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A Technique for Extrapolating Numerically Rigorous
Solutions of Electromagnetic Scattering Problems to

Higher Frequencies and Their Scaling Properties
Zwi Altman, Senior Member, IEEE,and Raj Mittra,Life Fellow, IEEE

Abstract—The possibility of extrapolating the current distri-
bution on two-dimensional scatterers to high frequencies, from
the knowledge of the solution at two or more lower frequencies,
is investigated in this paper. A simple extrapolation algorithm is
developed in which the current distribution is first calculated at
two lower frequencies, and then split into propagating or decaying
traveling wave components in the lit and shadow regions. These
components are scaled to higher frequencies, by using simple
operations such as stretching of the magnitude and linear extrap-
olation of the phase. This technique enables one to solve a class of
large-body scattering problems, well beyond the range of rigorous
numerical techniques. Furthermore, the extrapolated solution
is rapidly constructed over a very wide range of frequencies,
typically by utilizing the rigorous solution at only two lower
frequencies. The application of the extrapolation algorithm is
demonstrated for several examples, viz., an ellipse with a high
aspect ratio, and wing-shaped geometries with rounded and
sharp edges. The robustness of the technique is illustrated by
considering grazing angles of incidence where the asymptotic
techniques typically break down.

Index Terms—Electromagnetic scattering by rough surfaces.

I. INTRODUCTION

NUMERICALLY rigorous approaches to frequency
domain electromagnetic scattering problems, e.g., the

method of moments (MoM) or the finite-element method
(FEM), can become extremely expensive in terms of memory
requirement and central processing unit (CPU) time when
dealing with a large scatterer, especially when the solution is
needed over a broad band of frequencies. One approach to
obviating this problem is to solve as large as a problem as
can possibly be accommodated on the available computer, and
then attempt to extrapolate the solution to higher frequencies.
Despite the great need for solving large body problems using
numerical rather than asymptotic techniques, the extrapolation
technique [1] has not received as much attention in the
literature as it probably deserves. In [1] an extrapolation
technique has been combined with the MoM to solve scattering
problems from large bodies of revolution, and the possibility
of extrapolating entire domain basis functions of complex
exponential type has been studied.
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In this paper, we examine the extrapolation problem by pos-
ing the following question: Assuming that the MoM solution
for the current distribution has been generated for a few (two
or more) frequencies for which the body is at least moderately
large in terms of wavelength and yet is manageable in size,
is it possible to accurately predict the solution for higher
frequencies for which the body is too large to be handled
using the available resources?

We show in this paper that the answer is indeed in the
affirmative for the cases of the geometries investigated, even
for the situation where the conventional asymptotic methods
typically fail, e.g., for grazing incidence. The extrapolation
technique is based on a frequency scaling procedure in which
the computed current distribution on the body is first split into
general constituent traveling components, each of which is
then extrapolated, individually, by using algorithms described
in this paper. We use the termscaling for extrapolation of a
single traveling wave constituent in contrast toextrapolation
which is employed for the total current distribution that can
include one or several traveling waves. The individual scaling
is necessitated by the fact that the different components of
the current distribution follow different scaling laws. This is
explained on detail in Section II.

To illustrate the versatility of the extrapolation approach,
we examine three different types of scatterers in this paper.
The first of these is an ellipse with a high aspect ratio which
is a typical example of a geometry of a smooth scatterer, and
which supports only a single traveling wave at each point of
the surface when the scatterer size is large. Next, we turn to
a wing-shaped geometry with a sharp edge, which launches
edge-diffraction currents that scale differently [2] than does
the physical optics component. Finally, the third case studied
is a modification of the previous wing-shaped geometry whose
edges are now rounded. This case is of particular interest since
the surface has a slope discontinuity that causes an additional
traveling wave to be excited for the TE polarization. The
scaling properties of the constituent components in the lit,
shadow and the transition regions are discussed in detail in
Section V.

