icts that the current g ameters:; andb; correspond to the surfaceég of Fig. 1.

to zero abruptly in the shadow region because the normal to

the surface is parallel to thH-field at the shadow boundary. o ]
In contrast to the TE case, there is no discontinuity in tHot scale. However, sufficiently far from the edge, the solution

current distribution for the TM polarization and, therefore, thiends asymptotically to the PO limit. We may therefore modify
PO approximation is good for smooth geometries for the lattéte scaling procedure for scatterers with edges as follows. In
case. The far-field results are shown in Figs. 4 and 5. THee region far from the edge, where the magnitude of the
scaled result is almost identical to the direct solution wheregdrrent distribution settles down to the PO limit, we use (5),
the PO approximation has a spurious null close to the forwafdiereas close to the edge we chodsg(s)| = |Ji(s)], i.e.,
scattering angle. In the backscattering region the PO soluti¢® leave the magnitude unstreched. The phase distribution,
is off by approximately 1 dB. however, is extrapolated linearly according to (5).

Next, let us consider the scattering problem by a body Let us now verify the accuracy of this approximation for
with an edge. Referring to the canonical solution of the edgewing-shaped scatterer, which is illuminated by a TM plane
diffraction problem [2], we can easily verify that at the edgwave as shown in Fig. 6, for a scaling factor fof= 3. The
the solution tends to its electrostatic limit and, therefore, doesagnitude ofJ; at a distance ofi = 20\ from both sides

a
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WING-SHAPED GEOMETRY WITH SHARP EDGE, TM POL. FAR FIELD CALCULATION USING P.0. CORRECTION
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Fig. 7. Current distributions for the wing-shaped geometry with a shaffig. 9. Comparison between the extrapolated and direct solutions. A phase
edge. Comparison between the extrapolated and direct MoM solutions.  correction is obtained using PO approximation for the current.
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Fig. 8. Far-field results for the wing-shaped geometry with sharp edge a]g

TM excitation. Comparison between the extrapolated and direct solutions.”'d- 10 Current distributions for the elliptical scatterer of Fig. 2 with TE

excitation. The parameters for the three surfa€gsSs>, andSs area; = 20,
by =4, a2 =25, by =5, a3 = 60, andbsz = 12. The extrapolated solution

of the edge is not stretched, whereas the phase is |ineé_§|§or_npared to the direct MoM and the PO solutions. The difference between
. . thé direct solution and the extrapolated one is shown by the bottom curve.
extrapolated everywhere. The choice (20X in our case)
is flexible, however it should be taken big enough for the ) . o
solution to settle down to the PO limit to avoid discontinuitie§XNiPit large errors since the fringe currents have a significant
in the current distribution. It should be noted that by processiff§ntribution to the far-field of this scatterer.
more than two solutionsJJ{ and .J, in our case) one could
find closed form expressions for the current distribution as a V. TE Cast
function of size or frequency in the presence of edges [3].In this section we consider the case of TE polarization for
The scaled and direct solutions for the current distribution awhich the results have some interesting differences from the
shown in Fig. 7. The two curves, which are almost identicdiIM case. In the lit region, the incident magnetic field in
to each other, validate the proposed scaling procedure fbe TE case is perpendicular to the normal to the surface;
the magnitude of the current density in the vicinity of theonsequently, the amplitude of the current distribution at the
edge. Although small differences of the extrapolated and Motvansition region is much higher for the TE than it is for the
currents phase were found to be present in the lit regiofiM case. The PO approximation is rather poor in the transition
they had little influence on the far-field pattern. In Fig. 8, weegion because it drops abruptly as we transition from the lit
compare the extrapolated and direct far-scattered fields. Tiegion to the shadow region. This nonphysical discontinuity
two curves are seen to agree well for most angles, except in thehe PO approximation of the current distribution generates
region around 120and 240, where some oscillations appeatarge spurious oscillations in the far-field pattern.
in the extrapolated solution. However, as shown in Fig. 9, theWhen the surface of the scatterer and its slope are continu-
undesired oscillations disappear if we replace the phase of thes, we expect only one traveling wave to be excited along the
extrapolated solution by that of the PO solution at distancesrface at each point. Equations (5) and (8) can then be used
of 20\ and beyond from the edges. Thus, we have shown thatextrapolate the current components to higher frequencies.
a highly accurate solution can be obtained for this geomets an example, consider again the case of the ellipse shown in
by combining the scaled solution with the PO approximatioifrig. 2 for the case of TE illumination and a scaling factor of
Not unexpectedly, the PO only far-field pattern was found to= 3. The current distribution for the extrapolated, direct and