II. SCALING OF THE PHYSICAL OPTICS

CURRENT DISTRIBUTION

Consider three perfect conducting surfaces, and ,
as shown in Fig. 1, which may be viewed as the surface of a
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Fig. 1. Three surfaces in a wavelength scale that represent a scatterer at
three different frequencies.

given scatterer at three different frequencies in a wavelength
scale. The surfaces and are related to via a stretch-
ing procedure, because their geometries satisfy the following
relationship:

(1)

where and are constant positive numbers. If is a
scalar function on we define the stretched function
on as

(2)

Assume that is illuminated by a plane wave
, where is the vector wave number. In the lit

region, the physical optics (PO) approximation to the current
distribution , which is often employed for large smooth
scatterers, is given by

(3)

Let and be the phases of the current
distributions and on and , respectively. Then
the PO approximation to can be written as

(4)

where is a unit vector parallel to . Equation (4) states
that in order to calculate from and , we need to
stretch the magnitude of to the new surface and perform
a linear extrapolation for the phase. Equation (4) is obviously
an example of scaling, since the value of the function at a
stretched point depends on the value of the function at points

on other surfaces. However, the above scaling procedure,
though simple, is not sufficiently general to be applicable to
other components of the current, as we will soon see. An
important objective of this work is to extend the extrapolation
procedure to a more general current distribution of the type
encountered in the geometries investigated in this paper.

III. SCALING OF ONE

TRAVELING WAVE CURRENT COMPONENT

The first step to developing a general scaling procedure
is to realize that different components of the surface current
distribution must be scaled differently, i.e., a single scaling

algorithm is not universally applicable to the total current
distribution. For the sake of simplicity of notation, let us
assume that the current represents one of the components
of the total current distribution, viz., (axial) for the TM
case and (transverse) for the TE case. Let, , and
be the current distributions on the surfaces, , and ,
respectively. Also let and be obtained by employing
a numerically rigorous technique, e.g., the MoM or FEM.
Our objective is to derive from and via a scaling
procedure.

As a first approximation to , we stretch the magnitude of
by computing , and extrapolating the phase linearly,

as in (4), to get

phase
phase (5)

The phase scaling is linear so long as the surface currents
on consist of a single traveling wave. The choice of linear
scaling of the phase can be intuitively explained as follows:
Let us denote the length parameter along the surface by,
and the propagation constants of the traveling waves atand

on and , respectively, by , and . Then,
the phase accumulation due to propagation along
is given by , and integrating along the path of
propagation yields the desired result for the phase. The above
result is based on the Ansatz that , which we
will verify later numerically. The phase at on is thus
approximated as

(6)

Obviously, when the current on the scatterer constitutes more
than one traveling wave, the individual contributions must be
scaled separately, since their wave numbers are different.

As the surface expands, i.e., the scaling parameter
is increased, the current distribution evolves, and it often
approaches the PO limit. We take advantage of this knowledge
by modifying (5) that incorporates this limit for large .
Toward this end we define and the deviation function

from the PO limit as follows:

(7a)

(7b)

Finally, we represent the magnitude of the scaled solution for
the current via the equation

(8)

where is determined for each by substituting into
the left hand side of (8) and solving for . Equations (5)
and (8) will be verified numerically for the four cases that are
discussed in the following two sections.

IV. TM CASE

Consider a two-dimensional metallic scatterer with an el-
liptical geometry with a 5:1 aspect ratio. The geometrical
parameters for the three surfaces, and (Fig. 1) are
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Fig. 2. A PEC scatterer with an elliptical geometry illuminated by a TM
incident plane wave at grazing incidence. The parametersai andbi correspond
to the surfacesSi of Fig. 1.

Fig. 3. Current distributions on the elliptical scatterer as a function of the
distances measured from the transition pointP (Fig. 2). The extrapolated
solution is compared to the direct MoM and the physical optics solutions.

given in Fig. 2, and the scaling factor is in this example.
Let a TM-polarized plane wave be incident on the scatterer at
grazing. The results for the magnitude of the induced current
distribution for the scaled solution (EXT), the direct MoM
solution (DIR) and the PO approximation are shown in Fig. 3.
The MoM solutions throughout this work have been calculated
by using a combined field integral equation (CFIE) formulation
to avoid the internal resonance problem. The accuracy of the
scaling procedure is demonstrated by the excellent agreement
between the scaled and direct solutions throughout, while the
PO and direct solutions are seen to differ from each other in the
transition region. It is evident that the transition of the surface
current from the lit to the shadow region must be smooth;
however, the PO approximation predicts that the current goes
to zero abruptly in the shadow region because the normal to
the surface is parallel to the -field at the shadow boundary.
In contrast to the TE case, there is no discontinuity in the
current distribution for the TM polarization and, therefore, the
PO approximation is good for smooth geometries for the latter
case. The far-field results are shown in Figs. 4 and 5. The
scaled result is almost identical to the direct solution whereas
the PO approximation has a spurious null close to the forward
scattering angle. In the backscattering region the PO solution
is off by approximately 1 dB.

Next, let us consider the scattering problem by a body
with an edge. Referring to the canonical solution of the edge
diffraction problem [2], we can easily verify that at the edge
the solution tends to its electrostatic limit and, therefore, does

Fig. 4. Far-field results for the elliptical geometry with TM excitation.
Comparison between the extrapolated and direct solutions.

Fig. 5. Far-field results for the elliptical geometry with TM excitation.
Comparison between the direct and PO solutions.

Fig. 6. A wing-shaped geometry with a sharp edge illuminated by a TM
incident plane wave. The front part consist of a portion of a circle of radius
b, anda is the distance between the center of the circle and the edge. The
parametersai and bi correspond to the surfacesSi of Fig. 1.

not scale. However, sufficiently far from the edge, the solution
tends asymptotically to the PO limit. We may therefore modify
the scaling procedure for scatterers with edges as follows. In
the region far from the edge, where the magnitude of the
current distribution settles down to the PO limit, we use (5),
whereas close to the edge we choose , i.e.,
we leave the magnitude unstreched. The phase distribution,
however, is extrapolated linearly according to (5).

Let us now verify the accuracy of this approximation for
a wing-shaped scatterer, which is illuminated by a TM plane
wave as shown in Fig. 6, for a scaling factor of . The
magnitude of at a distance of from both sides
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Fig. 7. Current distributions for the wing-shaped geometry with a sharp
edge. Comparison between the extrapolated and direct MoM solutions.

Fig. 8. Far-field results for the wing-shaped geometry with sharp edge and
TM excitation. Comparison between the extrapolated and direct solutions.

of the edge is not stretched, whereas the phase is linearly
extrapolated everywhere. The choice for( in our case)
is flexible, however it should be taken big enough for the
solution to settle down to the PO limit to avoid discontinuities
in the current distribution. It should be noted that by processing
more than two solutions ( and in our case) one could
find closed form expressions for the current distribution as a
function of size or frequency in the presence of edges [3].
The scaled and direct solutions for the current distribution are
shown in Fig. 7. The two curves, which are almost identical
to each other, validate the proposed scaling procedure for
the magnitude of the current density in the vicinity of the
edge. Although small differences of the extrapolated and MoM
currents phase were found to be present in the lit region,
they had little influence on the far-field pattern. In Fig. 8, we
compare the extrapolated and direct far-scattered fields. The
two curves are seen to agree well for most angles, except in the
region around 120and 240, where some oscillations appear
in the extrapolated solution. However, as shown in Fig. 9, the
undesired oscillations disappear if we replace the phase of the
extrapolated solution by that of the PO solution at distances
of and beyond from the edges. Thus, we have shown that
a highly accurate solution can be obtained for this geometry
by combining the scaled solution with the PO approximation.
Not unexpectedly, the PO only far-field pattern was found to

Fig. 9. Comparison between the extrapolated and direct solutions. A phase
correction is obtained using PO approximation for the current.

Fig. 10. Current distributions for the elliptical scatterer of Fig. 2 with TE
excitation. The parameters for the three surfacesS1, S2, andS3 area1 = 20,
b1 = 4, a2 = 25, b2 = 5, a3 = 60, andb3 = 12. The extrapolated solution
is compared to the direct MoM and the PO solutions. The difference between
the direct solution and the extrapolated one is shown by the bottom curve.

exhibit large errors since the fringe currents have a significant
contribution to the far-field of this scatterer.

V. TE CASE

In this section we consider the case of TE polarization for
which the results have some interesting differences from the
TM case. In the lit region, the incident magnetic field in
the TE case is perpendicular to the normal to the surface;
consequently, the amplitude of the current distribution at the
transition region is much higher for the TE than it is for the
TM case. The PO approximation is rather poor in the transition
region because it drops abruptly as we transition from the lit
region to the shadow region. This nonphysical discontinuity
in the PO approximation of the current distribution generates
large spurious oscillations in the far-field pattern.

When the surface of the scatterer and its slope are continu-
ous, we expect only one traveling wave to be excited along the
surface at each point. Equations (5) and (8) can then be used
to extrapolate the current components to higher frequencies.
As an example, consider again the case of the ellipse shown in
Fig. 2 for the case of TE illumination and a scaling factor of

. The current distribution for the extrapolated, direct and
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Fig. 11. Far-field results for the elliptical geometry with TE excitation.
Comparison between the extrapolated and direct solutions.

Fig. 12. Far-field results for the elliptical geometry with TE excitation.
Comparison between the direct and PO solutions.