748 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 47, NO. 4, APRIL 1999

FAR FIELD FOR ELLIPTICAL GEOMETRY, TE POL.
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o0 A d €1706x  ©2=075%  c3=122 B
1 M 1 Fig. 13. A wing-shaped geometry with a rounded edge illuminated by a TE
25 Pndtng > incident plane wave. The front and back regions consist of portions of circles
e with radii b and ¢, respectively, and is the distance between the centers of
30 the two circles. The length parameterlong the curve is measured froBh
0 50 100 150 200 250 300 350 400 and increases in the counterclockwise direction.

Fig. 11. Far-field results for the elliptical geometry with TE excitations|ope discontinuitiesd and B, and they both travel in the
Comparison between the extrapolated and direct solutions. . . . "
same direction. In the lit region, and away from the slope
discontinuities, the propagation constants associated with these

FAR FIELD FOR ELLI . .
0 PTICAL GEOMETRY. TE POL two traveling waves are found to be very close to each other,

_________ [N these constants being = 6.227 (=2 * 7 * cos«, which
S corresponds to the PO approximation), a#g = 6.282. The
-10 two traveling waves propagate in the same direction, and
= : thus introduce an interference pattern with a very slow beat
w18 ) . .
= frequency along the straight section of the scatterer. In Fig. 14,
50 20 [FAMES. i we compare the stretched solutioff(ts) on S; [see (2)]
~ s N and Js.
oAt When we increase the angle(see Fig. 13), we find that the
-30 magnitude of the oscillations decreases while their frequency
a5 increases, and the solution approaches the PO limit. For
0 50 100 150 200 250 300 350 400 a = 30°, for example, the magnitude of the oscillations is
0 less than a third of that at 7.86and its period is smaller. For
Fig. 12. Far-field results for the elliptical geometry with TE excitation® = 60°, the oscillations become essentially negligible.
Comparison between the direct and PO solutions. It is obvious that we cannot obtaify from ./; by a simple

scaling of the total current distribution using (5) and (8),

PO solutions are plotted in Fig. 10. The difference betwe&i'ce the forms of the curves are completely different. We

the extrapolated and the direct solution is also shown by tﬁBOW’ ho_wever, _that a simple extra_polaﬂon procedure basgd
bottom curve in the same figure, and this curve serves as%selectlve scaling of the two traveling waves-components is
indicator of the quality of the extrapolated result for both thg!!

magnitude and phase. Because the aspect ratio of the ellifd® and “w.” We calculate J,, by using (3), and then
is large, the “PO region” with constant magnitude is ver9bta'n Jiw by calculating the difference between the total

small, whereas the transition region is very large; thus, the %rrggt _dlstrlbutlon ar(;dlmz N(;xt,fwe write the total current
approximation is relatively poor in this case. The comparisoﬁéStrl utions on3; and 5; in the form

between the various far-field patterns are presented in Figs. 11

possible. Let us denote these components by the subscripts

and 12. An excellent agreement between the extrapolated and J1 = Jipo + Jow (9a)
direct solutions is observed in Fig. 11, whereas the PO pattern,

shown in Fig. 12, is seen to have nonphysical oscillations due J2 = Japo + Jatw- (9b)
to the discontinuous behavior of the current in the transition

region. Finally, we calculate./s;,, by scaling .Jii,, using (5), and

Let us now return to an important case where the slope tlen adding.Js,,, to it using (3), to obtain the total current
the surface is not continuous. All of our numerical experimentistribution.
show that, unlike the TM case, a TE illumination at a slope Let us now turn to the shadow region. Since the two
discontinuity excites more than one traveling wave. Thisaveling waves penetrate the shadow regio@ athey should
implies that direct extrapolation of the current distributioe scaled separately in this region also. However, since the
is not possible since each traveling wave must be scalextension of the PO traveling wave in the shadow region is
differently. not known analytically, we can no longer separate the two