PO solutions are plotted in Fig. 10. The difference between
the extrapolated and the direct solution is also shown by the
bottom curve in the same figure, and this curve serves as an
indicator of the quality of the extrapolated result for both the
magnitude and phase. Because the aspect ratio of the ellipse
is large, the “PO region” with constant magnitude is very
small, whereas the transition region is very large; thus, the PO
approximation is relatively poor in this case. The comparisons
between the various far-field patterns are presented in Figs. 11
and 12. An excellent agreement between the extrapolated and
direct solutions is observed in Fig. 11, whereas the PO pattern,
shown in Fig. 12, is seen to have nonphysical oscillations due
to the discontinuous behavior of the current in the transition
region.

Let us now return to an important case where the slope of
the surface is not continuous. All of our numerical experiments
show that, unlike the TM case, a TE illumination at a slope
discontinuity excites more than one traveling wave. This
implies that direct extrapolation of the current distribution
is not possible since each traveling wave must be scaled
differently.

As an example, let us consider the scatterer of Fig. 13, with
a scaling factor of . Analyzing the current distribution
we find that two traveling waves are excited at each of the

Fig. 13. A wing-shaped geometry with a rounded edge illuminated by a TE
incident plane wave. The front and back regions consist of portions of circles
with radii b andc, respectively, anda is the distance between the centers of
the two circles. The length parameters along the curve is measured fromB
and increases in the counterclockwise direction.

slope discontinuities and , and they both travel in the
same direction. In the lit region, and away from the slope
discontinuities, the propagation constants associated with these
two traveling waves are found to be very close to each other,
these constants being ( , which
corresponds to the PO approximation), and . The
two traveling waves propagate in the same direction, and
thus introduce an interference pattern with a very slow beat
frequency along the straight section of the scatterer. In Fig. 14,
we compare the stretched solution on [see (2)]
and .

When we increase the angle(see Fig. 13), we find that the
magnitude of the oscillations decreases while their frequency
increases, and the solution approaches the PO limit. For

, for example, the magnitude of the oscillations is
less than a third of that at 7.66, and its period is smaller. For

, the oscillations become essentially negligible.
It is obvious that we cannot obtain from by a simple

scaling of the total current distribution using (5) and (8),
since the forms of the curves are completely different. We
show, however, that a simple extrapolation procedure based
on selective scaling of the two traveling waves-components is
still possible. Let us denote these components by the subscripts
“po” and “tw.” We calculate by using (3), and then
obtain by calculating the difference between the total
current distribution and . Next, we write the total current
distributions on and in the form

(9a)

(9b)

Finally, we calculate by scaling using (5), and
then adding to it using (3), to obtain the total current
distribution.

Let us now turn to the shadow region. Since the two
traveling waves penetrate the shadow region at, they should
be scaled separately in this region also. However, since the
extension of the PO traveling wave in the shadow region is
not known analytically, we can no longer separate the two
contributions as we did in the lit region [see (9)], and we deal
with this case as follows. We assume that the shadow region is
sufficiently large and, hence, the traveling waves are negligible
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Fig. 14. Comparison between the stretched current at a low frequency to the
direct solution at a higher frequency.

at (Fig. 13). We then compute from (8), and denote the
normalized to one function at the shadow
region by , the “profile” function. The next step is to derive
the two propagating constants and . The first one is
derived straightforwardly from the analytical representation of
the PO current. We extract the second propagating constant,
viz., , via the GPOF algorithm [4], [5], by sampling
the current at a few points in the lit region just before the
transition point . Since and are quite close to
each other, we assume that they have the same profile function

. We then denote the complex amplitudes of the scaled
components and , respectively, at , by
and . Finally, we postulate the following representation
for the current distribution in the shadow region between
and

(10)

Note that in the above representation, the decay of the current
in the shadow region has been accounted for by the profile
function ; hence, there is no need to include an attenuation
constant in the exponents.

Although the representation in (10) is quite accurate for our
purposes, it may be further improved, if desired, as follows.
Examining the propagation constants at different points along
the surface, we find that their values increase slightly as the
wave penetrates into the shadow region. Thus, to obtain an
even more accurate representation of, we can let and

in vary between and in the same manner as
they do in .

The results for the current distribution for the extrapolated,
direct and PO solutions are plotted in Fig. 15. The difference
between the extrapolated an direct solution is also shown by
the bottom curve in the same figure. We can see that by
selective scaling of the two traveling waves, we can extrapolate
the current distribution accurately to higher frequencies even
though the shapes of the curves and are completely
different from that of . From the current difference plot
we can see a small error in phase in the shadow region which
accumulates as the traveling waves go deeper into that region.

Fig. 15. Current distributions for the wing-shaped geometry with a rounded
edge. The extrapolated solution is compared to the direct MoM and the PO
solutions. The difference between the direct solution and the extrapolated one
is given by the bottom curve.

Fig. 16. Far-field results for the wing-shaped geometry with a rounded edge
and TE excitation. Comparison between the extrapolated and direct solutions.

Since the transition in both phase and magnitude are very
smooth, the small error in the phase does little to affect the
far-field pattern, as is evident form Fig. 16, which shows that
the far-field patterns of the extrapolated and direct solutions
almost overlap. Finally, we compare the far-field patterns of
the PO approximation and the direct solution in Fig. 17. The
PO solution is seen to deviate noticeably from the direct
solution over a wide angular range. This is because the PO
approximation of the current does not include the second
traveling wave in the lit region and has a nonphysical behavior
in the transition region.

Next, we attempt to estimate the contribution of the second
traveling wave in the current distribution on the far-field. We
do this by constructing a hybrid solution that excludes this
traveling wave component and consists, instead, of only the PO
approximation in the lit region and its extension in the shadow
region. This study is important because it sheds light into
the accuracy behavior of numerical techniques that attempt to
hybridize the high frequency scattering solution by using the
PO approximation on the smooth portion of the scatterer and a
rigorous technique, e.g. MoM or FEM, in the neighborhood of
a discontinuity. We have already shown that the influence of
the discontinuity is not localized, and that the slope disconti-
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Fig. 17. Far-field results for the wing-shaped geometry with a rounded edge
and TE excitation. Comparison between PO and direct solutions.

Fig. 18. Comparison of the hybrid solution for the current distribution with
the direct solution. The difference curve represents the contribution of the
second traveling wave.

Fig. 19. Far-field results for the wing-shaped geometry with rounded edge
and TE excitation. Comparison between the hybrid and direct solutions.

nuity can excite a traveling wave that propagates for hundreds
of wavelengths with little decay. However, as we show below,
this may not have a significant effect on the far-field.

In Fig. 18, we compare the hybrid and direct solutions and
also plot the difference curve which shows the contribution of
the second traveling wave. The level of the difference curve
implies that the hybrid solution introduces a significant error
in the near field. We next examine the far-field pattern for the

hybrid and direct solutions plotted in Fig. 19. The two curves
are seen to be very similar, with only some minor differences
in their levels. This interesting result can be explained by
observing that, away from the slope discontinuity, the propa-
gation constants of the two traveling waves are very close to
each other, viz., 6.227 and 6.282; hence their far-field patterns
are virtually indistinguishable from each other. If we increase
the angle of incidence, or the wedge angle, the difference
between the propagation constant increases. However, the
amplitude of the second traveling wave decreases at the same
time, so that its influence on the far-field pattern remains
relatively small.

VI. CONCLUSION

In this work we have examined the two-dimensional scat-
tering problem for a number of scatterers, and have presented
an extrapolation procedure based on the selective scaling
properties of constituent current components on the surface
of the scatterer. We have shown how we can derive the
extrapolated current at high frequencies from the knowledge
of the numerical solution at two lower frequencies, where
the body is only moderately large. Thus the method has
the potential for application to very large body scattering
problems, at least for a class of canonical scattering geometries
that may be used as benchmarks for numerically rigorous
solution techniques.

The extrapolation is based on selectively stretching the
magnitude and linearly extrapolating the phase of the con-
stituent current components. The extrapolation procedure has
the attractive features that it is simple to implement and very
efficient in terms of the CPU time. It is also more accurate
than the PO, especially at grazing incidence where PO tends
to break down. Furthermore, unlike asymptotic methods, it
does not rely upon the availability of canonical solutions and
it can handle both the transition and shadow regions with
relative ease. It can be applied to scatterers with both slope
discontinuities and edges.

It may also be possible to combine the extrapolation tech-
nique with the conventional MoM, by employing subdomain
basis functions for the complex portions of the scatterer in
a manner proposed by Wang,et al. [6]–[8], to handle more
complex geometries than have been investigated in this paper.

The extension of the extrapolation procedure is currently
being investigated for a class of three-dimensional scattering
problems [3]. In order to get accurate results, one must first
generate the solution at several lower frequencies from which
the solution is extrapolated to higher frequencies. The solutions
at lower frequencies can then be used to determine accurately
the frequency dependency of the solution. The finite difference
time domain technique is found to be very well suited for this
problem since in one run one can get the solution over a wide
band of frequencies.
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