As an example, let us consider the scatterer of Fig. 13, witlontributions as we did in the lit region [see (9)], and we deal
a scaling factor oft = 2. Analyzing the current distribution with this case as follows. We assume that the shadow region is
we find that two traveling waves are excited at each of ttsaifficiently large and, hence, the traveling waves are negligible
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STRETCHED AND DIRECT SOLUTION, TE POL. WING-SHAPED GEOMETRY, TE POL.
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Fig. 14. Comparison between the stretched current at a low frequency to Fig. 15. Current distributions for the wing-shaped geometry with a rounded

direct solution at a higher frequency. edge. The extrapolated solution is compared to the direct MoM and the PO
solutions. The difference between the direct solution and the extrapolated one
is given by the bottom curve.

at D (Fig. 13). We then compute/s| from (8), and denote the

normalized to one function/z|/| max(|./s|)| at the shadow FAR FIELD CALCULATION, TE POL.
region byp(s), the “profile” function. The next step is to derive 0 I v
the two propagating constants,. and fs.,. The first one is -10 | R DIR
derived straightforwardly from the analytical representation of

the PO current. We extract the second propagating constant,
viz., fsiw, Via the GPOF algorithm [4], [5], by sampling

10log(|Ey|)

the current at a few points in the lit region just before the N e , i LT
transition pointC~. Since f3;,, and (s, are quite close to 40 N &
each other, we assume that they have the same profile function -50
p(s). We then denote the complex amplitudes of the scaled
. _ -60
componentsJsi, and Ja,,, respectively, atC—, by Asqw 0 50 100 150 200 250 300 350 400
0

and As;,.. Finally, we postulate the following representation
for the current distribution in the shadow region between Fig. 16. Far-field results for the wing-shaped geometry with a rounded edge
and D and TE excitation. Comparison between the extrapolated and direct solutions.

J3(8) 2 Aspop(s)e?Pro® 4 Agi p(s)edP s (10)
Since the transition in both phase and magnitude are very
Note that in the above representation, the decay of the curréftooth, the small error in the phase does little to affect the
in the shadow region has been accounted for by the profigg-field pattern, as is evident form Fig. 16, which shows that
functionp(s); hence, there is no need to include an attenuatiéhe far-field patterns of the extrapolated and direct solutions
constant in the exponents. almost overlap. Finally, we compare the far-field patterns of
Although the representation in (10) is quite accurate for otlte¢ PO approximation and the direct solution in Fig. 17. The
purposes, it may be further improved, if desired, as followSO solution is seen to deviate noticeably from the direct
Examining the propagation constants at different points alofglution over a wide angular range. This is because the PO
the surface, we find that their values increase slightly as tapproximation of the current does not include the second
wave penetrates into the shadow region. Thus, to obtain t@veling wave in the lit region and has a nonphysical behavior
even more accurate representation/gf we can letss,, and in the transition region.
Baw in Ja vary betweenC and D in the same manner as Next, we attempt to estimate the contribution of the second
they do inJ;. traveling wave in the current distribution on the far-field. We
The results for the current distribution for the extrapolatedo this by constructing a hybrid solution that excludes this
direct and PO solutions are plotted in Fig. 15. The differenétaveling wave component and consists, instead, of only the PO
between the extrapolated an direct solution is also shown &gproximation in the lit region and its extension in the shadow
the bottom curve in the same figure. We can see that tggion. This study is important because it sheds light into
selective scaling of the two traveling waves, we can extrapoldtee accuracy behavior of numerical techniques that attempt to
the current distribution accurately to higher frequencies evégbridize the high frequency scattering solution by using the
though the shapes of the curvek| and|J;| are completely PO approximation on the smooth portion of the scatterer and a
different from that of|Js|. From the current difference plotrigorous technique, e.g. MoM or FEM, in the neighborhood of
we can see a small error in phase in the shadow region wheldiscontinuity. We have already shown that the influence of
accumulates as the traveling waves go deeper into that regithe discontinuity is not localized, and that the slope disconti-
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BREAK DOWN OF THE PO SOLUTION, TE POL. hybrid and direct solutions plotted in Fig. 19. The two curves

0 0 are seen to be very similar, with only some minor differences

0 DIR in their levels. This interesting result can be explained by

. observing that, away from the slope discontinuity, the propa-
5 20 gation constants of the two traveling waves are very close to
% each other, viz., 6.227 and 6.282; hence their far-field patterns

g 30 are virtually indistinguishable from each other. If we increase

- the angle of incidence, or the wedge anglethe difference

-40 between the propagation constant increases. However, the
0 amplitude of the second traveling wave decreases at the same

050 100 150 200 250 300 350 400 time, so that its influence on the far-field pattern remains
) relatively small.

Fig. 17. Far-field results for the wing-shaped geometry with a rounded edge

and TE excitation. Comparison between PO and direct solutions. VI. CONCLUSION
In this work we have examined the two-dimensional scat-
HYBRID SOLUTION : PO + EXT, TE POL. tering problem for a number of scatterers, and have presented
23 . an extrapolation procedure based on the selective scaling
Y S : S% properties of constituent current components on the surface
2 I,-' i f o ".‘ of the scatterer. We have shown how we can derive the
1 ! extrapolated current at high frequencies from the knowledge
15¢ i of the numerical solution at two lower frequencies, where
ok P the body is only moderately large. Thus the method has
1 . the potential for application to very large bogly scattering
) ' . problems, at least for a class of canonical scatterlng geqmetrles
0.5 3‘\\_‘ i H 7 that may be used as benchmarks for numerically rigorous
NI =——--._./‘"ﬂ solution techniques.
0O 00 200 00 200 00 The_ extrapolat.ion is based on selectively stretching the
s (in wavelengths) magnitude and linearly extrapolating the phase of the con-

stituent current components. The extrapolation procedure has

Fig. 18. Comparison of the hybrid solution for the current distribution withhe attractive features that it is simple to implement and very
the direct solution. The difference curve represents the contribution of t

second traveling wave. re"f'ficient in terms of the CPU time. It is also more accurate
than the PO, especially at grazing incidence where PO tends

to break down. Furthermore, unlike asymptotic methods, it
HYBRID SOLUTION FOR FAR FIELD, TE POL.

0 does not rely upon the availability of canonical solutions and
_____ HYB it can handle both the transition and shadow regions with
-10 relative ease. It can be applied to scatterers with both slope
_ discontinuities and edges.
T 20 It may also be possible to combine the extrapolation tech-
%0 nigue with the conventional MoM, by employing subdomain
= 30 basis functions for the complex portions of the scatterer in
- I .o N a manner proposed by Wangt al [6]-[8], to handle more
=y ¢ Poan . . . . .
40 Y ) complex geometries than have been investigated in this paper.
L RER The extension of the extrapolation procedure is currently
50 ' being investigated for a class of three-dimensional scattering
0 50 100 150 200 250 300 350 400 problems [3]. In order to get accurate results, one must first
0 generate the solution at several lower frequencies from which

Fig. 19. Far-field results for the wing-shaped geometry with rounded edlfa€ solution is extrapolated to higher frequencies. The solutions
and TE excitation. Comparison between the hybrid and direct solutions. at lower frequencies can then be used to determine accurately
the frequency dependency of the solution. The finite difference

nuity can excite a traveling wave that propagates for hundred8e doma_un teF:hnlque Is found to be very We||.SUIted for th_|s
roblem since in one run one can get the solution over a wide

of wavelengths with little decay. However, as we show beIO\B, .
this may not have a significant effect on the far-field. band of frequencies.

In Fig. 18, we compare the hybrid and direct solutions and
also plot the difference curve which shows the contribution of ACKNOWLEDGMENT
the second traveling wave. The level of the difference curveThe authors would like to thank to Prof. A. F. Peterson for
implies that the hybrid solution introduces a significant errdris assistance and for the CFIE MoM code, and to the NCSA
in the near field. We next examine the far-field pattern for tifer generously providing CPU time on the SGI computers.



ALTMAN AND MITTRA: TECHNIQUE FOR EXTRAPOLATING NUMERICALLY RIGOROUS SOLUTIONS 751

REFERENCES Zwi Altman (S'88-M'89—-SM'99) received the
B.Sc. and M.Sc. degrees in electrical engineering
from the Technion-Israel Institute of Technology,
Haifa, in 1986 and 1989, respectively, and the Ph.D.
degree in electronics from the Institut National
Polytechnique de Toulouse, France, in 1994.

He was a “Laueat de la Bourse LAVOISIER”
of the French Foreign Ministry in 1994, and from
1994 to 1996 he was a Postdoctoral Research

[1] Z. Altman and R. Mittra, “Combining an extrapolation technique witF
the method of moments for solving large scattering problems involvir
bodies of revolution,”IEEE Trans. Antennas Propagatvol. 44, pp.
548-553, Apr. 1996.

[2] R. Mittra and S. W. LeeAnalytical Techniques In The Theory Of Guided
Waves New York: Macmillan, 1971, ch. 1.

[3] J. C. Goswami and R. Mittra, “On the solution of a class of large
body scattering problems via the extrapolation of FDTD solutions, Fellow in the Electromagnetic Communication
J. Electromagn. Waves Applicawol. JEWA 12, no. 2, pp. 229-244, Laboratory, Electrical Engineering Department,
1998. University of lllinois. In 1996 he joined the CNET—National Center

[4] Z. Altman, R. Mittra, O. Hashimoto, and E. Michielssen, “Efficient rep-of Telecommunication Studies of France Telecom. His research interests
resentation of induced currents on large scatterers using the generaliretude computational electromagnetics, electromagnetic compatibility, bio-
pencil of function method,IEEE Trans. Antennas Propagatol. 44, electromagnetics, wavelets, and genetic algorithms.
pp. 51-57, Jan. 1996. Dr. Altman is currently an Associate Editor for the |IEERANSACTIONS

[5] Y. Hua and T. K. Sarkar, “Generalized pencil of function method foon ELECTROMAGNETIC COMPATIBILITY .
extracting poles of an EM system from its transient responkeEE
Trans. Antennas Propagatol. 37, pp. 229-234, Feb. 1989.

[6] L. N. Medgyesi-Mitshang and D. S. Wang, “Hybrid solutions for

large-impedance coated bodies of revolutiofEEE Trans. Antennas Lo .
Propagat, vol. 34, pp. 1319-1329, Nov. 1991. Raj Mittra  (S'54-M'57-SM'69-F'71-LF’96) received the M.S. degree from

[7] J. M. Bornholdt and L. N. Medgyesi-Mitschang, “Mixed-domainthe University of Calcutta, India, and the Ph.D. degree from the University
Galerkin expansions in scattering problem$EEE Trans. Antennas ©Of Toronto, Canada. ) o
Propagat, vol. 36, pp. 216—227, Feb. 1988. He is with the Electromagnetic Communication Research Laboratory,
[8] D. S. Wang, “Current-based hybrid analysis for surface-wave effects &¢nnsylvania State University, University Park.

large scatterersJEEE Trans. Antennas Propagavol. 39, pp. 839-850, _ Dr. Mittra is Past President of the Antennas and Propagation Society and
June 1991. Past Editor of the IEEE AANSACTIONS ON ANTENNAS AND PROPAGATION. He

received the Antennas and Propagation Society Best Paper Award in 1978
and the IEEE Centennial Medal in 1984.




